ECE/CS 3700: Fundamentals of Digital System Design

Chris J. Myers

Lecture 8: Optimized Implementation of Logic Circuits

Introduction

- Chapter 2 shows how to find a lowest-cost implementation using algebraic manipulation or Karnaugh maps.
- These methods do not scale well for larger circuits.
- Even when CAD tools are used, important to know what they are doing, so they can be configured properly.
- This chapter briefly introduces some of the logic synthesis algorithms used by these tools.
 - Multilevel synthesis
 - Alternative representations of logic functions
 - Optimization methods based on these representations

Multilevel Synthesis

- SOP or POS implementations are two-level circuits.
- Depending on technology, not always most efficient or even realizable (*fan-in problem*).
- Instead need to derive a *multilevel* implementation.
 - Factoring
 - Functional decomposition

$$f(x_1,...,x_7) = x_1 x_3 \overline{x}_6 + x_1 x_4 x_5 \overline{x}_6 + x_2 x_3 x_7 + x_2 x_4 x_5 x_7$$

$$f(x_1,...,x_7) = x_1 x_3 \overline{x}_6 + x_1 x_4 x_5 \overline{x}_6 + x_2 x_3 x_7 + x_2 x_4 x_5 x_7$$

Five 4-input LUTs!

$$\begin{aligned} f(x_1, \dots, x_7) &= x_1 x_3 \overline{x}_6 + x_1 x_4 x_5 \overline{x}_6 + x_2 x_3 x_7 + x_2 x_4 x_5 x_7 \\ &= x_1 \overline{x}_6(x_3 + x_4 x_5) + x_2 x_7(x_3 + x_4 x_5) \end{aligned}$$

$$f(x_1,...,x_7) = x_1 x_3 \overline{x}_6 + x_1 x_4 x_5 \overline{x}_6 + x_2 x_3 x_7 + x_2 x_4 x_5 x_7$$

= $x_1 \overline{x}_6 (x_3 + x_4 x_5) + x_2 x_7 (x_3 + x_4 x_5)$
= $(x_1 \overline{x}_6 + x_2 x_7) (x_3 + x_4 x_5)$

$$f(x_1,...,x_7) = x_1 x_3 \overline{x}_6 + x_1 x_4 x_5 \overline{x}_6 + x_2 x_3 x_7 + x_2 x_4 x_5 x_7$$

= $x_1 \overline{x}_6 (x_3 + x_4 x_5) + x_2 x_7 (x_3 + x_4 x_5)$
= $(x_1 \overline{x}_6 + x_2 x_7) (x_3 + x_4 x_5)$

Using 4-input AND Gates to Realize a 7-input Product Term

A Factored Circuit

$f = x_1 \overline{x}_2 x_3 \overline{x}_4 x_5 x_6 + x_1 x_2 \overline{x}_3 \overline{x}_4 \overline{x}_5 x_6$

A Factored Circuit

$$f = x_1 \overline{x}_2 x_3 \overline{x}_4 x_5 x_6 + x_1 x_2 \overline{x}_3 \overline{x}_4 \overline{x}_5 x_6$$

$$f = x_1 \overline{x}_4 x_6 (\overline{x}_2 x_3 x_5 + x_2 \overline{x}_3 \overline{x}_5)$$

A Factored Circuit

$$f = x_1 \overline{x}_2 x_3 \overline{x}_4 x_5 x_6 + x_1 x_2 \overline{x}_3 \overline{x}_4 \overline{x}_5 x_6$$

$$f = x_1 \overline{x}_4 x_6 (\overline{x}_2 x_3 x_5 + x_2 \overline{x}_3 \overline{x}_5)$$

A Multilevel Circuit with Gate Sharing

Impact on Wiring Complexity

- Space on chip is used by gates and wires.
- Wires can be a significant portion.
- Each literal corresponds to a wire.
- Factoring reduces literal count, so it can also reduce wiring complexity.

Functional Decomposition

- Multilevel circuits often require less area.
- Complexity is reduced by decomposing 2-level function into subcircuits.
- Subcircuit implements function that may be used in multiple places.
- Reduces cost but increase propagation delay.

