
Mini-MIPS

CS/EE 3710
Fall 2019

From Weste/Harris

CMOS VLSI Design

CS/EE 3710

Based on MIPS

w  In fact, it’s based on the multi-cycle MIPS
from Hennessy and Patterson
n  Your CS/EE 3810 book...

w 8-bit version
n  8-bit data and address
n  32-bit instruction format
n  8 registers numbered $0-$7

l  $0 is hardwired to the value 0

CS/EE 3710

Instruction Set

CS/EE 3710

Instruction Encoding

CS/EE 3710

Fibonacci C-Code

CS/EE 3710

Fibonacci C-Code

Cycle 1: f1 = 1 + (-1) = 0, f2 = 0 – (-1) = 1
Cycle 2: f1 = 0 + 1 = 1, f2 = 1 – 1 = 0
Cycle 3: f1 = 1 + 0 = 1, f2 = 1 – 0 = 1
Cycle 4: f1 = 1 + 1 = 2, f2 = 2 – 1 = 1
Cycle 5: f1 = 2 + 1 = 3, f2 = 3 – 1 = 2
Cycle 6: f1 = 3 + 2 = 5, f2 = 5 – 2 = 3

CS/EE 3710

Fibonacci Assembly Code

Compute 8th Fibonacci number (8’d13 or 8’h0D)
Store that number in memory location 255

CS/EE 3710

Fibonacci Machine Code

101000

4

Assembly Code Machine Code

CS/EE 3710

Architecture

CS/EE 3710

Architecture

CS/EE 3710

Another View

CS/EE 3710

Control FSM

CS/EE 3710

Connection to External Memory

CS/EE 3710

External Memory from Book
// external memory accessed by MIPS
module exmemory #(parameter WIDTH = 8)
 (input clk,
 input memwrite,
 input [WIDTH-1:0] adr, writedata,
 output reg [WIDTH-1:0] memdata);

 reg [31:0] RAM [(1<<WIDTH-2)-1:0];
 wire [31:0] word;

 // Initialize memory with program

initial $readmemh("memfile.dat",RAM);

 // read and write bytes from 32-bit word
 always @(posedge clk)
 if(memwrite)
 case (adr[1:0])
 2'b00: RAM[adr>>2][7:0] <= writedata;
 2'b01: RAM[adr>>2][15:8] <= writedata;
 2'b10: RAM[adr>>2][23:16] <= writedata;
 2'b11: RAM[adr>>2][31:24] <= writedata;
 endcase

assign word = RAM[adr>>2];
 always @(*)
 case (adr[1:0])
 2'b00: memdata <= word[7:0];
 2'b01: memdata <= word[15:8];
 2'b10: memdata <= word[23:16];
 2'b11: memdata <= word[31:24];
 endcase
endmodule

 Notes:
•  Endianess is fixed here
•  Writes are on posedge clk
•  Reads are asynchronous
•  This is a 32-bit wide RAM
•  With 64 locations
•  But with an 8-bit interface...

CS/EE 3710

Exmem.v

module exmem #(parameter WIDTH = 8, RAM_ADDR_BITS = 8)
 (input clk, en,
 input memwrite,
 input [RAM_ADDR_BITS-1:0] adr,
 input [WIDTH-1:0] writedata,
 output reg [WIDTH-1:0] memdata);
 reg [WIDTH-1:0] mips_ram [(2**RAM_ADDR_BITS)-1:0];

 initial $readmemb("fib.dat", mips_ram);

 always @(posedge clk)
 if (en) begin
 if (memwrite)
 mips_ram[adr] <= writedata;
 memdata <= mips_ram[adr];
 end

endmodule

• This is synthesized to
 a Block RAM on the
 Altera FPGA
•  It’s 8-bits wide
•  With 256 locations
•  Both writes and reads
 are clocked

CS/EE 3710

Exmem.v

module exmem #(parameter WIDTH = 8, RAM_ADDR_BITS = 8)
 (input clk, en,
 input memwrite,
 input [RAM_ADDR_BITS-1:0] adr,
 input [WIDTH-1:0] writedata,
 output reg [WIDTH-1:0] memdata);
 reg [WIDTH-1:0] mips_ram [(2**RAM_ADDR_BITS)-1:0];

 initial $readmemb("fib.dat", mips_ram);

 always @(posedge clk)
 if (en) begin
 if (memwrite)
 mips_ram[adr] <= writedata;
 memdata <= mips_ram[adr];
 end

endmodule

This is synthesized to
a Block RAM on the
Altera FPGA

Note clock!

