VGA

CS/EE 3710
Fall 2019

Cathode Ray Tube

Anode

Deflecting coils
Control Grid

\
\

=

/

/
Heater

/

Cathode Electron

beam : :
Focusing coil

R B S |

I o] (3] L] §

|

Raster Scanning

......
.............

"o

Electron Gun

Elptical Aperture lens

©2001 HowStuffWorks

Beam Steering Colls

VGA

¢ Stands for Video Graphics Array

+ A standard defined by IBM back in 1987
= 640 x 480 pixels

= Now superseded by much higher resolution
standards...

+ Also means a specific analog connector
= 15-pin D-subminiature VGA connector

SOMHMISMOH 00020

VGA Connector

PP 2P 3PP 20

5. &7 €3 €5 3’10 " .

o s &

Lo R

1»5 \/{f

12

-
- O G@e@o@o@o@ O
.

15

\

00000

/

S—

1: Red out 6: Red return (ground) 11: Monitor ID 0 in

2: Green out 7: Green return (ground) | 12: Monitor ID 1 in
or data from display

3: Blue out 8: Blue return (ground) 13: Horizontal Sync

4: Unused 9: Unused 14: Vertical Sync

5: Ground 10: Sync return (ground) | 15: Monitor ID 3 in

or data clock

R B S |

I o] (3] L] §

|

Raster Scanning

......
.............

"o

(F—pixel 0,0 pixel 0,639 — -

A k
640 pixels are displayed each
time the beam traverses the screen

VGA Display
Retrace: No
Current information
through the [t Pixel 479,0 pixel 479,639 — is displayed
horizontal during
deflection this time
coil

Stable current ramp: Information is
displayed during this time

Total horizontal time

Horizontal display time retrace time

l{...!."l'....!.. CER N LI N L NN

IOL'IJI.I [(ET R R R TN RL T ¥

time

l’_‘ “back porch”

r “back porch”

Hs~ L

L

Horizontal sync signal L “front porch”
sets the retrace frequency ’

Horizonal Dots

VGA Timing

Vertical Scan Lines
Horiz. Sync Polarity

640 60Hz vertical frequency
480

NEG

A (us) 31.77 Scanline time
B (us) 3.77 Sync pulse length
C (us) 1.89 Back porch
D (us) 25.17 Active video time
E (us) 0.94 Front porch
VIDEO | | VIDEO (next line)
R D-————— - - |-E-|

VGA Timing (hSync)

Horizonal Dots 640 60Hz vertical frequency
Vertical Scan Lines 480
Horiz. Sync Polarity NEG
A (us) 31.77 Scanline time
B (us) 3.77 Sync pulse length
C (us) 1.89 Back porch
D (us) 25.17 Active video time
E (us) 0.94 Front porch

25.17/640 = 39.33ns/pixel = 25.4MHz pixel clock

| VIDEO | | VIDEO (next line)

VGA Timing (vSync)

Horizonal Dots 640
Vertical Scan Lines 480
Vert. Sync Polarity NEG
Vertical Frequency 60Hz

O (ms) 16.68 Total frame time
P (ms) 0.06 Sync pulse length
Q (ms) 1.02 Back porch
R (ms) 15.25 Active video time
S (ms) 0.35 Front porch
| VIDEO | | VIDEO (next frame)
| =Q= [=========~ R-—=—=—=———= | =S~ |

VGA Timing Summary

Vertical Sync Horizontal Sync
Symbol Parameter
Time Clocks Lines Time Clocks
Ts Sync pulse time 16.7 ms 416,800 521 32 us 800
Tpisp | Display time 1536 ms | 384,000 480 25.6 pus 640
Tpw | Pulse width 64 ps 1,600 2 3.84 us 96
Tep Front porch 320 ps 8,000 10 640 ns 16
Tgp | Back porch 928 s 23,200 29 1.92 us 48
| Ts !
- -
| | I T
| — T
| | Tdisp | | P
| I
| T
| [I
— ‘ I
. - T
" o~ Tow bp

UG230_o6_03_021706

60 Hz refresh and 25MHz pixel clock

Relaxed VGA Timing

+ This all sounds pretty strict and exact...

