Homework 3 Spring 2019 Solutions

Exercise 1. 40 pts

We can use Shannon's expansion with respect to two varibles inorder to derive the circuit implmentation using only 4-to-1 multiplexors. The general format for this expansion is as follows:

$$
f\left(x_{3}, x_{2}, x_{1}, x_{0}\right)=\bar{x}_{1} \bar{x}_{0} f_{\bar{x}_{1} \bar{x}_{0}}+\bar{x}_{1} x_{0} f_{\bar{x}_{1} x_{0}}+x_{1} \bar{x}_{0} f_{x_{1} \bar{x}_{0}}+x_{1} x_{0} f_{x_{1} x_{0}}
$$

The resulting 4-to-1 multiplexor would then have the following format:

Figure 1: Generalized 4-to-1 mux
Using this template, we can solve for the four given functions.

$$
\begin{aligned}
\operatorname{sum}_{1} & =a_{1}+b_{1}+a_{0} b_{0} \\
& =\bar{a}_{1} \bar{a}_{0} \text { sum }_{1 \bar{a}_{1} \bar{a}_{0}}+\bar{a}_{1} a_{0} \text { sum }_{1 \bar{a}_{1} a_{0}}+a_{1} \bar{a}_{0} \text { sum }_{1 a_{1} \bar{a}_{0}}+a_{1} a_{0} \text { sum }_{1 a_{1} a_{0}} \\
& =\bar{a}_{1} \bar{a}_{0}\left(b_{1}\right)+\bar{a}_{1} a_{0}\left(b_{0}+b_{1}\right)+a_{1} \bar{a}_{0}(1)+a_{1} a_{0}(1)
\end{aligned}
$$

We have to perform Shannon's expansion again, since the third cofactor is not a constant and contains more than one cube. Since we are implementing with 4 -to- 1 multiplexors only,
we need to expand with respect to the remaining two variables.

$$
\begin{aligned}
g & =b_{0}+b_{1} \\
& =\bar{b}_{1} \bar{b}_{0} g_{\bar{b}_{1} \bar{b}_{0}}+\bar{b}_{1} b_{0} g_{\bar{b}_{1} b_{0}}+b_{1} \bar{b}_{0} g_{b_{1} \bar{b}_{0}}+b_{1} b_{0} g_{b_{1} b_{0}} \\
& =\bar{b}_{1} \bar{b}_{0}(0)+\bar{b}_{1} b_{0}(1)+b_{1} \bar{b}_{0}(1)+b_{1} b_{0}(1)
\end{aligned}
$$

Figure 2: Implementation of sum ${ }_{1}$ using only 4 -to- 1 multiplexors

The next equation only contains two variables, so we will expand using the two variables.

$$
\begin{aligned}
\operatorname{sum}_{0} & =\bar{a}_{0} b_{0}+a_{0} \bar{b}_{0} \\
& =\bar{a}_{0} \bar{b}_{0} \text { sum }_{0 \bar{a}_{0} \bar{b}_{0}}+\bar{a}_{0} b_{0} \text { sum }_{0 \bar{a}_{0} b_{0}}+a_{0} \bar{b}_{0} \text { sum }_{0 a_{0} \bar{b}_{0}}+a_{1} b_{0} \text { sum }_{0 a_{0} b_{0}} \\
& =\bar{a}_{0} \bar{b}_{0}(0)+\bar{a}_{0} b_{0}(1)+a_{0} \bar{b}_{0}(1)+a_{0} b_{0}(0)
\end{aligned}
$$

Figure 3: Implementation of sum_{0} using only 4-to-1 multiplexors

$$
\begin{aligned}
\operatorname{diff}_{1} & =a_{1} a_{0} \overline{\bar{x}_{1}}+a_{1} \overline{a_{0}} \overline{\bar{b}_{1}} \overline{b_{0}} \\
& =\bar{a}_{0} \bar{b}_{0} d i f f_{1 \bar{a}_{0} \bar{b}_{0}}+\bar{a}_{0} b_{0} d i f f_{1 \bar{a}_{0} b_{0}}+a_{0} \bar{b}_{0} d i f f_{1 a_{0} \bar{b}_{0}}+a_{0} b_{0} d i f f_{1 a_{0} b_{0}} \\
& =\bar{a}_{0} \bar{b}_{0}\left(a_{1} \bar{b}_{1}\right)+\bar{a}_{0} b_{0}(0)+a_{0} \bar{b}_{0}\left(a_{1}{\overline{b_{1}}}_{1}\right)+a_{0} b_{0}\left(a_{1} \bar{b}_{1}\right)
\end{aligned}
$$