Functional Decomposition Example

(c) Karnaugh map for $h(x_1, x_2, g)$

Functional Decomposition Example

(a) Product terms

(b) Multilevel circuit

(a) Karnaugh map for the function f

(a) Karnaugh map for the function f

$$g(x_1, x_2, x_5) = x_1 + x_2 + x_5$$

(a) Karnaugh map for the function f

$$\begin{array}{rcl} g(x_1, x_2, x_5) &=& x_1 + x_2 + x_5 \\ k(x_3, x_4) &=& \overline{x}_3 x_4 + x_3 \overline{x}_4 = x_3 \oplus x_4 \end{array}$$

$$g(x_1, x_2, x_5) = x_1 + x_2 + x_5$$

$$k(x_3, x_4) = \overline{x}_3 x_4 + x_3 \overline{x}_4 = x_3 \oplus x_4$$

$$f(x_1, x_2, x_3, x_4, x_5) = h[g(x_1, x_2, x_5), k(x_3, x_4)]$$

$$g(x_1, x_2, x_5) = x_1 + x_2 + x_5$$

$$k(x_3, x_4) = \overline{x}_3 x_4 + x_3 \overline{x}_4 = x_3 \oplus x_4$$

$$f(x_1, x_2, x_3, x_4, x_5) = h[g(x_1, x_2, x_5), k(x_3, x_4)]$$

$$= kg + \overline{k}\overline{g} = \overline{k} \oplus \overline{g}$$

(a) Karnaugh map for the function f

(b) Circuit obtained using decomposition

Cost = 10 while minimum-cost SOP = 55

Chris J. Myers (Lecture 8: Optimization)

ECE/CS 3700: Digital System Design

Implementation of an XOR

(a) Sum-of-products implementation

Implementation of an XOR

(b) NAND gate implementation

Implementation of an XOR

(c) Optimal NAND gate implementation

Practical Issues

- Functional decomposition is a powerful technique for reducing circuit complexity.
- However, enormous numbers of possible subfunctions leads to necessity for heuristic algorithms.

Conversion to a NAND-gate Circuit

(a) Circuit with AND and OR gates

Conversion to a NAND-gate Circuit

(b) Inversions needed to convert to NANDs

Conversion to a NAND-gate Circuit

(c) NAND-gate circuit

Conversion to a NOR-gate Circuit

(a) Inversions needed to convert to NORs

Conversion to a NOR-gate Circuit

(b) NOR-gate circuit

 $P_1 = x_2 x_3$

$$P_1 = x_2 x_3 P_3 = x_1 + P_1 = x_1 + x_2 x_3$$

 $P_3 = x_1 + P_1 = x_1 + x_2 x_3$ $P_2 = x_5 + x_6$

$$P_3 = x_1 + P_1 = x_1 + x_2 x_3$$

$$P_2 = x_5 + x_6$$

$$P_4 = x_4 P_2 = x_4 (x_5 + x_6)$$
Circuit Example for Analysis

$$P_3 = x_1 + P_1 = x_1 + x_2 x_3$$

$$P_4 = x_4 P_2 = x_4 (x_5 + x_6)$$

$$P_5 = P_4 + x_7 = x_4 (x_5 + x_6) + x_7$$

Circuit Example for Analysis

$$P_3 = x_1 + P_1 = x_1 + x_2 x_3$$

$$P_5 = P_4 + x_7 = x_4 (x_5 + x_6) + x_7$$

$$f = P_3 P_5 = (x_1 + x_2 x_3) (x_4 (x_5 + x_6) + x_7)$$

Circuit Example for Analysis

$$f = P_3P_5 = (x_1 + x_2x_3)(x_4(x_5 + x_6) + x_7)$$

= $x_1x_4x_5 + x_1x_4x_6 + x_1x_7 + x_2x_3x_4x_5 + x_2x_3x_4x_6 + x_2x_3x_7$

- espresso finds exact and heuristic solutions to the 2-level synthesis problem.
- sis performs multilevel logic synthesis.
- Numerous commercial CAD packages are available from Cadence, Mentor, Synopsys, and others.

