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Introduction

Chapter 2 shows how to find a lowest-cost implementation using
algebraic manipulation or Karnaugh maps.

These methods do not scale well for larger circuits.

Even when CAD tools are used, important to know what they are doing,
so they can be configured properly.
This chapter briefly introduces some of the logic synthesis algorithms
used by these tools.

Multilevel synthesis
Alternative representations of logic functions
Optimization methods based on these representations
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Multilevel Synthesis

SOP or POS implementations are two-level circuits.

Depending on technology, not always most efficient or even realizable
(fan-in problem).
Instead need to derive a multilevel implementation.

Factoring
Functional decomposition
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Factoring

f (x1, . . . ,x7) = x1x3x6 + x1x4x5x6 + x2x3x7 + x2x4x5x7
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Factoring

f (x1, . . . ,x7) = x1x3x6 + x1x4x5x6 + x2x3x7 + x2x4x5x7

Five 4-input LUTs!
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Factoring

f (x1, . . . ,x7) = x1x3x6 + x1x4x5x6 + x2x3x7 + x2x4x5x7

= x1x6(x3 + x4x5)+ x2x7(x3 + x4x5)
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Factoring

f (x1, . . . ,x7) = x1x3x6 + x1x4x5x6 + x2x3x7 + x2x4x5x7

= x1x6(x3 + x4x5)+ x2x7(x3 + x4x5)

= (x1x6 + x2x7)(x3 + x4x5)
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Using 4-input AND Gates to Realize a 7-input Product Term
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A Factored Circuit

f = x1x2x3x4x5x6 + x1x2x3x4x5x6
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A Factored Circuit

f = x1x2x3x4x5x6 + x1x2x3x4x5x6

f = x1x4x6(x2x3x5 + x2x3x5)
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A Factored Circuit

f = x1x2x3x4x5x6 + x1x2x3x4x5x6

f = x1x4x6(x2x3x5 + x2x3x5)
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A Multilevel Circuit with Gate Sharing
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Impact on Wiring Complexity

Space on chip is used by gates and wires.

Wires can be a significant portion.

Each literal corresponds to a wire.

Factoring reduces literal count, so it can also reduce wiring complexity.
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Functional Decomposition

Multilevel circuits often require less area.

Complexity is reduced by decomposing 2-level function into subcircuits.

Subcircuit implements function that may be used in multiple places.

Reduces cost but increase propagation delay.
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Functional Decomposition Example
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Functional Decomposition Example
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Another Functional Decomposition Example
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Another Functional Decomposition Example

g(x1,x2,x5) = x1 + x2 + x5
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Another Functional Decomposition Example

g(x1,x2,x5) = x1 + x2 + x5

k(x3,x4) = x3x4 + x3x4 = x3 ⊕ x4
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Another Functional Decomposition Example

g(x1,x2,x5) = x1 + x2 + x5

k(x3,x4) = x3x4 + x3x4 = x3 ⊕ x4

f (x1,x2,x3,x4,x5) = h[g(x1,x2,x5),k(x3,x4)]
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Another Functional Decomposition Example

g(x1,x2,x5) = x1 + x2 + x5

k(x3,x4) = x3x4 + x3x4 = x3 ⊕ x4

f (x1,x2,x3,x4,x5) = h[g(x1,x2,x5),k(x3,x4)]

= kg+ kg = k ⊕g
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Another Functional Decomposition Example

Cost = 10 while minimum-cost SOP = 55
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Implementation of an XOR
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Implementation of an XOR
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Implementation of an XOR
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Practical Issues

Functional decomposition is a powerful technique for reducing circuit
complexity.

However, enormous numbers of possible subfunctions leads to necessity
for heuristic algorithms.
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Conversion to a NAND-gate Circuit
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Conversion to a NAND-gate Circuit
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Conversion to a NOR-gate Circuit
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Conversion to a NOR-gate Circuit
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Circuit Example for Analysis

P1 = x2x3
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Circuit Example for Analysis

P1 = x2x3

P3 = x1 +P1 = x1 + x2x3
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Circuit Example for Analysis

P3 = x1 +P1 = x1 + x2x3

P2 = x5 + x6
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Circuit Example for Analysis

P3 = x1 +P1 = x1 + x2x3

P2 = x5 + x6

P4 = x4P2 = x4(x5 + x6)
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Circuit Example for Analysis

P3 = x1 +P1 = x1 + x2x3

P4 = x4P2 = x4(x5 + x6)

P5 = P4 + x7 = x4(x5 + x6)+ x7
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Circuit Example for Analysis

P3 = x1 +P1 = x1 + x2x3

P5 = P4 + x7 = x4(x5 + x6)+ x7

f = P3P5 = (x1 + x2x3)(x4(x5 + x6)+ x7)
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Circuit Example for Analysis

f = P3P5 = (x1 + x2x3)(x4(x5 + x6)+ x7)

= x1x4x5 + x1x4x6 + x1x7 + x2x3x4x5 + x2x3x4x6 + x2x3x7
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CAD Tools

espresso - finds exact and heuristic solutions to the 2-level synthesis
problem.

sis - performs multilevel logic synthesis.

