ECE/CS 3700: Fundamentals of Digital System Design

Chris J. Myers

Lecture 8: Optimized Implementation of Logic Circuits

Introduction

- Chapter 2 shows how to find a lowest-cost implementation using algebraic manipulation or Karnaugh maps.
- These methods do not scale well for larger circuits.
- Even when CAD tools are used, important to know what they are doing, so they can be configured properly.
- This chapter briefly introduces some of the logic synthesis algorithms used by these tools.
- Multilevel synthesis
- Alternative representations of logic functions
- Optimization methods based on these representations

Multilevel Synthesis

- SOP or POS implementations are two-level circuits.
- Depending on technology, not always most efficient or even realizable (fan-in problem).
- Instead need to derive a multilevel implementation.
- Factoring
- Functional decomposition

Factoring

$$
f\left(x_{1}, \ldots, x_{7}\right)=x_{1} x_{3} \bar{x}_{6}+x_{1} x_{4} x_{5} \bar{x}_{6}+x_{2} x_{3} x_{7}+x_{2} x_{4} x_{5} x_{7}
$$

Factoring

$$
f\left(x_{1}, \ldots, x_{7}\right)=x_{1} x_{3} \bar{x}_{6}+x_{1} x_{4} x_{5} \bar{x}_{6}+x_{2} x_{3} x_{7}+x_{2} x_{4} x_{5} x_{7}
$$

Five 4-input LUTs!

Factoring

$$
\begin{aligned}
f\left(x_{1}, \ldots, x_{7}\right) & =x_{1} x_{3} \bar{x}_{6}+x_{1} x_{4} x_{5} \bar{x}_{6}+x_{2} x_{3} x_{7}+x_{2} x_{4} x_{5} x_{7} \\
& =x_{1} \bar{x}_{6}\left(x_{3}+x_{4} x_{5}\right)+x_{2} x_{7}\left(x_{3}+x_{4} x_{5}\right)
\end{aligned}
$$

Factoring

$$
\begin{aligned}
f\left(x_{1}, \ldots, x_{7}\right) & =x_{1} x_{3} \bar{x}_{6}+x_{1} x_{4} x_{5} \bar{x}_{6}+x_{2} x_{3} x_{7}+x_{2} x_{4} x_{5} x_{7} \\
& =x_{1} \bar{x}_{6}\left(x_{3}+x_{4} x_{5}\right)+x_{2} x_{7}\left(x_{3}+x_{4} x_{5}\right) \\
& =\left(x_{1} \bar{x}_{6}+x_{2} x_{7}\right)\left(x_{3}+x_{4} x_{5}\right)
\end{aligned}
$$

Factoring

$$
\begin{aligned}
f\left(x_{1}, \ldots, x_{7}\right) & =x_{1} x_{3} \bar{x}_{6}+x_{1} x_{4} x_{5} \bar{x}_{6}+x_{2} x_{3} x_{7}+x_{2} x_{4} x_{5} x_{7} \\
& =x_{1} \bar{x}_{6}\left(x_{3}+x_{4} x_{5}\right)+x_{2} x_{7}\left(x_{3}+x_{4} x_{5}\right) \\
& =\left(x_{1} \bar{x}_{6}+x_{2} x_{7}\right)\left(x_{3}+x_{4} x_{5}\right)
\end{aligned}
$$

Using 4-input AND Gates to Realize a 7-input Product Term

A Factored Circuit

$$
f=x_{1} \bar{x}_{2} x_{3} \bar{x}_{4} x_{5} x_{6}+x_{1} x_{2} \bar{x}_{3} \bar{x}_{4} \bar{x}_{5} x_{6}
$$

A Factored Circuit

$$
\begin{aligned}
f & =x_{1} \bar{x}_{2} x_{3} \bar{x}_{4} x_{5} x_{6}+x_{1} x_{2} \bar{x}_{3} \bar{x}_{4} \bar{x}_{5} x_{6} \\
f & =x_{1} \bar{x}_{4} x_{6}\left(\bar{x}_{2} x_{3} x_{5}+x_{2} \bar{x}_{3} \bar{x}_{5}\right)
\end{aligned}
$$

A Factored Circuit

A Multilevel Circuit with Gate Sharing

Impact on Wiring Complexity

- Space on chip is used by gates and wires.
- Wires can be a significant portion.
- Each literal corresponds to a wire.
- Factoring reduces literal count, so it can also reduce wiring complexity.

