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Abstract— This article utilizes variational autoencoder (VAE) and
spread spectrum time domain reflectometry (SSTDR) to detect,
isolate, and characterize anomalous data (or faults) in a photo-
voltaic (PV) array. The goal is to learn the distribution of non-faulty
input signals, inspect the reconstruction error of test signals, flag
anomalies, and then locate or characterize the anomalous data
using a predicted baseline rather than a fixed baseline that might
be too rigid. The use of VAE handles imbalanced data better than
other methods used for classification of PV faults because of its
unsupervised nature. We consider only disconnects in this work,
and our results show an overall accuracy of 96% for detecting true
negatives (non-faulty data), a 99% true positive rate of detecting
anomalies, 0.997 area under the ROC curve, 0.99 area under the precision-recall curve,
and a maximum percentage absolute relative error of 0.40% in locating
the faults on a 5-panel setup with a 59.13 m leader cable.

Index Terms— Variational Autoencoders, reflectometry, SSTDR, disconnects, faults

I. INTRODUCTION

ANOMALY detection is an important task in several
fields, requiring the ability to detect and isolate unwanted

data, input, or outcomes (”anomalies”, also sometimes called
”outliers”). If these anomalies are not detected, isolated,
or analysed, they can corrupt the data, distort results, and
can sometimes lead to wrong conclusions. To detect such
anomalies, algorithms such as nearest neighbors [1], clustering
[2], and variational autoencoders [3] have been used. In this
work, we combine the abilities of a variational autoencoder
to capture a low dimensional representation of input data
with spread spectrum time domain reflectometry (SSTDR) to
detect anomalies in a photovoltaic (PV) array and subsequently
characterize such anomalies for fault detection.

To probe an electrical signal, SSTDR [4] uses a modulated
pseudo-noise (PN) code as the incident signal. This signal
reflects at points of impedance mismatch to the SSTDR device
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[5] where it is measured. The time delay between the incident
and reflected signals gives the distance to the fault while the
strength of the impedance mismatch can be estimated from
the amplitude and phase of the reflection [6]. An advantage
of SSTDR is that it does not depend on an IV curve like
in [7]–[9], it requires just one device unlike the work in
[10] that requires a temperature sensor, voltage, current and
other measurement sensors, and SSTDR can be used on a
live/energized system. However, multiple reflections from the
system can make the reflected signal more complex to analyze
which is why we need better algorithms, like in this work, to
analyze the reflected signals.

Prior works have shown the viability of SSTDR for detect-
ing disconnection faults [11], locating faults [12], characteriz-
ing lumped elements [6] in PV arrays, detecting degradation
in MOSFETS [13], and detecting degraded/aged cells in a Li-
ion battery pack [14]. Authors in [12] gave an overview of the
abilities of SSTDR to detect faults, such as ground faults, arc
faults, broken cells or modules, open circuit faults, and others.
They also provided quantitative comparisons of the SSTDR
reflections in each scenario. In most of these works, baseline
subtraction is used to classify and locate faults. To classify
faults, each test data can be correlated with the baseline and
if the correlation coefficient is below some threshold, the test
data can be classified as a fault. To locate the fault, a baseline
taken from the system when there is no fault is compared
with (i.e., subtracted from) the response from a system with a
fault to locate the fault. A challenge with baseline subtraction
for PV systems is that the reflectometry responses are highly
affected by environmental conditions, such as illuminance,
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temperature, and humidity [15].
To mitigate environmental effects, and as an alternative

to using correlation coefficient, machine learning techniques
have been used with SSTDR to detect, classify, and locate
faults in a PV array. For example, authors in [16] used K-
SVD (an unsupervised dictionary learning algorithm) and DK-
SVD (a supervised dictionary learning algorithm) with SSTDR
to detect and classify disconnection faults in a solar array
while being robust to the effect of environment on SSTDR
signals. While the work in [16] achieved great results, there
are two main drawbacks of the work. First, the assumption
that faults are a linear combination of some basis signals is
not always true. For example, in the presence of moisture, the
relative permittivity of the cable changes and subsequently
causes a change in the velocity of propagation (VOP) of the
underlying SSTDR signal. The effect of this VOP change
varies differently in the region of the panels from the region
with only cables leading to a non-linear effect. Secondly, if
the dictionaries are updated online, they can be filled with one
class of data over time and hence become non-representative.
This challenge occurs because the amount of anomalous (or
faulty) data is much less than that of the non-faulty data,
which is often referred to as a data imbalance problem. Hence,
unstable results might be obtained if the SSTDR device is
deployed to the field with this algorithm.