Numerous commercial CAD packages are available from Cadence,
Mentor, Synopsys, and others.
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Logic Function Representation

Truth tables

Algebraic expressions

Venn diagrams

Karnaugh maps

Binary decision diagrams (BDDs)

n-dimensional cubes
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Binary Decision Diagrams (BDDs)
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Derivation of a BDD
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Derivation of BDDs for XOR Functions
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Derivation of BDDs Using Shannon’s Expansion

f = x1 + x2x3
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Derivation of BDDs Using Shannon’s Expansion

f = x1 + x2x3

fx1 = x2x3
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Derivation of BDDs Using Shannon’s Expansion

f = x1 + x2x3

fx1 = x2x3

fx1 = 1
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Derivation of BDDs Using Shannon’s Expansion

f = x1 + x2x3
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Derivation of BDDs Using Shannon’s Expansion

f = x1 + x2x3

fx2 = x1
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Derivation of BDDs Using Shannon’s Expansion

f = x1 + x2x3

fx2 = x1

fx2 = x1 + x3
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Reordering the Nodes in a BDD
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Derivation of a BDD Using Shannon Expansion

f = x1x3 + x1x4 + x2x4 + x2x3 + x1x2x3x4
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Derivation of a BDD Using Shannon Expansion
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Derivation of a BDD Using Shannon Expansion

f = x1x3 + x1x4 + x2x4 + x2x3 + x1x2x3x4

fx1 = x2x4 + x2x3 + x2x3x4

fx1x2 = x3x4
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Derivation of a BDD Using Shannon Expansion

f = x1x3 + x1x4 + x2x4 + x2x3 + x1x2x3x4

fx1 = x2x4 + x2x3 + x2x3x4

fx1x2 = x3x4

fx1x2 = x4 + x3
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Derivation of a BDD Using Shannon Expansion

f = x1x3 + x1x4 + x2x4 + x2x3 + x1x2x3x4

fx1 = x2x4 + x2x3 + x2x3x4

fx1x2 = x3x4

fx1x2 = x4 + x3

fx1 = x3 + x4 + x2x4 + x2x3
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Derivation of a BDD Using Shannon Expansion

f = x1x3 + x1x4 + x2x4 + x2x3 + x1x2x3x4

fx1 = x2x4 + x2x3 + x2x3x4

fx1x2 = x3x4

fx1x2 = x4 + x3

fx1 = x3 + x4 + x2x4 + x2x3

= x3 + x4
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Derivation of a BDD Using Shannon Expansion
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Practical Use of BDDs

BDDs provide an efficient canonical representation of a Boolean function.

Easily manipulated using BDD packages such as BuDDy or CUDD.

A common data structure used in many logic synthesis tools.
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Logic Function Representation

Truth tables

Algebraic expressions

Venn diagrams

Karnaugh maps

Binary decision diagrams (BDDs)

n-dimensional cubes
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Representation of f (x1,x2) = ∑m(1,2,3)
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Representation of f (x1,x2,x3) = ∑m(0,2,4,5,6)
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Representation of
f (x1,x2,x3,x4) = ∑m(0,2,3,6,7,8,10,15)
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n-Dimensional Hypercube

Function of n variables maps to n-cube.

Size of a cube is number of vertices.

A cube with k x’s consists of 2k vertices.

n-cube has 2n vertices.

2 vertices are adjacent if they differ in one coordinate.

Each vertex in n-cube adjacent to n others.
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Optimization Based on Cubical Representation

Optimization techniques often use cubical representation.

Can be programmed and used efficiently in CAD tools.

Example: Quine-McCluskey tabular method for minimization.
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Generation of Prime Implicants
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Selection of a Cover
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Selection of a Cover

p6 is an essential prime implicant.
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Selection of a Cover
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Selection of a Cover

Prime p2 dominates p1 and p5 dominates p3.
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Selection of a Cover
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Selection of a Cover

p2 and p5 are now essential.

Chris J. Myers (Lecture 8: Optimization) ECE/CS 3700: Digital System Design 36 / 42



Selection of a Cover

Final solution is p2, p5, and p6.
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Generation of Prime Implicants
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Selection of a Cover
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Selection of a Cover

Minterm 9 dominates minterm 8.
Minterm 13 dominates minterm 5.
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Selection of a Cover
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Selection of a Cover

Prime p7 dominates p5.
Prime p4 dominates p6.
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Selection of a Cover
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Selection of a Cover

Primes p4 and p7 are now essential.
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Selection of a Cover
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Selection of a Cover

Prime p2 dominates remaining primes and becomes essential.
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Selection of a Cover

Final solution is p2, p4, and p7.
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Cyclic Cover Table Example
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Cyclic Cover Table Example

No essentials or dominance, must use branching.
Let us select prime p3.
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Cyclic Cover Table Example
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Cyclic Cover Table Example

Option to include prime p1 or p2, AND p4 or p5 for 3 prime cover.
Select primes with minimum cost.
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Cyclic Cover Table Example
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Cyclic Cover Table Example

Minimum cost cover possible by selecting only two primes.
Either p1 and p5 OR p2 and p4
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Summary of the Tabular Method

1 List all minterms where f is 1 or don’t-care, generate prime implicants by
successive pairwise comparisons.

2 Derive a cover table which indicates primes that cover each minterm
where f is 1.

3 Select essential primes and reduce cover table by removing essential
primes and covered minterms.

4 Use row and column dominance to reduce the table further.
5 Repeat steps 3 and 4 until table is empty or no reduction possible.
6 If cover table is not empty, use branching.
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Heuristic Minimization Methods

Functions seldom defined in the form of minterms, usually algebraic
expressions or as sets of cubes.

List of minterms can be very large.

Results in numerous comparisons and computation of primes is slow.

Solving covering tables can also be computationally intensive.

Many heuristics have been developed to improve computation time.

See Section 8.4.2 for one example heuristic minimization method.
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Concluding Remarks

Introduced multilevel logic synthesis.

Presented BDD and cubical representations for logic functions which are
commonly used in CAD tools for logic synthesis.

Described a more scalable 2-level logic synthesis method.

More details on logic synthesis in ECE/CS 5740.
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