The fourth expression needs to be expanded further.

$$
\begin{aligned}
g & =a_{1} \bar{b}_{1} \\
& =\bar{a}_{1} \bar{b}_{1} g_{\bar{a}_{1} \bar{b}_{1}}+\bar{a}_{1} b_{1} g_{\bar{a}_{1} b_{1}}+a_{1} \bar{b}_{1} g_{a_{1} \bar{b}_{1}}+a_{1} b_{1} g_{a_{1} b_{1}} \\
& =\bar{a}_{1} \bar{b}_{1}(0)+\bar{a}_{1} b_{1}(0)+a_{1} \bar{b}_{1}(1)+a_{1} b_{1}(0)
\end{aligned}
$$

Figure 4: Implementation of diff 1 using only 4-to-1 multiplexors

The implementation of the last function is next.

$$
\begin{aligned}
\operatorname{diff}_{0} & =a_{0} \overline{b_{0}}+\overline{a_{0}} b_{0} \\
& =\bar{a}_{0} \bar{b}_{0} d i f f_{0 \bar{a}_{0} \bar{b}_{0}}+\bar{a}_{0} b_{0} d i f f_{0 \bar{a}_{0} b_{0}}+a_{0} \bar{b}_{0} d i f f_{0 a_{0} \bar{b}_{0}}+a_{0} b_{0} d i f f_{0 a_{0} b_{0}} \\
& =\bar{a}_{0} \bar{b}_{0}(0)+\bar{a}_{0} b_{0}(1)+a_{0} \bar{b}_{0}(1)+a_{0} b_{0}(0)
\end{aligned}
$$

Figure 5: Implementation of diff f_{0} using only 4-to-1 multiplexors

Exercise 2. 15 pts

Simply take Shannon's expansion with respect to each literal in the equation. We have four literals $\left(a_{0}, b_{0}, a_{1}, b_{1}\right)$, so we need to take Shannon's expansion four times to derive the set minterms covererd by diffo.

$$
\begin{array}{rlr}
\operatorname{diff}_{0}= & a_{0} \overline{b_{0}}+\overline{a_{0}} b_{0} & \\
& =a_{1}\left(a_{0} \overline{b_{0}}+\overline{a_{0}} b_{0}\right)+\overline{a_{1}}\left(a_{0} \overline{b_{0}}+\overline{a_{0}} b_{0}\right) & \text { Shannon's on } a_{1} \\
= & a_{0} \overline{b_{0}} a_{1}+\overline{a_{0}} b_{0} a_{1}+a_{0} \overline{b_{0}} \overline{a_{1}}+\overline{a_{0}} b_{0} \overline{a_{1}} & \text { Distributive } \\
= & b_{1}\left(a_{0} \overline{b_{0}} a_{1}+\overline{a_{0}} b_{0} a_{1}+a_{0} \overline{b_{0}} \overline{a_{1}}+\overline{a_{0} b_{0}} \overline{a_{1}}\right)+ & \\
& \overline{b_{1}}\left(a_{0} \overline{b_{0}} a_{1}+\overline{a_{0}} b_{0} a_{1}+a_{0} \overline{b_{0}} \overline{a_{1}}+\overline{a_{0}} b_{0} \overline{a_{1}}\right) & \text { Shannon's on } b_{1} \\
= & a_{0} \overline{b_{0}} a_{1} b_{1}+\overline{a_{0}} b_{0} a_{1} b_{1}+a_{0} \overline{b_{0}} \overline{a_{1} b_{1}}+\overline{a_{0}} b_{0} \overline{a_{1}} b_{1}+a_{0} \overline{b_{0}} a_{1} \overline{b_{1}}+\overline{a_{0} b_{0} a_{1} \overline{b_{1}}} \\
& +a_{0} \overline{b_{0}} \overline{a_{1}} \overline{b_{1}}+\overline{a_{0}} b_{0} \overline{a_{1}} \overline{b_{1}} & \text { Distributive }
\end{array}
$$

To verify our result, here is a table showing all of the possible inputs to diff 0 , the output of diff $_{0}$, and the specific minterm in our equation which covers that particular output.