To address these issues, we introduce a three-step approach.
First, we design a variational autoencoder [17] (VAE) that
learns the probability distribution of baselines (non-faulty
data). Secondly, the VAE network is used for anomaly de-
tection since anomalies are expected to have a distribution
different from that of the baselines. Thirdly, the data flagged
as anomalies are then inspected to detect, locate faults, or
characterize such anomalies. To locate the faults, the VAE
predicts the best baseline from its latent space to be used for
baseline subtraction rather than using a fixed baseline which
may be too rigid. This is another advantage of our method.
Variational autoencoders have been used in various fields,
such as speech processing [18], natural language processing
[19], and image processing [20]. Specifically for photovoltaics,
VAEs have been used to detect microcracks in photovoltaic sil-
icon wafers [21] and for short-term forecasting of photovoltaic
power production [22]. Yet, there is no work that combines
VAE with SSTDR for detecting anomalies and locating faults.

VAE is used for discriminative and generative tasks be-
cause it has the ability to represent complex data in a low-
dimensional latent space for numerous purposes and specifi-
cally, anomaly detection. Our approach uses a VAE to train
a generative model using non-faulty baseline data. Our goal
is for the VAE to learn to generate an optimal baseline
signal without faults that the current measurement can be
compared with to aid in the detection and localization of
anomalous fault signatures. The algorithm relies on an encoder
to project the input data to a low-dimensional space called
latent variables. These latent variables represent the mean and
standard deviation of each dimension in this low-dimension
space. The decoder then samples from the latent variables to
reconstruct each input data (baseline). The objective of the
VAE is to reduce the reconstruction loss as much as possible so

Fig. 1: Experimental Setup

that anomalies can be flagged by examining the reconstruction
error of the test data.

In this work, we combine the ability of SSTDR to probe
an energized PV array intermittently with the representation
ability of variational autoencoders to detect anomalous SSTDR
signals. These anomalous signals are then further inspected to
characterize them. The goal is to learn the distribution of non-
faulty input signals, inspect the reconstruction error of test
signals, flag anomalies, and then locate or characterize the
anomalous data. In prior work that uses DK-SVD [16], sparse
coefficients of a learned dictionary were used to classify faults,
but the learned dictionary can become unrepresentative over
time if updated online and populated with data of the same
class. Our approach removes the need to depend on the sparse
coefficient of a dictionary to determine if a signal is faulty or
not and avoids the possibility of having an unrepresentative
dictionary. Also, by learning a distribution of the non-faulty
(non-anomalous) data, it removes the assumption made by
DK-SVD that a signal is a linear combination of some basis
signals. We consider only disconnection faults in this work,
and our results show an accuracy of 96% for detecting true
negatives (non-faulty data), a 99% true positive rate of detect-
ing anomalies, and an overall accuracy of 97% for detecting
true negatives (non-faulty data) and true positives (anomalies)
on a 5-panel setup with a 59.13m leader cable.

The rest of this article is organized as follows. In Section III,
we give an overview of variational inference and variational
autoencoders and how faults can be detected and located
through them. Our experimental setup and data generation pro-
cess are detailed in section II, while the results are presented
in section IV. Finally, in section V, we give our conclusions
and future work.

II. EXPERIMENTAL SETUP

Fig. 1 shows the experimental setup used to collect data.
The VAE algorithm was then deployed on the data and the
VAE results are later compared to two other algorithms: DK-
SVD and correlation coefficient. A Wilma SSTDR [5] was
connected to five (5) 36-cell PV panels with a leader cable
of 59.13m. The characteristics of the panels are same as
in [16]. SSTDR has two test modes: static and intermittent.
In static test mode, the PV array setup is probed once to
determine if there is a fault or not. In the intermittent test
modes, the SSTDR input signal is sent about 256 times in a
second to constantly monitor or gather data from the array.
The intermittent test mode was used for our experiments.