¢ |[t's not really... The only things a VGA monitor
really cares about are:
= Hsync
= Vsync
= Actually, all it cares about is the falling edge of
those pulses!
= The beam will retrace whenever you tell it to

= It's up to you to make sure that the video signal is
Ov when you are not painting
(i.e. retracing)

Relaxed VGA Timing (hSync)

\|_/|(e):’:iZC(;rI]aS|CDa(r)1tT_ineS ,1?28 60Hz vertical frequency
Horiz. Sync Polarity NEG

A (us) 30.0 Scanline time

B (us) 2.0 Sync pulse length
C (us) 10.7 Back porch
D (us) 12.8 Active video time
E (us) 4.50 Front porch

12.8/128 = 100ns/pixel = 10 MHz pixel clock
| VIDEO | | VIDEO (next line)
R R I |-E- |

Relaxed VGA Timing (vSync)

Horizonal Dots 128
Vertical Scan Lines 255
Vert. Sync Polarity NEG
Vertical Frequency 60Hz

O (ms) 16.68 Total frame time
P (ms) 0.09 Sync pulse length (3x30pus)
Q (ms) 4.86 Back porch
R (ms) 7.65 Active video time
S (ms) 4.08 Front porch
| VIDEO | | VIDEO (next frame)
O R---—------- |-S-|

VGA Colors

+ \/oltages on R, GG, and B determine the color
= Analog range from Ov (off) to +0.7v (on)

= For B&W output, just drive RGB together and let
Ov=black and 0.7v=white
= For color you can drive R, G, B separately

e Of course, this is only 8 colors (including black and white)
e Requires storing three bits at each pixel location

VGA on DE1-SoC Board

The DE1-SoC board has a 15-pin D-SUB connector
populated for VGA output.

The VGA synchronization signals are generated directly
from the Cyclone V SoC FPGA.

The Analog Devices ADV7123 triple 10-bit high-speed
video DAC (only the higher 8-bits are used) transforms
signals from digital to analog to represent three
fundamental colors (red, green, and blue).

[t can support up to SXGA standard (1280*1024) with
signals transmitted at 100MHz.

VGA on DE1-SoC Board

‘ us
| VGA_R[7.0] d
|| VGA_G[7..0] :
/AN 2 2YA\ VGA_BI[7..0] d
. VGA DAC
CyclonetV _VCACLK »| ADV7123
i VGA_SYNC_N d
VGA_BLANK_N
P
VGA_VS
VGA_HS

VGA Assignment

+ vgaControl
» Generate timing pulses at the right time
= hSync, vSync, bright, hCount, vCount

¢ bitGen

s Based on bright, hCount, vCount, turn on
the bits

3 Types of bitGen

+ Bitmapped

= Frame buffer holds a separate rgb color for
every pixel

= bitGen just grabs the pixel based on hCount
and vCount and splats it to the screen

s Chews up a LOT of memory

3 Types of bitGen

¢ Character/Glyph-based
» Break screen into nxm pixel chunks (e.g. 8x8)
» For each chunk, point to one of k nxm glyphs
= Those glyphs are stored in a separate memory
s For 8x8 case (for example)

e glyph number is hCount and vCount minus the low three bits

e glyph bits are the low-order 3 bits in each of hCount and
vCount

e Figure out which screen chunk you're in, then reference the
bits from the glyph memory

3 Types of bitGen

¢ Direct Graphics
s Look at hCount and vCount to see where you are on
the screen
= Depending on where you are, force the output to a
particular color

» Tedious for complex things, nice for large, static

things varameter BLACK = 3’ b 000, WHITE = 3’ b111, RED = 3’ b100:
// paint a white box on a red background
always@(*)
if (~bright) rgb = BLACK;; // force black if not bright
/| check to see if you’ re in the box
else if (((hCount >=100) && (hCount <= 300)) &&
((vCount >= 150) && (vCount <= 350))) rgb = WHITE;
else rgb = RED; // background color

VGA Memory Requirements

* 640x480 VGA (bitmapped)
= 307,200 pixels
= 3 bits per pixel
= 0 pixels per 18-bit word
= 50k locations for 640x480

VGA Memory Requirements

* 320x240 VGA (bitmapped)
= /6,800 pixels
s Each stored pixel is 2x2 screen pixels
= 3 bits per pixel
= 0 pixels per 18-bit word
= 12.5k 18-bit words needed