Functional Decomposition

- Multilevel circuits often require less area.
- Complexity is reduced by decomposing 2-level function into subcircuits.
- Subcircuit implements function that may be used in multiple places.
- Reduces cost but increase propagation delay.

Functional Decomposition Example

(a) Subfunctions

(b) The structure of decomposition

(c) Karnaugh map for $h\left(x_{1}, x_{2}, g\right)$

Functional Decomposition Example

(a) Product terms

(b) Multilevel circuit

Another Functional Decomposition Example

(a) Karnaugh map for the function f

Another Functional Decomposition Example

(a) Karnaugh map for the function f

$$
g\left(x_{1}, x_{2}, x_{5}\right)=x_{1}+x_{2}+x_{5}
$$

Another Functional Decomposition Example

(a) Karnaugh map for the function f

$$
\begin{aligned}
g\left(x_{1}, x_{2}, x_{5}\right) & =x_{1}+x_{2}+x_{5} \\
k\left(x_{3}, x_{4}\right) & =\bar{x}_{3} x_{4}+x_{3} \bar{x}_{4}=x_{3} \oplus x_{4}
\end{aligned}
$$

Another Functional Decomposition Example

(a) Karnaugh map for the function f

$$
\begin{aligned}
g\left(x_{1}, x_{2}, x_{5}\right) & =x_{1}+x_{2}+x_{5} \\
k\left(x_{3}, x_{4}\right) & =\bar{x}_{3} x_{4}+x_{3} \bar{x}_{4}=x_{3} \oplus x_{4} \\
f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) & =h\left[g\left(x_{1}, x_{2}, x_{5}\right), k\left(x_{3}, x_{4}\right)\right]
\end{aligned}
$$

Another Functional Decomposition Example

(a) Karnaugh map for the function f

$$
\begin{aligned}
g\left(x_{1}, x_{2}, x_{5}\right) & =x_{1}+x_{2}+x_{5} \\
k\left(x_{3}, x_{4}\right) & =\bar{x}_{3} x_{4}+x_{3} \bar{x}_{4}=x_{3} \oplus x_{4} \\
f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) & =h\left[g\left(x_{1}, x_{2}, x_{5}\right), k\left(x_{3}, x_{4}\right)\right] \\
& =k g+\bar{k} \bar{g}=\overline{k \oplus g}
\end{aligned}
$$

Another Functional Decomposition Example

(a) Karnaugh map for the function f

(b) Circuit obtained using decomposition

Cost $=10$ while minimum-cost $\mathrm{SOP}=55$

Implementation of an XOR

(a) Sum-of-products implementation

Implementation of an XOR

(b) NAND gate implementation

Implementation of an XOR

(c) Optimal NAND gate implementation

Practical Issues

- Functional decomposition is a powerful technique for reducing circuit complexity.
- However, enormous numbers of possible subfunctions leads to necessity for heuristic algorithms.

Conversion to a NAND-gate Circuit

 (a) Circuit with AND and OR gates

Conversion to a NAND-gate Circuit

(b) Inversions needed to convert to NANDs

Conversion to a NAND-gate Circuit

(c) NAND-gate circuit

Conversion to a NOR-gate Circuit

(a) Inversions needed to convert to NORs

Conversion to a NOR-gate Circuit

(b) NOR-gate circuit

Circuit Example for Analysis

$$
\begin{aligned}
P_{3} & =x_{1}+P_{1}=x_{1}+x_{2} x_{3} \\
P_{5} & =P_{4}+x_{7}=x_{4}\left(x_{5}+x_{6}\right)+x_{7} \\
f & =P_{3} P_{5}=\left(x_{1}+x_{2} x_{3}\right)\left(x_{4}\left(x_{5}+x_{6}\right)+x_{7}\right)
\end{aligned}
$$

Circuit Example for Analysis

CAD Tools

- espresso - finds exact and heuristic solutions to the 2-level synthesis problem.
- sis - performs multilevel logic synthesis.
- Numerous commercial CAD packages are available from Cadence, Mentor, Synopsys, and others.