The intermittent experiment was conducted for six days in
October 2019. While the SSTDR was connected to the PV
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Fig. 2: Correlation coefficient of data samples with the first
data sample

arrays, we induced disconnections at each location (A+, A-,
B+, B-, C+, C-) as annotated in Fig. 1. The MC4 connector
at each location was disconnected for about 1 hour to gather
enough test data. Our experiments resulted in a data set of
about 7, 642, 308 reflection signatures (or measurements) for
the six days. To reduce run-time and memory consumption of
the algorithm, we considered only every 500th signal in the full
data set, resulting in 14, 528 measurements. This downsampled
dataset is then split into two sets to obtain the training data
and test data. The test data contains the first 35% of the
downsampled experimental data, resulting in 5, 085 SSTDR
measurements with 14% of faulty data. The remaining 65%
of the data, resulting in 9, 443 SSTDR measurements, were
used for training and they contain only non-faulty SSTDR
measurements. To validate our algorithm performance, we split
the training data into 70% training set and 30% validation set.

Fig. 2 shows the correlation, or cosine similarity, between
each data sample with the first data sample in the data set
(i.e., a baseline). Correlation values close to 1 represent high
similarity to the baseline and correspond to data taken in
daylight. The dips correspond to data collected at nighttime as
well as other induced faults as marked in the figure. The dotted
line shows the demarcation between test data and training data.
Note that the test data and training data correspond to data

Fig. 3: Time domain reflection signature of daylight, night-
time, disconnects at locations A, B and C..

collected on different days. A sample of daylight, nighttime,
and disconnect data are shown in Fig. 3.

III. FAULT DETECTION AND LOCALIZATION WITH
VARIATIONAL AUTOENCODERS

A typical autoencoder consists of an encoder network and
a decoder network. In this method, the encoder network,
which is a neural network with posterior distribution qθ(z|x),
transforms the input data x into a lower-dimensional represen-
tation, called the latent variables z. The corresponding low-
dimensional latent variable space is learned by the encoder
such that it has enough information to accurately reconstruct
the training data. The decoder network, also a neural network
but with a likelihood pφ(x|z), uses these latent variables to
reconstruct the input data while minimizing the reconstruction
loss. To ensure the latent variables are representative of
the input data and the reconstruction loss is minimized, the
encoder and decoder are trained together and optimized via
backpropagation with a chosen learning rate.

The latent variables of a typical autoencoder are numbers
on the real line (i.e., unconstrained vectors). In a variational
autoencoder, instead of encoding input data as a single point
(as in a typical autoencoder), we encode the input data as a
distribution over the latent space. Hence, the latent variables
are regularized using the Kullback–Leibler (KL) divergence
[23] during the training stage to ensure they can be used to
generate new sets of data. In other words, the latent variables
are encoded as a distribution and trained to learn the mean
and covariance of the distribution. The distribution returned
by the encoder is enforced to be close to a standard normal
distribution. Figure 4 shows the VAE network used in this
paper. The encoder network has three hidden layers with
32, 16, and 8 neurons, respectively, and a latent space of
dimension 2. We chose a dimension of 2 with the intuition
that one latent variable should control reflections from the
cable while the second latent variable controls the reflections
from the panels. When using a 3D latent space, there was
no significant difference in the results. Each input and output
layer has a dimension of 82, which corresponds to the length
of the SSTDR data. The network was trained with a learning
rate of 1 × 10−4 (chosen after tuning with the training data)
and the ADAM optimizer [24].

The VAE loss function is given as

L(θ, φ) = λEz∼qθ(z|x) log(pφ(x|z))−KL(qθ(z|x)||p(z)) (1)

where θ and φ are the parameters of each distribution. The
first term in the loss function represents the reconstruction loss

Fig. 4: Variational Autoencoder Network
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Fig. 5: Latent space of the mean of input samples learned
using our VAE network where blue dots corresponds to data
obtained during the day, orange dots corresponds to data
obtained at night, and data with faults are as labelled.

(chosen to be the mean absolute error) and the second term
ensures that the learned distribution q of the encoder is similar
to the true prior distribution p. The operator Ez represents the
expected value with respect to the distribution of z and KL(·)
represents the KL-divergence [23]. Note that the reconstruction
loss was given a weight, λ of 1000 to place more emphasis on
the reconstruction error. Several hyperparameters were tuned
manually including the number of layers, the dimension of
the latent space, the learning rate, and the weight on the
regularization. A search was done over a range of parameter
values. This includes learning rates of 0.1,0.01,0.001, and
0.0001; regularization weight of 1, 10, 100, and 1000; and
a latent space dimension of 2 and 3. The chosen weight of
1000 gave the best separability of training data in the latent
space. Also, the weight allowed us to avoid the Kullback-
Leibler (KL) divergence collapse problem where the latent
space becomes unrepresentative and collapses into a single
point [19].