VGA Memory Requirements

+ 80 char by 60 line display (8x8 glyphs)
= 4800 locations
= Each location has one of 256 char/glyphs
s 8-bits per location — 2 locations per word
» 2400 addresses for frame buffer

= Each char/glyph is (say) 8x8 pixels
e results in 640x480 display...

s 8x8x256 bits for char/glyph table
e 16kbits (1k words) for char/glyph table

Character Example...

i 1 1 1n:

i : i 3 1 i i i i H i i i i : i H i 3

- U R MOvt SR SR LR
11 11

@0 > 64 characters
Character ROM eaCh 8X8 plXCIS

| nOEO0-nOE120

A 4

< T(7:0]

Character Example...

The Character ROM contains the 64 member ASCII upper-case character set. The characters are addressed with a 5-
bit binary address A[4:0] and a 16-bit unary decoded address, nOE0-nOE120. The Character ROM outputs a single row
of the selecled character at a time on the signals T([7:0].

Al4:3] decodes one of the four rows of 16 characters in the ROM.

A[4:3] ==0 - first row “OLTESRE () 4, - "
Al4:3] ==1 -second row “0123456789:;<=>72"
Al[4:3] ==2 - third row “@ABCDEFGHIJKLMNO”
A[4:3] ==3 - fourth row “PQRSTUVWXYZ [N\]~_ "

The sixteen signals nOEQ, nOES8, nOE16, nOE24, nOE32, nOE40, nOE48, nOES6, nOEG4, nOE72, nOE80D, nOESS,
nOES6, nOE104, nOE112, nOE120 select one of the sixteen columns of of four characters. These signals are active low
and only one is asserted at any time. For instance, nOE0==0 selects the first column with the four characters * CEE” in
itand nOE7==0 selects " 7GW",

A[2:0] decodes one of the eight character rows. For instance, if the character "A” is selected with A[4:3]==2 and nOES8
then A[2:0] will produce the following binary output on T[7:0].

Binary Visible Output

A[2:0] == 0 - first row 00011100 * k=

A[2:0] ==1 -second row Q0100010 . "
A[2:0] ==2 - third row 00100010 . X
A[2:0] ==3 - fourth row 00111110 XEEX®
A[2:0] == 4 - fifth row Q0100010 . w
A[2:0] ==5 - sixth row 00100010 ® -
A[2:0) == 6 - seventh row 00100010 % *

A[2:0] ==7 - eight row Q0000000

Character Example...

hVidCO module H.A[60]
. charRom HA[2:0]
HA[63] - 6/ Character Bus 3,, > A[43] y
Character : - g, | &1
- Function 4- 16 n0E120 T[7:0] 7 Mux » 3 input
vCnt[7-4] 4| #16 o - AND .
> "7| Decoder nOE0 HBright — VidOut
A[2:0] vBright—
vCnt[3:1]
vVideo module

vCnt[7:1]

Third VGA Assignment

* Get VGA working

s Start with full-screen flood
= then play around with direct VGA graphics

+ Take the Third state machine
= outputs are six lights

+ Define six regions of the screen

= Make those regions change color when the
state machine says the lights should be on

ther I/O on DE1-SoC Board

~_ 25MHz Clock Input
w (Clock Generator x1)

Norrnal Type-B

T 2

h 4 + .‘ A 4

Micro
— iy SO Card
) (|
ecucccococcocor

RS, Tl — L P —
ccucecoceo o "

¢ %36 » n
40 pin GPIO C gv o
. %29 o B i
g yoloee! = Wl - —
VGA (8 bit) w "
) x12_, 5CSEMASF31C6BN USB Host
Videa-in r.iIFb ﬁ Normal Type-A| = _

P]
-, s
.- ——; Goses

Line In

an

Switch Control

x1 USB Mini-B
x1
IR TX R ey 4T Accelerometer

Clock(Clock Generator)

ADC

s e
x4 [x10 |x42 |x10 *6 l’“ x1 x1 x1
: B . I, 1

: HPS HPS WARM
User LED
Push Button x4 RST User RST

EEEB&EEEE& x; =Li§)io ‘Jv‘ Buton

Slide Switch x10

