CS/EE 3710

CS/EE 3710
Fall 2019
National Semiconductor CR16

Compact RISC Processor
Baseline ISA and Beyond...



CR16 Architecture

¢ Part of a microcontroller family from
National Semiconductor

s 16-bit embedded RISC processor core

= Available in synethesizeable Verilog HDL

» Die size of 0.6 mm? @ 0.25u

s 2 Mbytes of linear address space

s Less than 0.2mA per MHz (@ 3 Volts, 0.35u

¢ This has morphed into the CP3000 family...

University of Utah CS/EE 3710



CR16 Architecture

¢ More specs...
= Static 0 to 66 MHz clock frequency

s Atomic memory-direct bit manipulation
Instructions

s Save and restore of multiple registers
= Push and pop of multiple registers

s Hardware multiplier unit for fast 16-bit
multiplication

University of Utah CS/EE 3710



CR16 Block Diagram

P

SHIFTER ‘ MULTIFLIER I

DISFLACEMENT

REGISTER ROGRAM
FILE COUNTER

ADORESS DATA

University of Utah CS/EE 3710



CR16 Register Set

* All registers are 16 bits wide
s Except address registers which are 21 bits
s Original version used 18 bits...

¢ 16 general purpose registers

¢ 8 processor registers

» 3 dedicated address registers
(PC, ISP, INTBASE)

» | processor status register
= | configuration register
= 3 debug-control registers

University of Utah CS/EE 3710



CR16 Registers

Dedicated Address Registers General-Purpose Registers
15 0

20 15 0 RO

PC R1

00000 ISP R2

INTBASEH INTBASEL R3

INTBASE R4

R5

Processor Status Register R6

R7

15 0 RS

PSR RO

) . . R10

Configuration Register R11

15 0 R12

CFG R13/ERA

Debug Registers RA

20 15 0 SP
DCR
DSR

CARH CARL 15 2|10 o|s8|7]|8

reserved | PI|E|]O|IN]| Z

University of Utah



Processor Registers

¢+ PSR — Processor Status Register

«n C,T,L,F,Z, N, E, P, I bits

» Carries, conditions, interrupt enables, etc.
¢+ INTBASE - Interrupt Base Register

= Holds the address of the dispatch table for
interrupts and traps

¢ [SP — Interrupt Stack Pointer

s Points to the lowest address of the last item
stored on the interrupt stack

University of Utah CS/EE 3710



CR16 Instruction Encoding

¢ More complex than our version...

15 14 | 13 | 12 9 8 5 4 1 0
o} 1 i op code dest reg src reg
Figure B-2. Register to Register Format
15 14 | 13 | 12 9 8 5 4 (o]
(0] (0] i op code dest reg imm
Figure B-3. Short Immediate Value to Register Format
31 16 |15 1413|112 9|8 5|4 0
imm 0O O i op code dest reg 1 0 0 0 1
Figure B-4. Medium Immediate Value to Register Format
15 14 | 13| 12 9 8 5 4 1 0]
op code i disp (dg4—dq) reg base reg dg
Figure B-8. Load/Store Format, Relative with Short Displacement Value
31 16| 15 14 | 13| 12 11| 10 9 8 514 110
disp (d45—dg) op code i 1 0| d4y7 dis reg base reg | 1

University of Utah

Figure B-9. Load/Store Format, Relative with Medium Displacement Value

CS/EE 3710



CR16 Instructions

¢ Most ALU instructions have two forms
s MOVi1i->MOVW or MOVB

¢ Two-address instruction format

= One of the two arguments is also used as
destination (Rdest) and is overwritten

s ADD RO, R3=>R3 :=R3 + R0
¢ [ittle-Endian data references

s Least-significant 1s lowest numbered
= Both bits and bytes

University of Utah CS/EE 3710



CR16 Instructions

MOVES

MOQOVi Rsrc/imm, Rdest Move

MOVX Rsrc, Rdest Move with sign extension

MOVZ Rsrc, Rdest Move with zero extension

MOVD imm, (Rdest+1, Rdest) Move 21-bit immediate to register-pair

INTEGER ARITHMETIC

ADDIU]i Rsrc/imm, Rdest Add

ADDCiI Rsrc/imm, Rdest Add with carry

MULI Rsrc/imm, Rdest Multiply: Rdest(8):= Rdest(8) * Rsrc(8)/Imm
Rdest(16):= Rdest(16) * Rsrc(16)/Imm

MULSB Rsrc, Rdest Multiply: Rdest(16):= Rdest(8) * Rsrc(8)

MULSW Rsrc, Rdest Multiply: (Rdest+1, Rdest):= Rdest(16) * Rsrc(16)