A. Obtaining Baselines from the VAE
In various works with SSTDR, baseline subtraction has been

used to detect and locate faults [25]. In these schemes, the test
signal is subtracted from a stored baseline to isolate changes
caused by the faults. Such baselines can be obtained when the
PV array is set up before operations or intermittently when
there is no fault in the setup. This method is useful because it
removes reflections from cables and connectors. However, the
baseline is highly affected by environmental effects, making
them unstable for localization [16], [26], [27].

In our work, data were obtained during the daylight and at
nighttime. The data that forms our baselines were collected
when there was no fault in the PV array setup. Sample
daylight and nighttime time domain SSTDR data are shown
in Fig. 3. Fig. 5 shows the corresponding latent space of the
data obtained during the daylight (in blue) and at nighttime
(in orange). Observe the wide variation within the mean of the

baselines in a two-dimensional latent space. We observed that
as dimension 1 of the latent space decreases from positive
to negative, the magnitude of the input SSTDR around the
60th sample increases. This region corresponds to reflections
from the solar panels. Hence, each baseline when used for
a baseline subtraction will produce different results thereby
leading to instability of fault location.

To find the best baseline for locating faults in a test signal,
the variational autoencoder (VAE) can be used. Recall that
the VAE is trained on only baseline (non-faulty) data without
any example of faulty data. Therefore, by the end of the
training, the architecture learns the distribution of the non-
faulty data and can act as a generative network. Specifically,
when a test data representing a faulty condition is passed
through the architecture, the network tries to reconstruct the
test data with minimal error. However, because the network
only knows the distribution of the non-faulty data, it effectively
searches for and generates a baseline signal that minimizes the
reconstruction error. Hence, the reconstructed signal serves as
the best baseline for estimating the location of the faults.

B. Fault Detection and Location

Our VAE network is trained with non-faulty training data
(baselines) to learn the distribution of the latent space while
minimizing the reconstruction error. For each training data
that is passed through the VAE network, we record the
reconstruction loss, that is, the mean absolute error of each
input training data and its reconstruction.

To detect faults, we set a threshold using all of the training
reconstruction losses. The threshold is set to be the mean of the
training reconstruction loss plus 3 times the standard deviation
of the training reconstruction loss. To detect faults, the test data
is passed through the VAE network which creates a latent
space representation from the encoder and then reconstructs
the data with the decoder. The reconstruction loss for the
test data is then compared to the threshold learned from the
training data. Any test data whose loss is greater than the
threshold is deemed a fault (i.e., an anomaly). A threshold of
mean plus 3 standard deviations was chosen because based on
statistics, we know that 99% of the data should lie within 3
standard deviations. We confirmed using the precision-recall
curve that this threshold gave a high precision and recall.

As explained in Section III-A, the reconstructed data serves
as the best baseline for locating faults in the test data. Hence, to
locate faults, the test data is subtracted from the reconstructed
data (i.e., the predicted VAE baseline). The peak of the
baseline subtracted data is then inspected to locate the fault
distance because the strength of the fault can be estimated
from the peak of the reflected signal.

In summary, in the training stage, we optimize the network
to minimize the reconstruction loss of the training data, we
set a threshold using the reconstruction loss. The test data
is flagged as a fault if the reconstruction loss exceeds the
set threshold. This fault is then inspected for the location
of the fault using baseline subtraction where the baseline is
the reconstructed output of the decoder. The flowchart of the
process is shown in Fig. 6.
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Fig. 6: Flowchart showing the procedure to detect faults (or
anomalies) and to locate the faults.

IV. RESULTS

The VAE was trained for 100 epochs with parameters
described in section III. Fig. 7 shows the training loss. Observe
the decrease in the loss as the number of epochs increases. No
significant reduction was obtained for epochs above 100.

A. Anomaly Detection

Fig. 8 shows the reconstruction loss for the training data
where the grey background depicts regions of baseline mea-
surements taken at nighttime, while the other baseline mea-
surements were taken in daylight. We note that the spikes in
the reconstruction loss corresponds to transitions from day to
night and night to day. To detect anomalies in the test data,
we obtain the threshold from the training reconstruction loss.
For our experiment, the threshold is set to be the mean of the
training reconstruction loss plus 3 times the standard deviation
of the reconstruction loss and is estimated to be 23.28.