Logic Function Representation

- Truth tables
- Algebraic expressions
- Venn diagrams
- Karnaugh maps
- Binary decision diagrams (BDDs)
- n-dimensional cubes

Logic Function Representation

- Truth tables
- Algebraic expressions
- Venn diagrams
- Karnaugh maps
- Binary decision diagrams (BDDs)
- n-dimensional cubes

Binary Decision Diagrams (BDDs)

0 0

(a) AND

(b) OR

Derivation of a BDD

Derivation of BDDs for XOR Functions

(a) Decision tree

(b) BDD

(c) 3-input BDD

$$f = x_1 + x_2 x_3$$

(b) BDD ordered x1, x2, x3

$$f = x_1 + x_2 x_3$$
$$f_{\overline{x}_1} = x_2 x_3$$

(a) Expansion using x1

(b) BDD ordered x1, x2, x3

(a) Expansion using x1

(b) BDD ordered x1, x2, x3

$$f = x_1 + x_2 x_3$$

(d) BDD ordered x2, x1, x3

$$f = x_1 + x_2 x_3$$
$$f_{\overline{x}_2} = x_1$$

(c) Expansion using x₂

(d) BDD ordered x2, x1, x3

$$f = x_1 + x_2 x_3 f_{\overline{x}_2} = x_1 f_{x_2} = x_1 + x_3$$

(c) Expansion using x2

(d) BDD ordered x2, x1, x3

Reordering the Nodes in a BDD

(a) BDD ordered x_2, x_1, x_3

(b) Truth table

(c) Order x_1, x_2, x_3

$$f = x_1 x_3 + x_1 x_4 + x_2 x_4 + x_2 x_3 + \overline{x}_1 \overline{x}_2 x_3 x_4$$

$$f = x_1 x_3 + x_1 x_4 + x_2 x_4 + x_2 x_3 + \overline{x}_1 \overline{x}_2 x_3 x_4$$

$$f_{\overline{x}_1} = x_2 x_4 + x_2 x_3 + \overline{x}_2 x_3 x_4$$

$$f = x_1 x_3 + x_1 x_4 + x_2 x_4 + x_2 x_3 + \overline{x}_1 \overline{x}_2 x_3 x_4$$

$$f_{\overline{x}_1} = x_2 x_4 + x_2 x_3 + \overline{x}_2 x_3 x_4$$

$$f_{\overline{x}_1 \overline{x}_2} = x_3 x_4$$

$$f = x_1 x_3 + x_1 x_4 + x_2 x_4 + x_2 x_3 + \overline{x}_1 \overline{x}_2 x_3 x_4$$

$$f_{\overline{x}_1} = x_2 x_4 + x_2 x_3 + \overline{x}_2 x_3 x_4$$

$$f_{\overline{x}_1 \overline{x}_2} = x_3 x_4$$

$$f_{\overline{x}_1 x_2} = x_4 + x_3$$

$$f = x_1 x_3 + x_1 x_4 + x_2 x_4 + x_2 x_3 + \overline{x}_1 \overline{x}_2 x_3 x_4$$

$$f_{\overline{x}_1} = x_2 x_4 + x_2 x_3 + \overline{x}_2 x_3 x_4$$

$$f_{\overline{x}_1 \overline{x}_2} = x_3 x_4$$

$$f_{\overline{x}_1 x_2} = x_4 + x_3$$

$$f_{x_1} = x_3 + x_4 + x_2 x_4 + x_2 x_3$$

$$f = x_1 x_3 + x_1 x_4 + x_2 x_4 + x_2 x_3 + \overline{x}_1 \overline{x}_2 x_3 x_4$$

$$f_{\overline{x}_1} = x_2 x_4 + x_2 x_3 + \overline{x}_2 x_3 x_4$$

$$f_{\overline{x}_1 \overline{x}_2} = x_3 x_4$$

$$f_{\overline{x}_1 x_2} = x_4 + x_3$$

$$f_{x_1} = x_3 + x_4 + x_2 x_4 + x_2 x_3$$

$$= x_3 + x_4$$

(a) Diagram

Practical Use of BDDs

- BDDs provide an efficient *canonical* representation of a Boolean function.
- Easily manipulated using BDD packages such as BuDDy or CUDD.
- A common data structure used in many logic synthesis tools.