MULUW Rsrc, Rdest Multiply: Rsrc = {R0,R1,R8,R9 only}
(Rdest+1,Rdest):= Rdest(16) * Rsrc(16);

SUBI Rsrc/imm, Rdest Subtract: (Rdest := Rdest — Rsrc)

SUBCi Rsrc/imm, Rdest Subtract with carry: (Rdest := Rdest — Rsrc)

University of Utah

CS/EE 3710




More CR16 Instructions

INTEGER COMPARISON

CMPi Rsrc/imm, Rdest Compare (Rdest — Rsrc)

BEQOi Rsrc, disp Compare Rsrc to 0 and branch if EQUAL
Rsrc = (R0O,R1,R8,R9 only)

BNEOi Rsrc, disp Compare Rsrc to 0 and branch if NOT-EQUAL
Rsrc = (R0O,R1,R8,R9 only)

BEQ1i Rsrc, disp Compare Rsrc to 1 and branch if EQUAL
Rsrc = (R0O,R1,R8,R9 only)

BNE1I Rsrc, disp Compare Rsrc to 1 and branch if NOT-EQUAL

Rsrc = (RO,R1,R8,R9 only)

LOGICAL AND B

OOLEAN

ANDI Rsrc/imm, Rdest Logical AND

ORI Rsrc/imm, Rdest Logical OR

Scond Rdest Save condition code as boolean
XORIi Rsrc/imm, Rdest Logical exclusive OR

SHIFTS

ASHUI Rsrc/imm, Rdest Arithmetic left/right shift

LSHi Rsrc/imm, Rdest Logical left/right shift

University of Utah

CS/EE 3710




Even More CR16 Instructions

BITS

TBIT Rposition/imm, Rsrc Test bit in register

SBITi Iposition, O(Rbase) Set a bit in memory;
Iposition, disp16(Rbase) Rbase = (R0, R1, R8, R9}
Iposition, abs

CBITi Iposition, O(Rbase) Clear a bit in memory
Iposition, disp16(Rbase) Rbase = (RO, R1, R8, R9}
Iposition, abs

TBITI Iposition, O(Rbase) Test a bit in memory
Iposition, disp16(Rbase) Rbase = (RO, R1, R8, R9}
Iposition, abs

POPRET imm, Rdest Restore registers (similar to POP) and perform JUMP

RA or JUMP (RA, ERA), depending on memory model

PROCESSOR REGISTER MANIPULATION

LPR

Rsrc, Rproc

Load processor register

SPR

Rproc, Rdest

Store processor register

University of Utah

CS/EE 3710




Still More CR16 Instructions

JUMPS AND LINKAGE

Bcond disp9 Conditional branch using a 9-bit displacement
disp17 Conditional branch to a small address[S]
disp21 Conditional branch to a large address[L]

BAL Rlink, disp17 Branch and link to a small address[S]
(Rlink+1, RIink), disp21 Branch and link to a large address|[L]

BR disp9 Branch using a 9-bit displacement
disp17 Branch to a small address[S]
disp21 Branch to a large address|L]

EXCP vector Trap (vector)

Jcond Rtarget Conditional Jump to a small address(S]
(Rtarget+1, Rtarget) Conditional Jump to a large address[L]

JAL Rlink, Rtarget Jump and link to a small address[S]

(Rlink+1, Rlink), (Rtarget+1, | jJymp and link to a large address]L]
Rtarget)

JUMP Rtarget Jump to a small address[S]
(Rtarget+1, Rtarget) Jump to a large address|[L]

RETX Return from exception

PUSH imm, Rsrc Push “imm” number of registers on user stack,

starting with Rsrc

POP imm, Rdest Restore “imm” number of registers from user stack,

starting with Rdest

University of Utah

CS/EE 3710




More and More Instructions

LOAD AND STORE

LOAD:I disp(Rbase), Rdest Load (register relative)
abs, Rdest Load (absolute)
disp(Rpair+1, Rpair), Rdest |Load (far-relative)
STORI Rsrc, disp(Rbase) Store (register relative)
Rsrc, disp(Rpair +1, Rpair) Store (far-relative)
Rsrc, abs Store (absolute)
sm_imm, O(Rbase) Store small immediate in memory;
sm_imm, disp(Rbase) Rbase = (RO, R1, R8, R9)
sm_imm, abs
LOADM imm Load 1 to 4 registers (R2 - R5) from memory, starting at
the address in RO, according to imm count value
STORM imm Store 1 to 4 registers (R2 - R5) to memory, starting at
the address in R1, according to imm count value

