
ECE/CS 3700: Fundamentals of Digital System Design

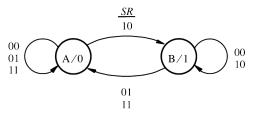
Chris J. Myers

Lecture 9: Asynchronous Sequential Circuits

- Asynchronous sequential circuits do not use a clock or flip-flops for state variables.
- Changes in state occur in response to changes on the inputs.
- This chapter describes *single input change* (SIC) *fundamental-mode* asynchronous circuits.
- Only one input allowed to change at a time.
- Time between input changes must be sufficient for the circuit to stabilize.

Analysis of the SR Latch

(b) Circuit with modeled gate delay

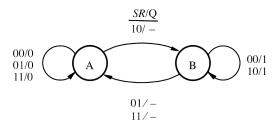

Present	N	extsta	ate	
state	SR = 00	01	10	11
У	Y	Y	Y	Y
0	0) (0)	1	0
1	1) 0	\bigcirc	0

(b) State-assigned table

FSM Model for the SR Latch

Present	Next state	Output	
state	SR = 00 01 10	11	Q
А	A A B ((A)	0
В	B A B	A	1

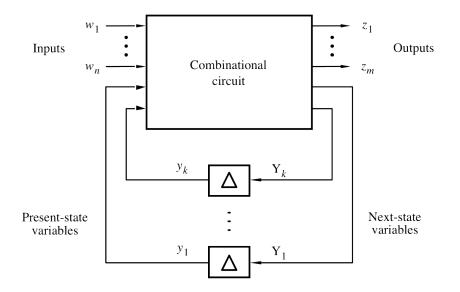
(a) State table



(b) State diagram

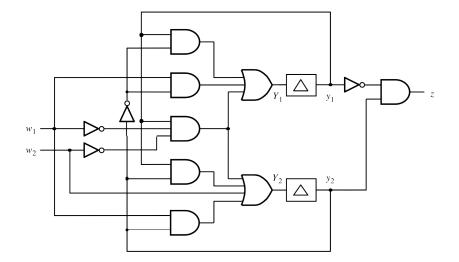
Mealy Representation of the SR Latch

Present	Next state	Output, Q		
state	SR = 00 01 10 11	00 01 10 11		
A	A A B A) 0 0 - 0		
В	B A B A	1 - 1 -		



(b) State diagram

- state table = *flow table*.
- state-assigned table = *transition table* or *excitation table*.


General Model of a Sequential Circuit

Analysis of Asynchronous Circuits

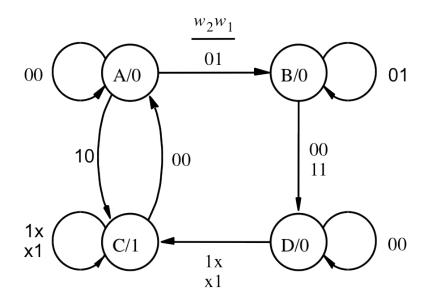
- Cut feedback paths and insert delay element.
 - Input to delay element is next-state, and output is the present-state.
 - Cut set may not be unique.
- Derive next-state and output expressions from the circuit.
- Derive the excitation table.
- Derive a flow table.
- Derive a state diagram, if desired.

An Asynchronous Circuit

Excitation and Flow Tables

Present		Nextstate				
state	$w_2 w_1 = 00$	01	10	11	Output	
y 2 y 1	Y 2 Y 1	Y 2 Y 1	Y ₂ Y ₁	Y ₂ Y ₁	z	
00	00	01	10	11	0	
01	11	(01)	11	11	0	
10	00	10	(10)	(10)	1	
11	(11)	10	10	10	0	

(a) Excitation table


Present	Ne	Nextstate			
state	$w_2w_1 = 00$	01	10	11	z
А	A	В	С	D	0
В	D	В	D	D	0
с	А	\odot	\odot	\odot	1
D	D	С	С	С	0

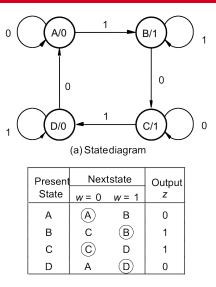
(b) Flow table

Modified Flow Table

Present Next state					Output
state	$w_2w_1 = 00$	01	10	11	z
А	A	В	С	_	0
В	D	B	_	D	0
С	А	\bigcirc	\bigcirc	(C)	1
D	D	С	С	С	0

State Diagram

Flow Table for a Simple Vending Machine


Present Next state					Output
state	$w_2 w_1 = 00$	01	10	11	Z
A	A	В	С		0
В	D	B	—	—	0
с	А	\bigcirc	\bigcirc	—	1
D	D	С	С		0