Logic Function Representation

- Truth tables
- Algebraic expressions
- Venn diagrams
- Karnaugh maps
- Binary decision diagrams (BDDs)
- n-dimensional cubes

Representation of $f(x_1, x_2) = \sum m(1, 2, 3)$

Representation of $f(x_1, x_2, x_3) = \sum m(0, 2, 4, 5, 6)$

Representation of $f(x_1, x_2, x_3, x_4) = \sum m(0, 2, 3, 6, 7, 8, 10, 15)$

n-Dimensional Hypercube

- Function of n variables maps to *n*-cube.
- Size of a cube is number of vertices.
- A cube with *k* x's consists of 2^{*k*} vertices.
- *n*-cube has 2^{*n*} vertices.
- 2 vertices are adjacent if they differ in one coordinate.
- Each vertex in *n*-cube adjacent to *n* others.

Optimization Based on Cubical Representation

- Optimization techniques often use cubical representation.
- Can be programmed and used efficiently in CAD tools.
- Example: Quine-McCluskey tabular method for minimization.

Generation of Prime Implicants

List 1

L	ist	2

List 3

x x 0 0

0,4,8,12

0	0000	~
4 8	$\begin{array}{ccc} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{array}$	✓ ✓
10 12	$\begin{array}{cccc} 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \end{array}$	~ ~
11 13	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	~ ~
15	1 1 1 1	√

0,4 0,8	$\begin{array}{ccccc} 0 & x & 0 & 0 \\ x & 0 & 0 & 0 \end{array}$	√ √
8,10 4,12 8,12	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	√ √
10,11 12,13	1 0 1 x 1 1 0 x	
11,15 13,15	1 x 1 1 1 1 x 1	

Chris J. Myers	(Lecture 8:	Optimization)
----------------	-------------	---------------

Prime implicant	Minterm 0 4 8 10 11 12 13 15						15	
$p_1 = 1 \ 0 \ x \ 0$			\checkmark	~				
<i>p</i> ₂ = 1 0 1 x				\checkmark	\checkmark			
$p_3 = 1 \ 1 \ 0 \ x$						\checkmark	✓	
<i>p</i> ₄ = 1 x 1 1					\checkmark			\checkmark
$p_5 = 1 \ 1 \ x \ 1$							✓	\checkmark
$p_6 - x + x = 0$	1	✓	\checkmark			\checkmark		

(a) Initial prime implicant cover table

Prime implicant	Minterm 0 4 8 10 11 12 13 15						15	
$p_1 = 1 \ 0 \ x \ 0$			\checkmark	\checkmark				
<i>p</i> ₂ = 1 0 1 x				\checkmark	\checkmark			
$p_3 = 1 \ 1 \ 0 \ x$						\checkmark	✓	
<i>p</i> ₄ = 1 x 1 1					\checkmark			\checkmark
$p_5 = 1 \ 1 \ x \ 1$							✓	\checkmark
<i>p</i> ₆ - x x 0 0	1	✓	\checkmark			\checkmark		

(a) Initial prime implicant cover table p_6 is an *essential prime implicant*.

Prime implicant	Minterm 10 11 13 15						
<i>p</i> ₁	~						
p_2	~	✓					
<i>p</i> ₃			\checkmark				
p_4		✓		く			
<i>p</i> ₅			\checkmark	\checkmark			

(b) After the removal of essential prime implicants

Prime implicant	Minterm 10 11 13 15							
p_1	✓							
p_2	✓	✓						
<i>p</i> ₃			\checkmark					
p_4		✓		く				
<i>p</i> ₅			\checkmark	\checkmark				

(b) After the removal of essential prime implicants Prime p_2 dominates p_1 and p_5 dominates p_3 .

Prime	Minterm						
implicant	10 11 13 15						
<i>P</i> ₂	>	✓					
p_4		✓		✓			
<i>P</i> ₅			く	✓			

(c) After the removal of dominated rows
Prime	Minterm						
implicant	10 11 13 15						
p_2	>	~					
p_4		\checkmark		✓			
<i>P</i> ₅			く	✓			

(c) After the removal of dominated rows

 p_2 and p_5 are now essential.

Prime implicant	0	4	8	Mint 10	term 11	12	13	15
$p_1 = 1 \ 0 \ x \ 0$			\checkmark	~				
<i>p</i> ₂ = 1 0 1 x				\checkmark	\checkmark			
$p_3 = 1 \ 1 \ 0 \ x$						\checkmark	✓	
<i>p</i> ₄ = 1 x 1 1					\checkmark			\checkmark
$p_5 = 1 \ 1 \ x \ 1$							✓	\checkmark
<i>p</i> ₆ - x x 0 0	1	✓	\checkmark			\checkmark		

(a) Initial prime implicant cover table Final solution is p_2 , p_5 , and p_6 .