University of Utah

CS/EE 3710




University of Utah

CR16 Memory Map

Address
0000004

00FCO00,

0100004

020000,

03FFFF ¢

1FFFFF

A

Data, Code and I/O
Stacks

Dispatch Table
(63K)

|

Interrupt Control (1K)

3}
T

3
{

Far-Data, Code and I/O

Dispatch Table
(64K)

256 KBytes Data (both models)

128 KBytes Code (both models)

T

|
2 MBytes Code + Data (Large model) '

|
|
|
-

3
{

Far-Data, I/O and
Large Model Code

Dispatch Table
(128K)

[

Large Model Far-Data,
1/0, Code and
Dispatch Table

(256K - 2M)

CS/EE 3710



CR16 Exceptions

¢ Interrupt
s Exception caused by external activity

s CR16 recognizes three types, Maskable,
Non-maskable, and ISE (In-System Emulator)

¢ Trap

= Exception caused by program action
s Six types: SVC, DVZ, FLG, BPT, TRC, UND

¢ Interrupt process saves PC and PSR on
interrupt stack, RETX returns from interrupt

University of Utah CS/EE 3710



CR16 Pipeline

¢ Three stage pipe
= Fetch
= Decode
= Execute

¢ [nstruction execution 1s serialized after an
exception

¢ Also serialized after LPR, RETX, and EXCP

University of Utah CS/EE 3710



Our Class Version!

¢ Baseline instruction set uses (almost) fixed
instruction encoding

¢ Detailed description on CANVAS

s All mnstructions are a single 16-bit word

= All memory references (inst or data) operate on
16-bit words

s Not all instructions are included

¢ Each group will extend the baseline ISA
somehow

University of Utah CS/EE 3710



Baseline ISA

+ ADD, ADDI, SUB, SUBI

¢ CMP, CMPI

¢ AND, ANDI, OR, ORI, XOR, XORI
* MOV, MOVI

¢ LSH, LSHI (restricted to shift of one)
¢ LUI, LOAD, STOR

¢ Bcond, Jcond, JAL

University of Utah CS/EE 3710



Class Encoding

¢ In the handout on CANVAS
¢ Much more regular than real CR16

ImmHi/ ImmlLo/

OP Code | Rdest | OP Code Ext | Rsrc
Mnemonic Operands 15-12 11-8 7-4 3-0 Notes (* is Baseline)
ADD Rsrc, Rdest 0000 Rdest | 0101 Rsre *
ADDI Imm, Rdest 0101 Rdest | ImmHi ImmlLo * Sign extended Imm
ADDU Rsre, Rdest 0000 Rdest | 0110 Rsre
ADDUI Imm, Rdest 0110 Rdest | ImmHi ImmlLo Sign extended Imm
ADDC Rsrc, Rdest 0000 Rdest | 0111 Rsre
ADDCI Imm, Rdest 0111 Rdest | ImmHi ImmLo Sign extended Imm
MUL Rsrc, Rdest 0000 Rdest | 1110 Rsre
MULI Imm, Rdest 1110 Rdest | ImmHi ImmlLo Sign extended Imm

University of Utah

CS/EE 3710



Data Types

¢ All data 1s 16-b1t
s Two’s complement encoding for data
s Unsigned for address manipulation
= Boolean for boolean operations

s Of course, the ALU doesn’t know which 1s
which — they’re all 16-bit clumps to the ALU!

s Flags are set for all interpretations
e The programmer can sort out the flags later

University of Utah CS/EE 3710



PSR Issues

¢+ Only ADD, ADDI, SUB, SUBI, CMP, CMPI
can change the PSR flags

¢ CMP, CMPI are the same as SUB, SUBI
= But, they affect the PSR differently

¢ Only PSR bits FLCNZ are needed for
baseline implementation

+ ADD, ADDI, SUB, SUBI set the C on carry
out and F on overflow

¢ CMP, CMPI set Z, L (unsigned), and N
(signed)

University of Utah CS/EE 3710



Conditional Jumps/Branches

¢ Jumps are absolute

¢ Branches are relative to current PC

¢ JAL Jump and Link stores the address of the
next instruction in Rlink, and jumps to

Rtarget
s Return with JUC Rlink
¢ Conditions are derived from PSR bits
Bcond disp 1100 cond | DispHi DispLo * 2s comp displacement
Jeond Rtarget 0100 cond 1100 Rtarget N
JAL Rlink, Rtarget 0100 Rlink | 1000 Rtarget -