Logic Function Representation

- Truth tables
- Algebraic expressions
- Venn diagrams
- Karnaugh maps
- Binary decision diagrams (BDDs)
- n-dimensional cubes

Logic Function Representation

- Truth tables
- Algebraic expressions
- Venn diagrams
- Karnaugh maps
- Binary decision diagrams (BDDs)
- n-dimensional cubes

Binary Decision Diagrams (BDDs)

Derivation of a BDD

x_{1}	x_{2}	f
0	0	1
0	1	0
1	0	1
1	1	1

(a) Truth table

(b) Decision tree

(c) Reducing nodes

(d) BDD

Derivation of BDDs for XOR Functions

(a) Decision tree

(b) BDD

Derivation of BDDs Using Shannon's Expansion

$$
f=x_{1}+x_{2} x_{3}
$$

(a) Expansion using x_{1}

(b) BDD ordered x_{1}, x_{2}, x_{3}

Derivation of BDDs Using Shannon's Expansion

$$
\begin{aligned}
f & =x_{1}+x_{2} x_{3} \\
f_{\bar{x}_{1}} & =x_{2} x_{3}
\end{aligned}
$$

(a) Expansion using x_{1}

(b) BDD ordered x_{1}, x_{2}, x_{3}

Derivation of BDDs Using Shannon's Expansion

$$
\begin{aligned}
f & =x_{1}+x_{2} x_{3} \\
f_{\bar{x}_{1}} & =x_{2} x_{3} \\
f_{x_{1}} & =1
\end{aligned}
$$

(a) Expansion using x_{1}

(b) BDD or dered x_{1}, x_{2}, x_{3}

Derivation of BDDs Using Shannon's Expansion

$$
f=x_{1}+x_{2} x_{3}
$$

(c) Expansion using x_{2}

(d) BDD ordered x_{2}, x_{1}, x_{3}

Derivation of BDDs Using Shannon's Expansion

$$
\begin{aligned}
f & =x_{1}+x_{2} x_{3} \\
f_{\bar{x}_{2}} & =x_{1}
\end{aligned}
$$

(c) Expansion using x_{2}

(d) BDD ordered x_{2}, x_{1}, x_{3}

Derivation of BDDs Using Shannon's Expansion

$$
\begin{aligned}
f & =x_{1}+x_{2} x_{3} \\
f_{\bar{x}_{2}} & =x_{1} \\
f_{x_{2}} & =x_{1}+x_{3}
\end{aligned}
$$

(c) Expansion using x_{2}

(d) BDD ordered x_{2}, x_{1}, x_{3}

Reordering the Nodes in a BDD

(a) BDD ordered x_{2}, x_{1}, x_{3}

x_{1}	x_{2}	Node
0	0	0
0	1	x_{3}
1	0	1
1	1	1

(b) Truth table

(c) Order x_{1}, x_{2}, x_{3}

Derivation of a BDD Using Shannon Expansion

$$
f=x_{1} x_{3}+x_{1} x_{4}+x_{2} x_{4}+x_{2} x_{3}+\bar{x}_{1} \bar{x}_{2} x_{3} x_{4}
$$

Derivation of a BDD Using Shannon Expansion

$$
\begin{aligned}
f & =x_{1} x_{3}+x_{1} x_{4}+x_{2} x_{4}+x_{2} x_{3}+\bar{x}_{1} \bar{x}_{2} x_{3} x_{4} \\
f_{\bar{x}_{1}} & =x_{2} x_{4}+x_{2} x_{3}+\bar{x}_{2} x_{3} x_{4}
\end{aligned}
$$

Derivation of a BDD Using Shannon Expansion

$$
\begin{aligned}
f & =x_{1} x_{3}+x_{1} x_{4}+x_{2} x_{4}+x_{2} x_{3}+\bar{x}_{1} \bar{x}_{2} x_{3} x_{4} \\
f_{\bar{x}_{1}} & =x_{2} x_{4}+x_{2} x_{3}+\bar{x}_{2} x_{3} x_{4} \\
f_{\bar{x}_{1} \bar{x}_{2}} & =x_{3} x_{4}
\end{aligned}
$$