Generation of Prime Implicants

List 1

List 2

List 3

0	0000	~
1 2 8	$\begin{array}{ccccccc} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{array}$	✓✓✓
5 6 9 12	$\begin{array}{ccccccc} 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \end{array}$	> > > > >
7 13	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	√ √
15	1 1 1 1	~

0,1 0,2 0,8	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
1,5 2,6 1,9 8,9 8,12	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
5,7 6,7 5,13 9,13 12,13	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
7,15 13,15	x 1 1 1 ↓ 1 1 x 1 ✓	

0,1,8,9	x 0 0 x
1,5,9,13 8,9,12,13	x x 0 1 1 x 0 x
5,7,13,15	x 1 x 1

Prime	0	2	5	Min	term	8	0	13
mplican	0	2	5	0	/	0	,	15
$p_1 = 0 \ 0 \ x \ 0$	✓	✓						
$p_2 = 0 \times 1 0$		✓		✓				
$p_3 = 0 \ 1 \ 1 \ x$				√	\checkmark			
<i>p</i> ₄ - x 0 0 x	1					\checkmark	✓	
$p_5 = x x 0 1$			\checkmark				√	✓
<i>p</i> ₆ = 1 x 0 x						\checkmark	√	✓
<i>p</i> ₇ - x 1 x 1			\checkmark		\checkmark			✓

(a) Initial prime implicant cover table

Prime implicant	0	2	5	Min 6	term 7	8	9	13
$p_1 = 0 \ 0 \ x \ 0$	~	v						
$p_2 = 0 \times 1 \ 0$		~		~				
$p_3 = 0 \ 1 \ 1 \ x$				✓	\checkmark			
<i>p</i> ₄ = x 0 0 x	1					\checkmark	✓	
$p_5 = x x 0 1$			\checkmark				✓	✓
<i>p</i> ₆ = 1 x 0 x						\checkmark	√	✓
<i>p</i> ₇ - x 1 x 1			√		\checkmark			✓

(a) Initial prime implicant cover tableMinterm 9 dominates minterm 8.Minterm 13 dominates minterm 5.

Prime implicant	0	2	Mint 5	term 6	7	8
$p_1 = 0 \ 0 \ x \ 0$	✓	✓				
$P_2 = 0 \times 1 0$		~		~		
$p_3 = 0 \ 1 \ 1 \ x$				✓	\checkmark	
$p_4 - x = 0 = 0 = x$	✓					~
$p_5 = x x 0 1$			\checkmark			
<i>p</i> ₆ = 1 x 0 x						✓
<i>p</i> ₇ - x 1 x 1			\checkmark		\checkmark	

(b) After the removal of columns 9 and 13

Prime implicant	0	2	Mint 5	term 6	7	8
$p_1 = 0 \ 0 \ x \ 0$	✓	✓				
$p_2 = 0 \times 1 0$		~		✓		
$p_3 = 0 \ 1 \ 1 \ x$				✓	\checkmark	
$p_4 - x = 0 = 0 = x$	✓					~
$p_5 = x x 0 1$			\checkmark			
$p_6 = 1 \times 0 \times 1 \times 1$						\checkmark
<i>p</i> ₇ • x 1 x 1			\checkmark		\checkmark	

(b) After the removal of columns 9 and 13

Prime p_7 dominates p_5 . Prime p_4 dominates p_6 .

Prime implicant	0	2	Min 5	term 6	7	8
<i>p</i> ₁	~	✓				
p_2		✓		\checkmark		
<i>p</i> ₃				\checkmark	✓	
p_4	✓					\checkmark
p_7			\checkmark		√	

(c) After the removal of rows p_5 and p_6

Prime implicant	0	2	Min 5	term 6	7	8
<i>p</i> ₁	~	✓				
p_2		✓		\checkmark		
<i>p</i> ₃				\checkmark	✓	
p_4	✓					\checkmark
p_7			\checkmark		√	

(c) After the removal of rows p_5 and p_6 Primes p_4 and p_7 are now essential.