$a_{0} b_{0} a_{1} b_{1}$	diff $_{0}$	minterms
0000	0	N/A
0001	0	N/A
0010	0	N/A
0011	0	N/A
0100	1	$\overline{a_{0} b_{0}} \overline{a_{1}} \overline{b_{1}}$
0101	1	$\overline{a_{0}} b_{0} \overline{a_{1}} b_{1}$
0110	1	$\overline{a_{0} b_{0} a_{1}} \overline{b_{1}}$
0111	1	$\overline{a_{0} b_{0} a_{1} b_{1}}$
1000	1	$a_{0} \overline{b_{0}} \overline{a_{1}} \overline{b_{1}}$
1001	1	$a_{0} \overline{b_{0}} \overline{a_{1} b_{1}}$
1010	1	$a_{0} \overline{0_{0}} \overline{a_{1}} \overline{b_{1}}$
1011	1	$a_{0} \overline{b_{0}} a_{1} b_{1}$
1100	0	N/A
1101	0	N/A
1110	0	N/A
1111	0	N/A

Exercise 3. 15 pts

It is tempting to think that the dual of f_{w} is $f_{\bar{w}}$, but this is not true. For example, let $f(w, x)=w x$. Then $f_{w}=x$ and the dual of f_{w} is still x whereas $f_{\bar{w}}=0$. Furtheremore, the notion of just taking one dual to $f=w f_{w}+\bar{w} f_{\bar{w}}$ is not correct since the dual of the right hand side is equal to the dual of f and not f. So here is a correct couple of proofs. The first directly uses dualization and the second essentially uses it in the form of DeMorgan's law.

The first proof. For notational purposes let a superscript d denote the dual of a function. For example, f^{d} is the dual of f and $\left(f_{w}\right)^{d}$ is the dual of f_{w}. For simplicity, write $\left(f_{w}\right)^{d}$ as f_{w}^{d}. Then, the dual of $f=w f_{w}+\bar{w} f_{\bar{w}}$ is

$$
f^{d}=\left(w+f_{w}^{d}\right)\left(\bar{w}+f_{\bar{w}}^{d}\right)
$$

Using the distributive law (and commutativity) on the right hand side gives

$$
f^{d}=w \bar{w}+w f^{d} \bar{w}+\bar{w} f_{w}^{d}+f_{w}^{d} f_{\bar{w}}^{d}=w f^{d} \bar{w}+\bar{w} f_{w}^{d}+f_{w}^{d} f_{\bar{w}}^{d} .
$$

After using dualization again and noting that $\left(f^{d}\right)^{d}=f$ (that is, taking the dual twice gets back the original function), one gets

$$
f=\left(w+f_{\bar{w}}\right)\left(\bar{w}+f_{w}\right)\left(f_{w}+f_{\bar{w}}\right)
$$

which yields

$$
f=\left(w+f_{\bar{w}}\right)\left(\bar{w}+f_{w}\right)\left(f_{w}+f_{\bar{w}}\right)
$$

essentially by consensus.
Now the second proof is like the first, but uses the complement so as not to go into dual
land. It works like this

$$
\begin{aligned}
f & =w f_{w}+\bar{w} f_{\bar{w}} & & \\
& =\overline{\overline{w f_{w}+\bar{w} f_{\bar{w}}}} & & \text { rule } 9 \\
& =\overline{\left(\bar{w}+\bar{f}_{w}\right)\left(w+\bar{f}_{\bar{w}}\right)} & & \text { DeMorgan } \\
& =\overline{\bar{w} w+\bar{w}_{\bar{w}}+w \bar{f}_{w}+\bar{f}_{w} \bar{f}_{\bar{w}}} & & \text { distributive law 12 a } \\
& =\overline{\bar{w} \bar{f} \bar{w}+w \bar{f}_{w}+\bar{f}_{w} \bar{f}_{\bar{w}}} & & 6 \mathrm{~b}, 8 \mathrm{a} \\
& =\left(w+f_{\bar{w}}\right)\left(\bar{w}+f_{w}\right)\left(f_{w}+f_{\bar{w}}\right) & & \text { DeMorgan } \\
& =\left(w+f_{\bar{w}}\right)\left(\bar{w}+f_{w}\right) & & \text { Consensus } 17 \mathrm{~b}
\end{aligned}
$$

Exercise 4. 30 pts

Verilog solution is not included to avoid explicit copying of code.