Derivation of a BDD Using Shannon Expansion

$$
\begin{aligned}
f & =x_{1} x_{3}+x_{1} x_{4}+x_{2} x_{4}+x_{2} x_{3}+\bar{x}_{1} \bar{x}_{2} x_{3} x_{4} \\
f_{\bar{x}_{1}} & =x_{2} x_{4}+x_{2} x_{3}+\bar{x}_{2} x_{3} x_{4} \\
f_{\bar{x}_{1} \bar{x}_{2}} & =x_{3} x_{4} \\
f_{\bar{x}_{1} x_{2}} & =x_{4}+x_{3}
\end{aligned}
$$

Derivation of a BDD Using Shannon Expansion

$$
\begin{aligned}
f & =x_{1} x_{3}+x_{1} x_{4}+x_{2} x_{4}+x_{2} x_{3}+\bar{x}_{1} \bar{x}_{2} x_{3} x_{4} \\
f_{\bar{x}_{1}} & =x_{2} x_{4}+x_{2} x_{3}+\bar{x}_{2} x_{3} x_{4} \\
f_{\bar{x}_{1} \bar{x}_{2}} & =x_{3} x_{4} \\
f_{\bar{x}_{1} x_{2}} & =x_{4}+x_{3} \\
f_{x_{1}} & =x_{3}+x_{4}+x_{2} x_{4}+x_{2} x_{3}
\end{aligned}
$$

Derivation of a BDD Using Shannon Expansion

$$
\begin{aligned}
f & =x_{1} x_{3}+x_{1} x_{4}+x_{2} x_{4}+x_{2} x_{3}+\bar{x}_{1} \bar{x}_{2} x_{3} x_{4} \\
f_{\bar{x}_{1}} & =x_{2} x_{4}+x_{2} x_{3}+\bar{x}_{2} x_{3} x_{4} \\
f_{\bar{x}_{1} \bar{x}_{2}} & =x_{3} x_{4} \\
f_{\bar{x}_{1} x_{2}} & =x_{4}+x_{3} \\
f_{x_{1}} & =x_{3}+x_{4}+x_{2} x_{4}+x_{2} x_{3} \\
& =x_{3}+x_{4}
\end{aligned}
$$

Derivation of a BDD Using Shannon Expansion

(a) Diagram

(b) BDD

Practical Use of BDDs

- BDDs provide an efficient canonical representation of a Boolean function.
- Easily manipulated using BDD packages such as BuDDy or CUDD.
- A common data structure used in many logic synthesis tools.

Logic Function Representation

- Truth tables
- Algebraic expressions
- Venn diagrams
- Karnaugh maps
- Binary decision diagrams (BDDs)
- n-dimensional cubes

Representation of $f\left(x_{1}, x_{2}\right)=\sum m(1,2,3)$

Representation of $f\left(x_{1}, x_{2}, x_{3}\right)=\sum m(0,2,4,5,6)$

Representation of

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\sum m(0,2,3,6,7,8,10,15)
$$

n-Dimensional Hypercube

- Function of n variables maps to n-cube.
- Size of a cube is number of vertices.
- A cube with k x's consists of 2^{k} vertices.
- n-cube has 2^{n} vertices.
- 2 vertices are adjacent if they differ in one coordinate.
- Each vertex in n-cube adjacent to n others.

Optimization Based on Cubical Representation

- Optimization techniques often use cubical representation.
- Can be programmed and used efficiently in CAD tools.
- Example: Quine-McCluskey tabular method for minimization.