Prime implicant	Minterm 2 6
<i>P</i> ₁	✓
p_2	✓ ✓
<i>p</i> ₃	✓

(d) After including p_4 and p_7 in the cover

Prime implicant	Minterm 2 6
p_1	~
p_2	 ✓
<i>p</i> ₃	✓

(d) After including p_4 and p_7 in the cover

Prime p_2 dominates remaining primes and becomes essential.

Prime implicant	0	2	5	Min 6	term 7	8	9	13
$p_1 = 0 \ 0 \ x \ 0$	~	✓						
$p_2 = 0 \times 1 \ 0$		~		~				
$p_3 = 0 \ 1 \ 1 \ x$				✓	\checkmark			
<i>p</i> ₄ = x 0 0 x	1					\checkmark	✓	
$p_5 = x x 0 1$			\checkmark				√	✓
<i>p</i> ₆ = 1 x 0 x						\checkmark	√	✓
<i>p</i> ₇ - x 1 x 1			\checkmark		\checkmark			✓

(a) Initial prime implicant cover table Final solution is p_2 , p_4 , and p_7 .

Prime	Minterm
implicant	0 3 10 15
$p_1 = 0 \ 0 \ \mathbf{x} \ \mathbf{x}$	\checkmark \checkmark
$P_2 = \mathbf{x} \ 0 \ \mathbf{x} \ 0$	\checkmark \checkmark
$p_3 = x \ 0 \ 1 \ x$	\checkmark \checkmark
$P_4 = x x 1 1$	\checkmark \checkmark
$P_5 = 1 \times 1 \times 1$	\checkmark \checkmark

(a) Initial prime implicant cover table

Prime implicant	Minterm 0 3 10 15
$p_1 = 0 \ 0 \ x \ x$	✓ ✓
$p_2 = \mathbf{x} \ 0 \ \mathbf{x} \ 0$	\checkmark \checkmark
$p_3 = x \ 0 \ 1 \ x$	\checkmark \checkmark
$P_4 = x x 1 1$	\checkmark \checkmark
$P_5 = 1 \times 1 \times 1$	\checkmark \checkmark

(a) Initial prime implicant cover table

No essentials or dominance, must use *branching*. Let us select prime p_3 .

Prime implicant	Minterm 0 15
p_1	\checkmark
p_2	\checkmark
p_4	\checkmark
p_5	\checkmark

(b) After including p3 in the cover

Prime implicant	Minterm 0 15		
p_1	\checkmark		
p_2	\checkmark		
p_4	\checkmark		
p_5	\checkmark		

(b) After including p₃ in the cover

Option to include prime p_1 or p_2 , AND p_4 or p_5 for 3 prime cover. Select primes with minimum cost.

Prime	Minterm				
implicant	0	3	10	15	
<i>p</i> ₁	\checkmark	\checkmark			
p_2	\checkmark		\checkmark		
p_4		\checkmark		\checkmark	
p_5			\checkmark	\checkmark	

(c) After excluding p3 from the cover

Prime	Minterm				
implicant	0	3	10	15	
p_1	\checkmark	\checkmark			
p_2	\checkmark		\checkmark		
p_4		\checkmark		\checkmark	
p_5			\checkmark	\checkmark	

(c) After excluding p3 from the cover

Minimum cost cover possible by selecting only two primes. Either p_1 and p_5 OR p_2 and p_4

Summary of the Tabular Method

- List all minterms where f is 1 or don't-care, generate prime implicants by successive pairwise comparisons.
- Oerive a cover table which indicates primes that cover each minterm where *f* is 1.
- Select essential primes and reduce cover table by removing essential primes and covered minterms.
- Use row and column dominance to reduce the table further.
- Sepeat steps 3 and 4 until table is empty or no reduction possible.
- If cover table is not empty, use branching.

- Functions seldom defined in the form of minterms, usually algebraic expressions or as sets of cubes.
- List of minterms can be very large.
- Results in numerous comparisons and computation of primes is slow.
- Solving covering tables can also be computationally intensive.
- Many heuristics have been developed to improve computation time.
- See Section 8.4.2 for one example heuristic minimization method.

Concluding Remarks

- Introduced multilevel logic synthesis.
- Presented BDD and cubical representations for logic functions which are commonly used in CAD tools for logic synthesis.
- Described a more scalable 2-level logic synthesis method.
- More details on logic synthesis in ECE/CS 5740.