 $W_2 \equiv dime \quad W_1 \equiv nickel$

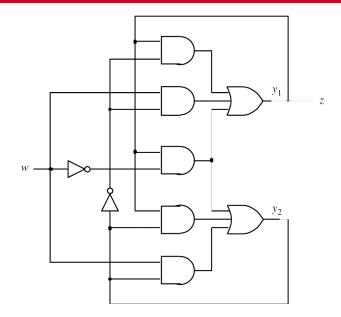
Synthesis of Asynchronous Circuits

- Devise a state diagram.
- Derive the flow table.
- Minimize number of states.
- Perform *race-free* state assignment.
- Derive excitation table.
- Obtain next-state and output expressions.
- Construct a hazard-free circuit.

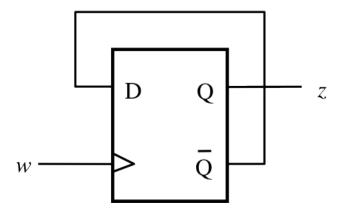
Parity-generating Asynchronous FSM

(b) Flow table

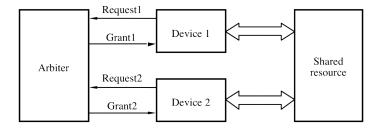
State Assignment

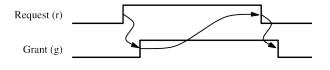

Present	Next		
state	<i>w</i> = 0	<i>w</i> = 1	Output
y 2 y 1	Y	z	
00	00	00 01	
01	10	01	1
10	10	11	1
11	00	11	0

(a) Poor state assignment

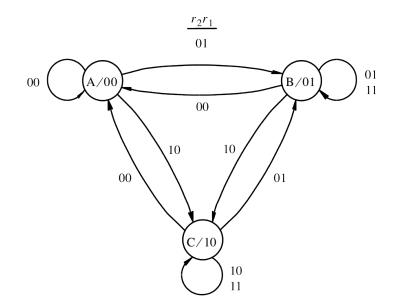

Present	Next		
state	<i>w</i> = 0	<i>w</i> = 1	Output
<i>y</i> 2 <i>y</i> 1	Y:	z	
00	00	00 01	
01	11	(01)	1
11	(11)	10	1
10	00	10	0

(b) Good state assignment


Circuit that Implements the FSM


Synchronous Solution

Arbitration Example



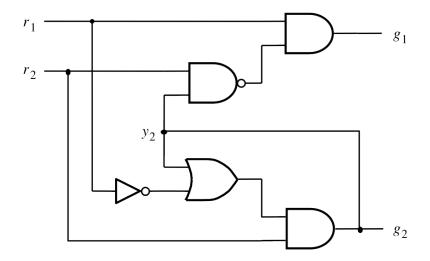
(a) Arbitration structure

(b) Handshake signaling

State Diagram for the Arbiter

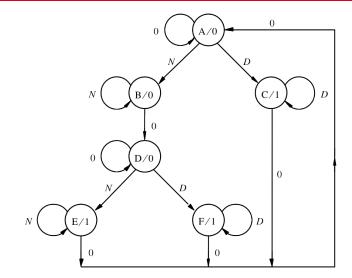
Implementation of the Arbiter

Present Nextstate					Output
state	$r_2r_1 = 00$	01	10	11	$g_2 g_1$
А	A	В	С	_	00
В	А	В	С	В	01
С	А	В	\odot	\odot	10


(a) Flow table

	Present	Nextstate	
	state	<i>r</i> ₂ <i>r</i> ₁ = 00 01 10 1	1 Output
	y 2 y 1	Y ₂ Y ₁	$g_2 g_1$
А	00	<u>00</u> 01 10 –	- 00
В	01	00 (01) 10 (0	1 01
С	10	00 01 🛈 (1	0 10
D	11	— 01 10 <i>—</i>	- dd

(b) Excitation table


The Arbiter Circuit

THIS CIRCUIT IS WRONG!

State Reduction

- Usually start with primitive flow table (i.e., a single stable state per row).
- Asynchronous FSMs likely have many unspecified (don't care) entries.
- Two-step state reduction process:
 - Apply partitioning procedure in which don't care entries must match.
 - Merge rows exploiting don't cares.