From the test data set, we created a vector with a length
equal to the number of samples in the test data. All daylight
and nighttime data were given a value of 0, while data that
corresponds to a fault were given a value of 1. This vector

Fig. 7: Training loss for the VAE network described in section
III

Fig. 8: Reconstruction Loss for training data with the training
label where the grey and white background depicts baseline
measurements taken at nighttime and at daylight respectively.

represents a ground truth that shows if a test data is faulty
or not. We pass the test data through the VAE network and
record the respective reconstruction loss. Any test data whose
loss is greater than the threshold is deemed an anomaly and
sets the anomaly value to 1. The predicted anomaly value (0
or 1) is compared to the ground truth to obtain the anomaly
accuracy.

Fig. 9 shows the reconstruction loss of the test data and
the threshold. Comparing Fig. 9 with the test data portion in
Fig. 2, we observe that all faults are above the threshold. The
figure also reveals that all daylight data are below the threshold
but data during the transition from daylight to nighttime and
vice-versa are above threshold. This is a consequence of the
high reconstruction loss during transition phases, which we
saw in Fig. 8. This also reveals the high variability of data
we obtain at nighttime. The algorithm shows a 96.61% and a

Fig. 9: Reconstruction loss for test data with the threshold line
for anomaly detection
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Fig. 10: ROC curve showing the true positive rate and false
positive rate for different thresholds using the reconstruction
loss from our VAE in comparison with correlation coefficients
from Fig. 2 and DK-SVD from [16].

97.42% anomaly detection accuracy with a threshold of mean
plus 2 standard deviation (17.54) and mean plus 3 standard
deviation (23.28), respectively.

We compare our results with the two algorithms mentioned
in the introduction - DK-SVD and correlation coefficient. DK-
SVD relies on building a dictionary from the training data and
representing each test data as a sparse linear combination of
the dictionary elements. We train the DK-SVD algorithm using
the same data and hyperparameters used in [16] - a dictionary
of 110 columns (or atoms) with a sparsity of 4 was trained
using a regularization parameter α = 4 for 100 iterations. This
means an SSTDR data is represented as a linear combination
of 4 columns within the dictionary. We then test the algorithm
on our test data. Similarly, for the correlation coefficient, we
used the test data described in section II and as shown in Fig.
2.

We ran the DK-SVD algorithm on our test data and then
compared the confusion matrix with the confusion matrix
obtained from VAE. The result shows an anomaly detection
accuracy of 99% for both VAE and DK-SVD. Fig. 10 shows
the ROC curve for the anomaly detection when reconstruction
loss from our VAE was used to detect anomalies compared to
when correlation coefficients from Fig. 2 and DK-SVD from
[16] are used to detect anomalies. The area under the curve
(AUC) is 0.997 for both VAE and DK-SVD. Observe that the
true positive rate is very high even when the false positive
rate is very low for the VAE and DK-SVD approach. When
correlation coefficient is used to detect anomalies, the ROC
shows very low true positive rates and does worse than a naive
classifier. The area under the curve for this case is 0.435. An
advantage of our work is that it is unsupervised while DK-
SVD is supervised and requires prior training data of faults
which may be difficult to obtain in many situations. Also, there
is a possibility of unrepresentative dictionary elements when
there is more non-faulty data but VAE relies on only non-faulty
data and is not affected by data imbalance problem.

Fig. 11: Precision-recall curve corresponding to different
thresholds using the reconstruction loss from our VAE in
comparison with correlation coefficients from Fig. 2 and DK-
SVD from [16].

Fig. 11 shows the precision-recall curve for the anomaly
detection when reconstruction loss from our VAE is used
to detect anomalies compared to when correlation coefficient
from Fig. 2 and DK-SVD was used to detect anomalies. The
AUC for VAE, DK-SVD, and correlation coefficient are 0.990,
0.978, and 0.040 respectively. While VAE and DK-SVD had
the same AUC for the ROC curve, we see that the AUC under
the precision recall curve is better with VAE. This shows
that the proportion of positive identifications that was actually
correct relative to the proportion of actual positives that was
identified correctly is very high.