Generation of Prime Implicants

List 1

List 2

0,4	0	x	0	0
0,8	x	0	0	0
\checkmark	\checkmark			
	\checkmark			
8,10	1	0	x	0
4,12	x	1	0	0
8,12	1	x	0	0
	\checkmark			
	\checkmark			
10,11	1	0	1	x
12,13	1	1	0	x
11,15	1	x	1	1
13,15	1	1	x	1

List 3

Selection of a Cover

Prime implicant	Minterm							
	0	4	8	10	11	12	13	15
$p_{1}=10 \times 0$			\checkmark	\checkmark				
$p_{2}=1018$				\checkmark	\checkmark			
$p_{3}=110 \mathrm{x}$						\checkmark	\checkmark	
$p_{4}=1 \mathrm{x} 111$					\checkmark			\checkmark
$p_{5}=11 \times 1$							\checkmark	\checkmark
$p_{6}=\begin{array}{lllll}\text { x }\end{array}$	\checkmark	\checkmark	\checkmark			\checkmark		

(a) Initial prime implicant cover table

Selection of a Cover

Prime implicant	Minterm							
	0	4	8	10	11	12	13	15
$p_{1}=10 \times 0$			\checkmark	\checkmark				
$p_{2}=1018$				\checkmark	\checkmark			
$p_{3}=110 \mathrm{x}$						\checkmark	\checkmark	
$p_{4}=1 \mathrm{x} 111$					\checkmark			\checkmark
$p_{5}=11 \times 1$							\checkmark	\checkmark
$p_{6}=\mathrm{x} \times \mathrm{x} 00$	\checkmark	\checkmark	\checkmark			\checkmark		

(a) Initial prime implicant cover table p_{6} is an essential prime implicant.

Selection of a Cover

Prime implicant	Minterm			
p_{1}	\checkmark			
p_{2}	\checkmark	\checkmark		
p_{3}			\checkmark	
p_{4}		\checkmark		\checkmark
p_{5}			\checkmark	\checkmark

(b) After the removal of essential prime implicants

Selection of a Cover

Prime implicant	Minterm			
p_{1}	\checkmark			
p_{2}	\checkmark	\checkmark		
p_{3}			\checkmark	
p_{4}		\checkmark		\checkmark
p_{5}			\checkmark	\checkmark

(b) After the removal of essential prime implicants

Prime p_{2} dominates p_{1} and p_{5} dominates p_{3}.

Selection of a Cover

Prime	Minterm			
	10	11	13	15
p_{2}	\checkmark	\checkmark		
p_{4}		\checkmark		\checkmark
p_{5}			\checkmark	\checkmark

(c) After the removal of dominated rows

Selection of a Cover

Prime	Minterm			
	10	11	13	15
p_{2}	\checkmark	\checkmark		
p_{4}		\checkmark		\checkmark
p_{5}			\checkmark	\checkmark

(c) After the removal of dominated rows
p_{2} and p_{5} are now essential.

Selection of a Cover

Prime implicant	Minterm							
	0	4	8	10	11	12	13	15
$p_{1}=10 \times 0$			\checkmark	\checkmark				
$p_{2}=1018$				\checkmark	\checkmark			
$p_{3}=110 \mathrm{x}$						\checkmark	\checkmark	
$p_{4}=1 \mathrm{x} 111$					\checkmark			\checkmark
$p_{5}=11 \times 1$							\checkmark	\checkmark
$p_{6}=\begin{array}{lllll}\text { x }\end{array}$	\checkmark	\checkmark	\checkmark			\checkmark		

(a) Initial prime implicant cover table

Final solution is p_{2}, p_{5}, and p_{6}.

Generation of Prime Implicants

List 1

0	0000
1	0001
2	0010
8	1000
5	0101
6	0110
9	1001
12	1100
7	$\begin{array}{llll}0 & 1 & 1\end{array}$
13	1101
15	1111

List 2

0,1	000 x
0,2	00×0
0,8	x 0000
1,5	$\begin{array}{lllll}0 & \times 1\end{array}$
2,6	$\begin{array}{llll}0 & \mathrm{x} & 1 & 0\end{array}$
1,9	x 00001
8,9	100 x
8,12	1×00
5,7	01×1
6,7	$\begin{array}{lllll}0 & 1 & 1\end{array}$
5,13	$\begin{array}{lllll}\mathrm{x} & 1 & 0 & 1\end{array}$
9,13	$\begin{array}{llll}1 & \mathrm{x} & 0 & 1\end{array}$
12,13	110 x
7,15	$\begin{array}{lllll}\mathrm{x} & 1 & 1 & 1\end{array}$
13,15	11×1