(a) Initial state diagram

Present	Ne	xtsta	te		Output
State	<i>DN</i> = 00	01	10	11	z
А	A	В	С	_	0
В	D	В	_	_	0
С	А	_	\bigcirc	-	1
D	D	Е	F	-	0
E	А	E	_	-	1
F	А	_	(F)	_	1

(b) Initial flow table

Present	Ne	Output			
State	<i>DN</i> = 00	01	10	11	z
A	A	В	С	_	0
В	D	В	_	-	0
с	A	_	C	-	1
D	D	Е	F	-	0
E	A	E	_	-	1
F	A	_	(F)	_	1

(b) Initial flow table

$$P_1 = (AD)(B)(CF)(E)$$

Present	Ne	Output			
State	<i>DN</i> = 00	01	10	11	z
А	A	В	С	_	0
В	D	В	_	-	0
С	A	_	\odot	-	1
D	D	Е	F	-	0
E	A	E	_	-	1
F	А	_	(F)	_	1

(b) Initial flow table

 $P_1 = (AD)(B)(CF)(E)$ $P_2 = (A)(D)(B)(CF)(E)$

Present	Ne	Output			
State	<i>DN</i> = 00	01	10	11	z
А	A	В	С	_	0
В	D	В	_	-	0
С	A	_	\odot	-	1
D	D	Е	F	-	0
E	A	E	_	-	1
F	А	_	(F)	_	1

(b) Initial flow table

 $P_1 = (AD)(B)(CF)(E)$ $P_2 = (A)(D)(B)(CF)(E)$ $P_3 = P_2$

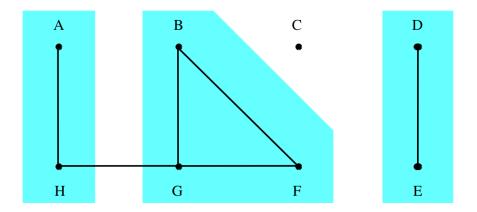
First-step Reduction of the Vending Machine FSM

Present	Ne	Output			
state	DN = 00	01	10	11	Z
A	A	В	С	_	0
В	D	B	_	_	0
С	А		C		1
D	D	Е	С	_	0
E	А	E	—		1

Flow Table for a Simple Vending Machine

Present	Nex	Output			
state	$w_2 w_1 = 00$	01	10	11	z
A	A	В	С		0
В	D	B	—	—	0
С	А	\bigcirc	\bigcirc	—	1
D	D	С	С	—	0

 $W_2 \equiv dime \quad W_1 \equiv nickel$

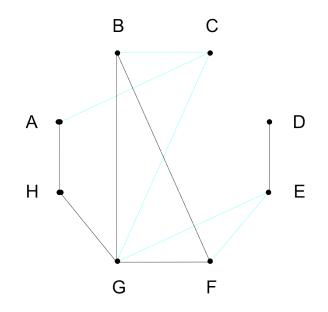

Merging Procedure

- May be many possibilities for row mergers.
- Two states *S_i* and *S_j* are compatible if there are no state conflicts for any input valuation. For each input valuation, one of the following is true:
 - Both S_i and S_j have same successor, or
 - Both S_i and S_j are stable, or
 - The successor of S_i or S_j or both is unspecified.
- S_i and S_j must also have same output when specified.

A Primitive Flow Table

Present	Nex	Output			
state	$w_2 w_1 = 00$	01	10	11	z
A	A	Н	В	—	0
В	F	—	B	С	0
С	_	Н	_	\bigcirc	1
D	А	\bigcirc	—	Е	1
E	_	D	G	E	1
F	F	D	_	_	0
G	F	—	G	_	0
н	_	(\mathbf{H})	—	Е	0

Merger Diagram which Preserves the Moore Model


Reduce Moore-type Flow Table

Present	Next state	Output	
state	$w_2 w_1 = 00 01 10$	11	z
А	(A) (A) B	D	0
В	B D B	С	0
С	— A —	\bigcirc	1
D	A D B	\bigcirc	1

A Primitive Flow Table

Present	Nex	Output			
state	$w_2 w_1 = 00$	01	10	11	z
A	A	Н	В	—	0
В	F	—	B	С	0
С	_	Н	_	\bigcirc	1
D	А	\bigcirc	—	Е	1
E	_	D	G	E	1
F	F	D	_	_	0
G	F	—	G	_	0
н	_	(\mathbf{H})	—	Е	0

Complete Merger Diagram

- Use partitioning to eliminate equivalent states in primitive flow table.
- Onstruct merger diagram.
- Ohoose subsets of equivalent states with each state in only one subset.
- Oerive reduced flow table.
- Repeat 2 to 4 until no reduction.