B. Fault Location

Baseline subtraction is a viable technique for locating the
distance to the fault, because it removes the normal reflections
in the system, not related to the fault. This includes reflections
from connectors and panels. However, the proper baseline
must be chosen for accurate localization of faults. Prior
work [28] stores a fixed baseline for comparison with new
reflection data. A challenge with a fixed baseline is that it
does not reflect the current state of the system, as it might
have been taken days or weeks before the fault occurred.

To circumvent the issues with a fixed baseline, our au-
toencoder was used to generate a baseline. In this work, the
reconstructed signal from the decoder is used as the baseline
for each anomaly. Fig. 12a, 13a, and 14a shows an example
anomaly that corresponds to a disconnect at A-, B-, and
C-, their respective reconstructed signal (used as baseline) in
Fig. 12b, 13b, and 14b, and the resulting baseline subtraction
using the reconstructed signal is shown in Fig. 12c, 13c, and
14c.

To detect the location of the fault, we inspect the peak of
the baseline subtracted signal. The red star in Fig. 12c, 13c,
and 14c shows the peak of the baseline subtraction which
corresponds to the location of each fault. Table I shows the
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(a)

(b)

(c)

Fig. 12: Comparison of the (a) input data, (b) reconstructed
data used as baseline, and (c) the baseline subtraction for
disconnect at A+

result of locating the faults. We compare our results with those
obtained in [16] and [28]. The work in [28] located a fault by
inspecting the point at which signal deviates from the zero
line with a value that exceeds a set threshold while the work
in [16] uses a dictionary learning method and they locate the
fault by inspecting the peak of the second most prominent
dictionary element.

We compare our results to the case where a fixed baseline
(column 5) is used for baseline subtraction, and the closest
baseline (column 6) is used for baseline subtraction (i.e,
choosing a baseline by searching the database of baseline for
the closest baseline in correlation). Our results (column 7), as
seen in Table I, show that we achieve better results than both a

(a)

(b)

(c)

Fig. 13: Comparison of the (a) input data, (b) reconstructed
data used as baseline, and (c) the baseline subtraction for
disconnect at B+

fixed baseline, as in [28], and the closest baseline choice. Also,
in comparison to the state-of-the-art work in [16] (column 4),
we achieve further improvement. Note that the second column
in Table I gives the location of the faults without including
the effective electrical length of the panels while the third
column accounts for the effective panel length. All results were
compared to the values in the third column of Table I.

V. CONCLUSION AND FUTURE WORK

In this work, we have shown the viability of combining the
ability of spread spectrum time domain reflectometry to probe
energized electrical systems with the representation ability of
variational autoencoders to detect anomalies (or faults) in a
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(a)

(b)

(c)

Fig. 14: Comparison of the (a) input data, (b) reconstructed
data used as baseline, and (c) the baseline subtraction for
disconnect at C+

photovoltaic setup. The ROC and precision-recall curve show
a very high true positive rate with an AUC of 0.99. Also, rather
than using a fixed baseline, the variational autoencoder can
generate a baseline in an unsupervised manner for locating the
faults with baseline subtraction. Our results show a maximum
percentage absolute relative error of 0.40% on a 5-panel setup
with a 59.13m leader cable.An advantage of this method is
that it can be used for continual testing of energized systems.
As we get more and more baseline measurements, the data
fills up the low-dimensional space, and the VAE can better
predict the best baseline. Hence, we do not suffer from the
class imbalance problem. In a future work, different kinds of
faults will be considered to test the robustness of this approach.

TABLE I: Results of the localization of disconnects

Disconnection Localization
Label Disconnect

Location
(m)
(cables
only)

Corrected
Discon-
nect
Location
(m)

Absolute
relative
error
(%)
[16]

Absolute
relative
error
(%)
[28]
(fixed
base-
line)

Absolute
relative
error
(%)
(closest
base-
line)

Absolute
relative
error
(%)
(Our
method)

A- 59.13 59.13 0.34 0.27 17.10 0.27
A+ 59.13 59.13 0.34 4.13 17.10 0.27
B- 60.05 61.87 0.24 43.33 15.03 0.11
B+ 60.05 61.87 0.24 4.51 15.03 0.11
C- 60.96 64.62 0.68 30.15 10.18 0.40
C+ 60.96 64.62 0.68 42.09 10.18 0.40
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