CS/EE 3710

Recall – Overall System

Clock Clk

Clk

CS/EE 3710

Recall – Overall System

Clock Clk

Clk

So, what are the implications of using a RAM that has
both clocked reads and writes instead of clocked writes
and async reads? (we’ll come back to this question...)

CS/EE 3710

mips Block Diagram

CS/EE 3710

mips.v
// simplified MIPS processor
module mips #(parameter WIDTH = 8, REGBITS = 3)
 (input clk, reset,
 input [WIDTH-1:0] memdata,
 output memread, memwrite,
 output [WIDTH-1:0] adr, writedata);

 wire [31:0] instr;
 wire zero, alusrca, memtoreg, iord, pcen, regwrite, regdst;
 wire [1:0] aluop,pcsource,alusrcb;
 wire [3:0] irwrite;
 wire [2:0] alucont;

 controller cont(clk, reset, instr[31:26], zero, memread, memwrite,
 alusrca, memtoreg, iord, pcen, regwrite, regdst,
 pcsource, alusrcb, aluop, irwrite);
 alucontrol ac(aluop, instr[5:0], alucont);
 datapath #(WIDTH, REGBITS)
 dp(clk, reset, memdata, alusrca, memtoreg, iord, pcen,
 regwrite, regdst, pcsource, alusrcb, irwrite, alucont,
 zero, instr, adr, writedata);
endmodule

CS/EE 3710

Controller

State Codes

Useful constants to compare against

State Register

CS/EE 3710

Control FSM

CS/EE 3710

Next State Logic

CS/EE 3710

Output Logic

Continued for the other states...

Very common way
to deal with default
values in combinational
Always blocks

CS/EE 3710

Output Logic

Why AND these two?

Two places to update the PC
pcwrite on jump
pcwritecond on BEQ

CS/EE 3710

ALU Control

CS/EE 3710

ALU

Invert b if subtract...

add is a + b
sub is a + ~b +1

subtract on slt
then check if answer is negative

CS/EE 3710

zerodetect

CS/EE 3710

Register File

What is this synthesized
into?

CS/EE 3710

Datapath
Fairly complex...

Not really, but it does
have lots of registers
instantiated directly

It also instantiates muxes...

Instruction Register

CS/EE 3710

Datapath continued

Flops and
muxes...

RF and
ALU

CS/EE 3710

Flops and MUXes

CS/EE 3710

Back to the Memory Question

w What are the implications of using RAM that
is clocked on both write and read?
n  Book version was async read
n  So, let’s look at the sequence of events that

happen to read the instruction
n  Four steps – read four bytes and put them in four

slots in the 32-bit instruction register (IR)

CS/EE 3710

Instruction Fetch

CS/EE 3710

Instruction Fetch

CS/EE 3710

Instruction Fetch

•  Memread, irwrite, addr, etc are set up just after clk edge
•  Data comes back sometime after that (async)
•  Data is captured in ir0 – ir3 on the next rising clk edge
•  How does this change if reads are clocked?

CS/EE 3710

mips + exmem

One of those rare cases where using both edges
of the clock is useful!

mips is expecting async reads exmem has clocked reads

CS/EE 3710

Memory Mapped I/O

w Break memory space into pieces (ranges)
n  For some of those pieces: regular memory
n  For some of those pieces: I/O

l  That is, reading from an address in that range results
in getting data from an I/O device

l  Writing to an address in that range results in data
going to an I/O device

CS/EE 3710

Mini-MIPS Memory Map

I/O
Switches/LEDs

Code/Data

Code/Data

Code/Data
00

3F
40

7F
80

BF
C0

FF

64 bytes

Top two address
bits define regions

8-bit
addresses

256 bytes
total!

0000 0000

0011 1111
0100 0000

0111 1111

1000 0000

1011 1111

1100 0000

1111 1111

CS/EE 3710

Enabled Devices

Only write to that device
(i.e. enable it) if you’re
in the appropriate memory
range.

Check top two address bits!

CS/EE 3710

MUXes for Return Data

Use MUX to decide if
data is coming from memory
or from I/O

Check address bits!

CS/EE 3710

Lab2 in a Nutshell

w Understand and simulate mips/exmem
n  Add ADDI instruction
n  Fibonacci program – correct if 8’h0d is written

to memory location 255
w Augment the system

n  Add memory mapped I/O to switches/LEDs
n  Write new Fibonacci program
n  Simulate in Quartus
n  Demonstrate on your board

CS/EE 3710

My Initial Testbench...