Present	Nex	t stat	е		Output
state	$w_2 w_1 = 00$	01	10	11	z
А	(A)	F	С	_	0
в	A	В	_	н	1
С	G	_	\bigcirc	D	0
D	_	F	_		1
E	G	_	E	D	1
F	_	(\mathbf{F})	_	к	0
G	G	В	J	—	0
н	_	L	Е	(\mathbf{H})	1
J	G	—	\bigcirc	_	0
к		В	Е	K	1
L	А		_	К	1

Present	Nex	d stat	е		Output
state	$w_2w_1 = 00$	01	10	11	z
A	A	F	С	_	0
В	A	В	_	н	1
с	G	_	\bigcirc	D	0
D	_	F	_	D	1
E	G	_	E	D	1
F	_	(\mathbf{F})	_	к	0
G	G	В	J	-	0
н	_	L	Е	(\mathbf{H})	1
J	G	_	\bigcirc	_	0
к	-	В	Е	ĸ	1
L	A	(\mathbf{L})	_	к	1

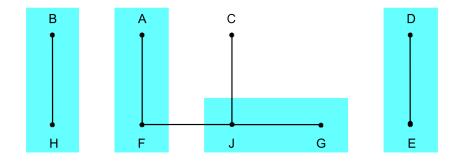
 $P_1 = (AG)(BL)(C)(D)(E)(F)(HK)(J)$

Present	Ne>	tstat	е		Output
state	$w_2w_1 = 00$	01	10	11	z
A	A	F	С	_	0
В	A	В	_	н	1
с	G	_	\odot	D	0
D	_	F	_	D	1
E	G	_	E	D	1
F	_	F	_	к	0
G	G	в	J	-	0
н	_	L	Е	(\mathbf{H})	1
J	G	_	\bigcirc	-	0
к	-	В	Е	ĸ	1
L	А	(L)	_	к	1

$$P_{1} = (AG)(BL)(C)(D)(E)(F)(HK)(J) P_{2} = (A)(G)(BL)(C)(D)(E)(F)(HK)(J)$$

$$P_{2} = (A)(G)(BL)(C)(D)(E)(F)(HK)(J)$$

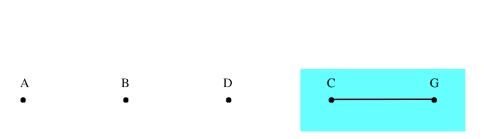
Present	Ne	d stat	е		Output
state	$w_2w_1 = 00$	01	10	11	z
А	(A)	F	С	_	0
В	Ă	В	_	н	1
с	G	_	\bigcirc	D	0
D	_	F	_	D	1
E	G	_	E	D	1
F	_	(\mathbf{F})	_	к	0
G	G	В	J	-	0
н	_	L	Е	(\mathbf{H})	1
J	G	_	\bigcirc	-	0
к	_	В	Е	ĸ	1
L	А	(\mathbf{L})	_	к	1


- $P_1 = (AG)(BL)(C)(D)(E)(F)(HK)(J)$
- $P_2 = (A)(G)(BL)(C)(D)(E)(F)(HK)(J)$

$$P_3 = P_2$$

Reduction Obtained by Using the Partitioning Procedure

Present	Ne×	tstat	е		Output
state	$w_2 w_1 = 00$	01	10	11	z
A	(A)	F	С	_	0
В	Ā	В	_	Н	1
С	G	_	(C)	D	0
D	_	F		\bigcirc	1
E	G	_	E	D	1
F	_	(\mathbf{F})	_	Н	0
G	G	В	J	_	0
н	_	В	Е	(\mathbf{H})	1
J	G	_	\bigcirc	_	0


Merger Diagram

Reduction Obtained from the Merger Diagram

Present	Ne×	tstat	е		Output
state	$w_2 w_1 = 00$	01	10	11	z
А	A	(A)	С	В	0
В	А	B	D	B	1
C	G	_	\bigcirc	D	0
D	G	А	\bigcirc	\bigcirc	1
G	G	В	G	—	0

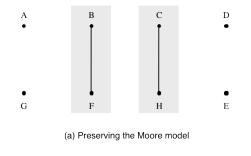
Merger Diagram

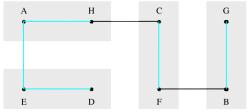
Present	Next state	Output
state	$w_2 w_1 = 00 01 10 11$	z
A	A A C B	0
В	A B D B	1
С	C B C D	0
D	C A D D	1

Present	Nex	t stat	e		Output
state	$w_2w_1 = 00$	01	10	11	z
A	A	G	Е	_	0
в	К	_	В	D	0
С	F	С	_	н	1
D	_	С	Е	\bigcirc	0
E	А	—	E	D	1
F	F	С	J	—	0
G	К	G	_	D	1
н	_	—	Е	(\mathbf{H})	1
J	F	_	(\mathbf{J})	D	0
к	K	С	В	—	0