List 3

| $0,1,8,9$ | x 00 | 0 | x | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $1,5,9,13$ | x | x | 0 | 1 |
| $8,9,12,13$ | 1 | x | 0 | x |
| $5,7,13,15$ | x | 1 | x | 1 |

Selection of a Cover

Prime implicant	Minterm							
	0	2	5	6	7	8	9	13
$p_{1}=000 \times 0$	\checkmark	\checkmark						
$p_{2}=0 \times 10$		\checkmark		\checkmark				
$p_{3}=0 \begin{array}{llll}0 & 1 & 1 & \mathrm{x}\end{array}$				\checkmark	\checkmark			
$p_{4}=\mathrm{x} 000 \mathrm{x}$	\checkmark					\checkmark	\checkmark	
$p_{5}=\begin{array}{lllll}\mathrm{x} & \mathrm{x} & 0 & 1\end{array}$			\checkmark				\checkmark	\checkmark
$p_{6}=1 \times 0 \mathrm{x}$						\checkmark	\checkmark	\checkmark
$p_{7}=\begin{array}{lllll} & \mathrm{x} & 1 & \mathrm{x} & 1\end{array}$			\checkmark		\checkmark			\checkmark

(a) Initial prime implicant cover table

Selection of a Cover

Prime implicant	Minterm							
	0	2	5	6	7	8	9	13
$p_{1}=00 \times 0$	\checkmark	\checkmark						
$p_{2}=0 \times 10$		\checkmark		\checkmark				
$p_{3}=0 \begin{array}{llll}0 & 1 & 1 & \mathrm{x}\end{array}$				\checkmark	\checkmark			
$p_{4}=\mathrm{x} 000 \mathrm{x}$	\checkmark					\checkmark	\checkmark	
$p_{5}=\begin{array}{lllll}\mathrm{x} & \mathrm{x} & 0 & 1\end{array}$			\checkmark				\checkmark	\checkmark
$p_{6}=1 \times 0 \mathrm{x}$						\checkmark	\checkmark	\checkmark
$p_{7}=\begin{array}{lllll} & 1 & \mathrm{x} & 1\end{array}$			\checkmark		\checkmark			\checkmark

(a) Initial prime implicant cover table

Minterm 9 dominates minterm 8.
Minterm 13 dominates minterm 5.

Selection of a Cover

(b) After the removal of columns 9 and 13

Selection of a Cover

Prime implicant	Minterm					
	0	2	5	6	7	8
$p_{1}=000 \times 0$	\checkmark	\checkmark				
$p_{2}=0 \times 1 \times 10$		\checkmark		\checkmark		
$p_{3}=0 \begin{array}{llll}1 & 1\end{array}$				\checkmark	\checkmark	
$p_{4}=\begin{array}{lllll} & 0 & 0 & \mathrm{x}\end{array}$	\checkmark					\checkmark
$p_{5}=\mathrm{x} \times \mathrm{x} 011$			\checkmark			
$p_{6}=1 \times 0 \mathrm{x}$						\checkmark
$p_{7}=\begin{array}{lllll} & \mathrm{x} & 1 & \mathrm{x} & 1\end{array}$			\checkmark		\checkmark	

(b) After the removal of columns 9 and 13

Prime p_{7} dominates p_{5}.
Prime p_{4} dominates p_{6}.

Selection of a Cover

Prime implicant	Minterm					
	\checkmark	\checkmark				
p_{2}		\checkmark		\checkmark		
p_{3}				\checkmark	\checkmark	
p_{4}	\checkmark					\checkmark
p_{7}			\checkmark		\checkmark	

(c) After the removal of rows p_{5} and p_{6}

Selection of a Cover

(c) After the removal of rows p_{5} and p_{6}

Primes p_{4} and p_{7} are now essential.

Selection of a Cover

(d) After including p_{4} and p_{7} in the cover

Selection of a Cover

(d) After including p_{4} and p_{7} in the cover

Prime p_{2} dominates remaining primes and becomes essential.