University of Utah

CS/EE 3710



University of Utah

Condition Table

Table 1: COND Values for Jcond, Beond, and Scond

Mnemonic | Bit Pattern Description PSR Values
EQ 0000 Equal 7=1
NE 0001 Not Equal 7=0
GE 1101 Greater than or Equal N=1 or Z=1
CS 0010 Carry Set C=1
CcC 0011 Carry Clear C=0
HI 0100 Higher than L=1
LS 0101 Lower than or Same as L=0
LO 1010 Lower than L=0and Z=0
HS 1011 Higher than or Same as | L=1 or Z=1
GT 0110 Greater Than N=1
LE 0111 Less than or Equal N=0
FS 1000 Flag Set F=1
FC 1001 Flag Clear F=0
LT 1100 Less Than N=0and Z=0
uc 1110 Unconditional N/A
1111 Never Jump N/A

CS/EE 3710



Memory Map

¢ 16 bit PC and LOAD/STORE addresses
m 64k addresses
s Each address i1s a 16-bit word

» So, 128k bytes of data, but organized as words
e But, only 64kbytes of block RAM on Spartan-6
e But, 16Mbytes of Cellular RAM

e To use all, must change processor to have 32-bit
address and data widths (or at least 24-bit)

s We need to reserve some I/O addresses

e Up to you, but I recommend using top address bits
e Upper 16k words (32kbytes) as I/O space?

University of Utah CS/EE 3710



Memory Map

FFFF I/O
Word Switches/LEDs Top two address
addresses
2000 USB bits define regions?
7FFF
PCM? Glyphs?
C000
N Block RAM
Code/Data A/F rame buffer?
4000
3FFF
16k words
Code/Data (32k bytes)
0000




Baseline RISC Architecture

Baseline RISC Architecture

University of Utah

I
|
|
|
Instruction | | JE—— Data
Memory | Memory
I
A |
.............. e T PP EETY FEETREEPPEEPRETS FEEr
| Y
I
- I
- |
PC = [ { - \j
[ A
| Displacement Y ED_’
[ -
| o Addr. A o Register .
™ File Rl
| et —
I Addr. B/'WR jAL
;g
-4
I 1§| Immediate -
| B
S
|2
[ )
| - -53
| ot Shifter
I
[ —
............... L PP TP PP PP PERE
FETCH | EXECUTE

CS/EE 3710



Project Tasks

¢ Design the processor (datapath and FSM).

+ Write an assembler software program in your
favorite programming language.

¢ Interface with I/O devices.

+ Write the application program in your
modified CR-16 assembly code.

University of Utah CS/EE 3710



Project Checkpoints

1. Propose team name, project customizations and application.
2. Document your register file and ALU.

3. Document your complete datapath including a connection
to Block RAM, some memory mapped I/O, and an overall
plan for memory.

4. Demonstrate your instruction decoding and how it interacts
with your datapath.

5. Document your control FSM that 1s controlling everything,
and demonstrate code running on your processor.

6. Document your I/O system and how it works with your
processor. VGA, USB, keyboard, mouse, audio, analog/
digital, etc. are all possibilities.

University of Utah CS/EE 3710



Project Checkpoints

1. Propose team DUE SEPTEMBER 23" ns and application.

2. Document yo g SEPTEMBER 30th

3. Document yor DUE OCTOBER 14t luding a connection
to Block RAM, some memory mapped I/O, and an overall
plan for memory.

4. Demonstrate Y DUE OCTOBER 215t g and how it interacts
with your datapath.

5. Document yor DUE OCTOBER 28" ontrolling everything,
and demonstrate code running on your processor.

6. Document yor DUE NOVEMBER 4% works with your
processor. VGA, USB, keyboard, mouse, audio, analog/
digital, etc. are all possibilities.

University of Utah CS/EE 3710



Checkpoint 0 (due Sept. 23rd)

Team name
Application

Proposed modifications to the ISA

1.

2

3

4. 1/O peripherals
5. Plan for assembler or other software support
6. Team responsibilities:

= Each person must be responsible for a h/w (processor or
I/0) and a s/w (application or assembler) task.

= Each task should have a primary and a secondary
person responsible for its completion.

University of Utah CS/EE 3710



Project Meetings

¢ Project meetings start September 24,

¢+ Monday at Midnight, project checkpoint
documentation 1s due.

¢ Demonstration of checkpoint performed during
joint meeting with TA and instructor.

¢+ Weekly TA meeting 1s focused on discussing the
next checkpoint.

+ At all meetings, all team members are expected to
be present and able to answer questions about all
parts of the design.

University of Utah CS/EE 3710



Presentations and Final Report

¢ All groups present progress to class on Nov. 26™.

¢ At each checkpoint, groups should prepare
thorough written documentation.

¢ Demo will be 1n parallel with 4710 demos on
December 6,

¢ Each group should prepare a poster describing their
project for the demo.

+ Final report will be due by the end of finals week.

University of Utah CS/EE 3710