Present	Next	stat	е		Output
state	$w_2w_1 = 00$	01	10	11	z
A	A	G	Е	_	0
В	к	_	В	D	0
С	F (C	_	н	1
D	_	С	Е	D	0
E	А	_	E	D	1
F	F	С	J	_	0
G	ĸ	G	_	D	1
н		_	Е	(\mathbf{H})	1
J	F	-	\bigcirc	D	0
к	К	С	В	—	0

$$P_1 = (AFK)(BJ)(CG)(D)(E)(H)$$


$$P_2 = (A)(FK)(BJ)(C)(G)(D)(E)(H)$$


$$P_3 = P_2$$

Reduction Resulting from the Partitioning Procedure

Present	Nex	tstat	е		Output
state	$w_2w_1 = 00$	01	10	11	Z
A	A	G	Е	_	0
В	F	_	B	D	0
С	F	С	_	н	1
D	_	С	Е	\bigcirc	0
E	А	—	E	D	1
F	F	С	В	_	0
G	F	G	_	D	1
н	_	—	Е	(\mathbf{H})	1

Merger Diagrams

(b) Complete merger diagram

An FSM Specified in the Form of a Mealy Model

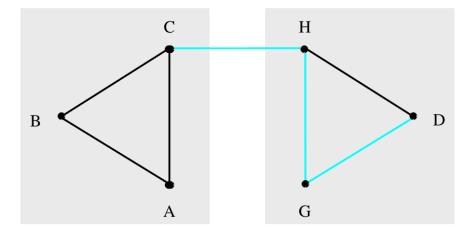
Present	Nex	t sta	te			Out	putz	
state	$w_2w_1 = 00$	01	10	11	00	01	10	11
A	A	G	Е	_	0	_	_	_
В	F	_	(\mathbf{B})	D	0	_	0	0
С	F	\bigcirc	_	Н	_	1	_	1
D	_	С	Е	\bigcirc	_	_	_	0
E	А	—	E	D	_	_	1	_
F	F	С	В	_	0	_	0	_
G	F	G	_	D	—	1	_	_
н	_	—	Е	(H)	_	_	1	1

Present	Nex	tstat	е			Outp	outz	
state	$w_2 w_1 = 00$	01	10	11	00	01	10	11
А	A	В	D	\bigcirc	0	_	1	1
В	С	В	В	D	0	1	0	0
С	C	\bigcirc	В	А	0	1	0	1
D	А	С	\bigcirc		_	_	1	0

Present	Ne>	d stat	е		Output
state	$w_2w_1 = 00$	01	10	11	z
A	A	В	С	—	0
В	F	B	—	н	0
С	F	_	\bigcirc	н	0
D	D	G	С	_	1
E	A	E	_	н	0
F	F	Е	С	_	0
G	D	G	_	н	0
н	_	G	С	(\mathbf{H})	1

Present	Nex	t stat	е		Output
state	$w_2w_1 = 00$	01	10	11	z
A	A	В	С	_	0
В	F	В	—	н	0
С	F	—	\bigcirc	н	0
D	D	G	С	-	1
E	A	E	_	н	0
F	F	Е	С	-	0
G	D	\bigcirc	—	н	0
н	_	G	С	(\mathbf{H})	1

$$P_1 = (AF)(BEG)(C)(D)(H)$$

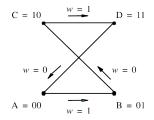

$$P_2 = (AF)(BE)(G)(C)(D)(H)$$

$$P_3 = P_2$$

Reduction after the Partitioning Procedure

Present	Nex	Output			
state	$w_2w_1 = 00$	01	10	11	z
А	A	В	С		0
В	A	B	_	н	0
С	А	—	(C)	н	0
D	D	G	С	_	1
G	D	G	_	н	0
н		G	С	(\mathbf{H})	1

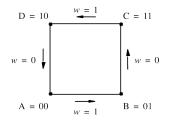
Merger Diagram


Present	Nex	Nextstate				Output <i>z</i>		
state	$w_2 w_1 = 00$	01	10	11	00	01	10	11
А	A	(A)	(A)	D	0	0	0	_
D	D	\bigcirc	А	\bigcirc	1	0	—	1

- Impossible to ensure that a change of two or more state variables occur at the same time.
- To achieve reliable operation, should make state variables change one at a time.
- Hamming distance is number of bits different in two bit strings.
- Ideal state assignment has Hamming distance of 1 for all state transitions.