Selection of a Cover

Prime implicant	Minterm							
	0	2	5	6	7	8	9	13
$p_{1}=000 \times 0$	\checkmark	\checkmark						
$p_{2}=0 \begin{array}{llll}0 & \mathrm{x} & 1 & 0\end{array}$		\checkmark		\checkmark				
$p_{3}=\begin{array}{lllll}0 & 1 & 1 & \mathrm{x}\end{array}$				\checkmark	\checkmark			
$p_{4}=\mathrm{x} 0000 \mathrm{x}$	\checkmark					\checkmark	\checkmark	
$p_{5}=\begin{array}{lllll}\mathrm{x} & \mathrm{x} & 0 & 1\end{array}$			\checkmark				\checkmark	\checkmark
$p_{6}=1 \times 0 \mathrm{x}$						\checkmark	\checkmark	\checkmark
$p_{7}=\begin{array}{lllll}\mathrm{x} & 1 & \mathrm{x} & 1\end{array}$			\checkmark		\checkmark			\checkmark

(a) Initial prime implicant cover table

Final solution is p_{2}, p_{4}, and p_{7}.

Cyclic Cover Table Example

Prime implicant			Minterm					
0	3	10	15					
$p_{1}=$	0	0	x	x	\checkmark	\checkmark		
p_{2}	$=$	x	0	x	0	\checkmark		\checkmark
p_{3}	$=$	x	0	1	x		\checkmark	\checkmark
p_{4}	$=$	x	x	1	1			
p_{5}	$=$	1	x	1	x			

(a) Initial prime implicant cover table

Cyclic Cover Table Example

Prime implicant			Minterm						
$p_{1}=$	0	0	x	x	\checkmark	\checkmark			
p_{2}	$=$	x	0	x	0	\checkmark		\checkmark	
p_{3}	$=$	x	0	1	x		\checkmark	\checkmark	
p_{4}	$=$	x	x	1	1		\checkmark		\checkmark
p_{5}	$=$	1	x	1	x			\checkmark	\checkmark

(a) Initial prime implicant cover table

No essentials or dominance, must use branching. Let us select prime p_{3}.

Cyclic Cover Table Example

Prime		Minterm	
implicant	0	15	
p_{1}	\checkmark		
p_{2}	\checkmark		
p_{4}		\checkmark	
p_{5}		\checkmark	

(b) After including p_{3} in the cover

Cyclic Cover Table Example

Prime implicant		Minterm 0		15
p_{1}	\checkmark			
p_{2}	\checkmark			
p_{4}		\checkmark		
p_{5}		\checkmark		

(b) After including p_{3} in the cover

Option to include prime p_{1} or p_{2}, AND p_{4} or p_{5} for 3 prime cover. Select primes with minimum cost.

Cyclic Cover Table Example

Prime	Minterm			
implicant	0	3	10	15
p_{1}	\checkmark	\checkmark		
p_{2}	\checkmark		\checkmark	
p_{4}		\checkmark		\checkmark
p_{5}			\checkmark	\checkmark

(c) After excluding p_{3} from the cover

Cyclic Cover Table Example

(c) After excluding p_{3} from the cover

Minimum cost cover possible by selecting only two primes.
Either p_{1} and p_{5} OR p_{2} and p_{4}

Summary of the Tabular Method

(1) List all minterms where f is 1 or don't-care, generate prime implicants by successive pairwise comparisons.
(2) Derive a cover table which indicates primes that cover each minterm where f is 1 .
(3) Select essential primes and reduce cover table by removing essential primes and covered minterms.
(4) Use row and column dominance to reduce the table further.
(6) Repeat steps 3 and 4 until table is empty or no reduction possible.
(6) If cover table is not empty, use branching.

Heuristic Minimization Methods

- Functions seldom defined in the form of minterms, usually algebraic expressions or as sets of cubes.
- List of minterms can be very large.
- Results in numerous comparisons and computation of primes is slow.
- Solving covering tables can also be computationally intensive.
- Many heuristics have been developed to improve computation time.
- See Section 8.4.2 for one example heuristic minimization method.

Concluding Remarks

- Introduced multilevel logic synthesis.
- Presented BDD and cubical representations for logic functions which are commonly used in CAD tools for logic synthesis.
- Described a more scalable 2-level logic synthesis method.
- More details on logic synthesis in ECE/CS 5740.