Transitions

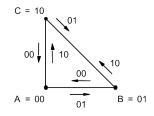
Present	Next		
state	<i>w</i> = 0	<i>w</i> = 1	Output
y 2 y 1	Y	z	
00	00	01	0
01	10	01	1
10	10	11	1
11	00	11	0


(a) Poor state assignment

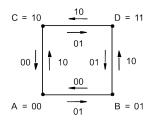
(a) Corresponding to Figure 9.14 a

Present	Next		
state	<i>w</i> = 0	<i>w</i> = 1	Output
y 2 y 1	Y	z	
00	00	01	0
01	11	(01)	1
11	(11)	10	1
10	00	10	0

(b) Good state assignment


(b) Corresponding to Figure 9.14 b

Transitions for the Arbiter

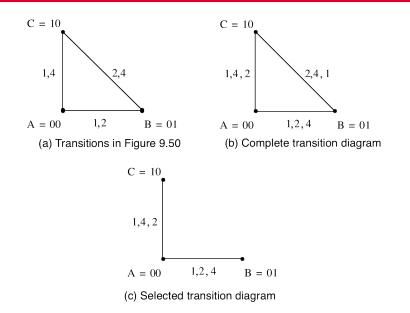

Present	Ne	Output			
state	$r_2r_1 = 00$	01	10	11	$g_2 g_1$
A	A	В	С	_	00
В	А	В	С	B	01
С	А	В	\bigcirc	\bigcirc	10

(a) Flow table

Present	Ne	xtsta	te		Output
state	$r_2r_1 = 00$	01	10	11	g 2 g 1
A	A	В	С	_	00
В	А	В	D	В	01
С	A	D	\bigcirc	\bigcirc	10
D		В	С	_	10

(a) Transitions in Figure 9.21a

(b) Using the extra state


Transition Diagram

- *Transition diagram* illustrates all transitions in a flow table.
- Good state assignment means no diagonals in the transition diagram.
- Must *embed* the transition diagram onto a *k*-dimensional cube.
- *n* state variables can be embedded onto an *n*-dimensional cube.

Relabeled Flow Table

Present	Ne	xt sta	te		Output
state	$r_2r_1 = 00$	01	10	11	Output <i>g</i> ₂ <i>g</i> ₁
А		2	4	_	00
В	1	2	4	3	01
С	1	2	4	5	10

Transition Diagrams

An Alternative for Avoiding a Critical Race

Present	Ne	Output			
state	$r_2r_1 = 00$	01	10	11	Output g₂g₁
A	A	В	С	_	00
В	A	(\mathbf{B})	А	B	01
С	A	А	\bigcirc	\bigcirc	10

(a) Modified flow table

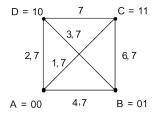
Present	Next	Nextstate				
state	$r_2r_1 = 00$	01 10	11	Output		
y ₂ y ₁	Y	2 Y1		g2g1		
00	00	01 10	_	00		
01	00 (01 00	01	01		
10	00	00 (10)	(10)	10		

(b) Modified excitation table

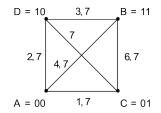
Deriving Transition Diagrams

- Derive relabeled flow table.
 - Transitions through unstable states that lead to stable state are given the same number.
- Represent each row of flow table by vertex.
- Join V_i and V_j by edge if they have same number in any column.
- For any column in which *V_i* and *V_j* have same number, label edge with that number.

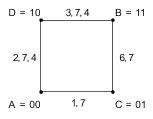
Flow Tables


Present	Nex	Next state					
state	$w_2 w_1 = 00$	01	10	11	Output z ₂ z ₁		
A	A	В	С	(A)	00		
В	В	В	D	С	01		
С	A	\odot	D	\odot	10		
D	В	—	\bigcirc	А	11		

(a) Flow table


Present	Nex	Output			
state	$w_2 w_1 = 00$	01	10	11	Z ₂ Z ₁
A	1	4	7	2	00
В	3	4	7	6	01
С	1	(5)	7	6	10
D	3	—	\bigcirc	2	11

(b) Relabeled flow table


Transition Diagrams

(b) Second transition diagram

(c) Augmented transition diagram

Realization of an FSM

Present	Ne	kt sta	te			Outpu	tz ₂ z ₁	
state	$w_2w_1 = 00$	01	10	11	00	01	10	11
A	A	D	D	(A)	00	00	11	00
В	B	(\mathbf{B})	D	С	01	01	11	01
С	A	\odot	В	\odot	-0	10	1–	10
D	В	В	\bigcirc	А	-1	0—	11	00

(a) Modified flow table

	Present Next state				Output				
	state	$w_2w_1 = 00$	01	10	11	00	01	10	11
	y 2 y 1	Y_2Y_1				Z2Z1			
А	00	00	10	10	00	00	00	11	00
В	11	(1)	(11)	10	01	01	01	11	01
С	01	00	01	11	01	-0	10	1–	10
D	10	11	11	(10)	00	-1	0—	11	00

(b) Excitation table

FSM for Example 9.14

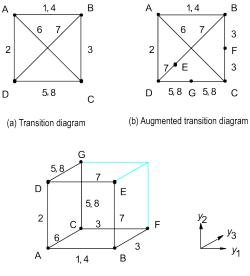
Present	Present Nextstate					
state	$w_2w_1 = 00 01 10 11$	Output				
Α	A A C B	00				
В	A B D B) 01				
С	С в С р	10				
D	C A (D (D) 11				

(a) Flow table

Present	Ne>	Output			
state	$w_2 w_1 = 00$	01	10	11	Output z ₂ z ₁
A	1	2	6	4	00
В	1	3	7	4	01
С	5	3	6	8	10
D	5	2	$\overline{7}$	8	11

(b) Relabeled flowtable

Transition Diagrams


В

3

F 3

С

*Y*1

(c) Embedded transition diagram

Modified Flow Table for Example 9.14

Present	N	Nextstate						
state	$w_2 w_1 = 0$	0 01	10	11	Output			
A	A		C	В	00			
В	A	A B	Е	В	01			
с		F	C	G	10			
D	C	G A	\bigcirc	\bigcirc	11			
E	-		D	_	_1			
F	-	- В	_	-	01			
G	C	C –	_	D	1–			

(a) Modified flow table

Modified Excitation Table for Example 9.14

	Present								
	state	$W_2 W_1 = 00$	01	10	11	Output			
	y 3 y 2 y 1		Y ₃ Y ₂ Y ₁						
Α	000	000	000	100	001	00			
в	001	000	001	011	001	01			
С	100	100	101	100	110	10			
D	010	110	000	010	010	11			
Е	011	—	_	010	-	-1			
F	101	_	001	-	-	01			
G	110	100	—	_	010	1–			

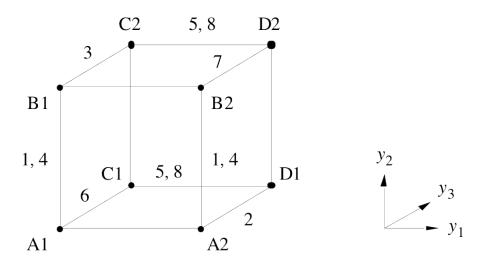
(b) Excitation table

FSM for Example 9.14

Present	Present Nextstate				
state	$w_2 w_1 = 00 \ 01 \ 10 \ 1^{-1}$	Output $z_2 z_1$			
А	A A C B	00			
В	A B D B	01			
С	СвСс	10			
D	C A D C) 11			

(a) Flow table

Present	Ne	Output			
state	$w_2 w_1 = 00$	01	10	11	Output z ₂ z ₁
A	1	2	6	4	00
В	1	3	7	4	01
С	5	3	6	8	10
D	5	2	$\overline{7}$	8	11


(b) Relabeled flowtable

Modified Flow Table

Present	Ne	Output			
state	$w_2 w_1 = 00$	01	10	11	Z 2 Z 1
A1	(A1)	(A1)	C1	B1	00
A2	(A2)	(A2)	A1	B2	00
B1	A1	(B1)	B2	(B1)	01
B2	A2	(B2)	D2	(B2)	01
C1	C1	C2	(C1)	D1	10
C2	C2	B1	C2)	D2	11
D1	C1	A2	(D1)	(D1)	11
D2	C2	D1	(D2)	(D2)	11

(a) Modified flow table

Embedded Transition Diagram

Modified Excitation Table

	Present Nextstate					
	state	$w_2 w_1 = 00$	01	10	11	Output
	y 3 y 2 y 1		Y ₃ Y ₂ Y	1		Z 2 Z 1
A1	000	000	000	100	010	00
A2	001	001	001	000	011	00
B1	010	000	010	011	010	01
B2	011	001	011	111	(011)	01
C1	100	100	110	(100)	101	10
C2	110	(110)	010	(110)	111	10
D1	101	100	001	(101)	(101)	11
D2	111	110	101	(111)	(111)	11

(b) Excitation table

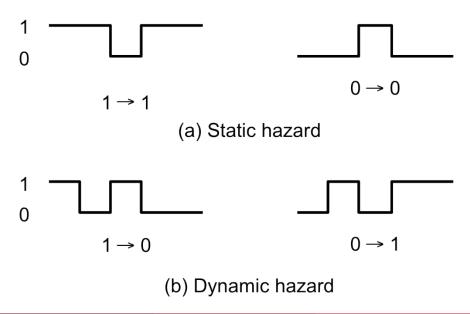
FSM for Example 9.14

Present	Present Nextstate				
state	$w_2w_1 = 00 01 10 11$	Output			
А	A A C B	00			
В	A B D B) 01			
С	С в С р	10			
D	C A (D (D) 11			

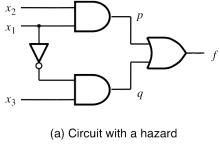
(a) Flow table

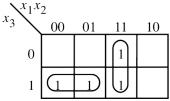
Present	Ne>	Output			
state	$w_2 w_1 = 00$	01	10	11	Output z ₂ z ₁
A	1	2	6	4	00
В	1	3	7	4	01
С	5	3	6	8	10
D	5	2	$\overline{7}$	8	11

(b) Relabeled flowtable

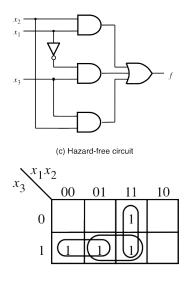

State Assignment with One-hot Encoding

State	State Present Next state					Output	
assignment	State	$w_2 w_1 =$	00	01	10	11	$z_2 z_1$
0001	А		(A)	(A)	Е	F	00
0010	В		F	B	G	B	01
0100	С		\bigcirc	Н	\bigcirc	I	10
1000	D		Ι	J	\bigcirc		11
0101	E		—	—	С	_	-0
0011	F		А	_	_	В	0—
1010	G		—	_	D	-	-1
0110	н		_	В	_	-	01
1100	I		С	_	_	D	1–
1001	J		—	А	_	-	00


Hazards

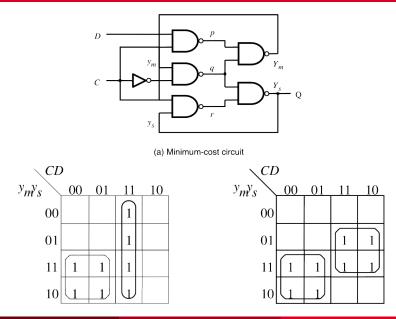

- In asynchronous circuits, undesirable *glitches* must not occur.
- Glitches caused by structure of circuit and propagation delays are called hazards.
- Designer must eliminate all hazards from an asynchronous circuit.

Definition of Hazards

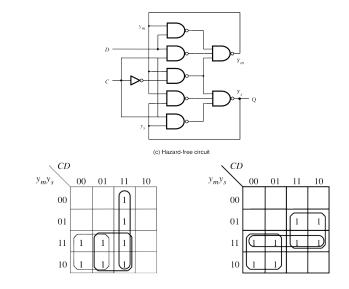

Circuit with a Static Hazard

(b) Karnaugh map

Hazard-free Circuit

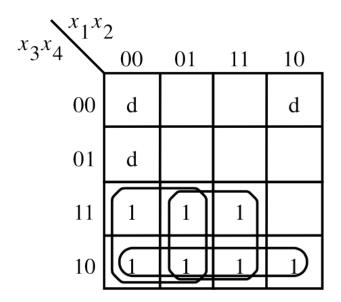


(b) Karnaugh map


Removal of Static 1-Hazards

- Hazard exists whenever 2 adjacent 1s in a K-map are not covered by a single product.
- To remove all static hazards, find a cover that includes each pair of adjacent 1s.

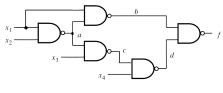
Two-level Implementation of a Master-slave Flip-flop

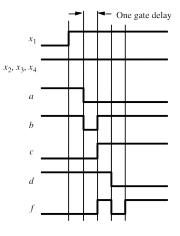


Hazard-free Master-slave Flip-flop



(b) Karnaugh maps for Y_m and Y_s in Figure 9.6a


Do Not Need to Include All Prime Implicants


Static Hazard in POS Circuit

Circuit with a Dynamic Hazard

(b) Timing diagram

- A glitch in an asynchronous circuit can cause the circuit to enter an incorrect state and possibly become stable in that state.
- Next-state logic must be hazard-free.
- Synchronous circuits can have hazards as long as they are stable by the setup time of the flip-flops.

Concluding Remarks

- Analysis of asynchronous circuits.
- Synthesis of asynchronous circuits.
 - State reduction
 - State assignment
 - Hazard-free logic design
- More details on asynchronous design in ECE/CS 5750.