Homework 1 Spring 2019 Solutions

Exercise 1. (10 pts)

- (a) $(72)_{10} = (1001000)_2$
- **(b)** $(34)_{10} = (100010)_2$
- (c) $(712)_{10} = (1011001000)_2$
- (d) $(171)_{10} = (10101011)_2$
- (e) $(888)_{10} = (1101111000)_2$

Exercise 2. (10 pts)

- (a) $(1100)_2 = (12)_{10}$
- **(b)** $(10101)_2 = (21)_{10}$
- (c) $(101101)_2 = (45)_{10}$
- (d) $(1100111000)_2 = (824)_{10}$

Exercise 3. (10 pts)

Since the venn diagrams in bottom right corner are the same, the statement is proved.

Exercise 4. (10 pts)

$$f(x_1, x_2, x_3, x_4) = x_1 \bar{x}_3 x_4 + \bar{x}_2 \bar{x}_3 \bar{x}_4 + \bar{x}_1 x_2 \bar{x}_3 x_4$$

$$= \bar{x}_2 \bar{x}_3 \bar{x}_4 + x_1 \bar{x}_3 x_4 + \bar{x}_1 x_2 \bar{x}_3 x_4$$

$$= \bar{x}_3 (\bar{x}_2 \bar{x}_4 + x_1 x_4 + \bar{x}_1 x_2 x_4)$$

$$= \bar{x}_3 (\bar{x}_2 \bar{x}_4 + x_4 (x_1 + \bar{x}_1 x_2))$$

$$= \bar{x}_3 (\bar{x}_2 \bar{x}_4 + x_4 (x_1 + x_2))$$

$$= \bar{x}_3 (\bar{x}_2 \bar{x}_4 + x_1 x_4 + x_2 x_4)$$

$$= \bar{x}_3 (\bar{x}_2 \bar{x}_4 + x_1 x_4 + x_2 x_4)$$

$$= \bar{x}_2 \bar{x}_3 \bar{x}_4 + x_1 \bar{x}_3 x_4 + x_2 \bar{x}_3 x_4$$
10b (Commutative)
12a (Distributive)
12a (Distributive)

Exercise 5. (20 pts)

Minimum-cost sum-of-products (SOP) form is found by grouping together 1's in the Karnaugh map. Groups may also include don't cares if they help with reduction.

Following the setup for a Karnaugh map as seen on p.84 of the textbook in Fig. 2.53, treat a_0 as the MSB (Most Significant Bit) and b_1 as the LSB (Least Significant Bit). Thus, minterm 1 is when $a_0a_1b_0b_1 = (0001)_2$, and minterm 8 is when $a_0a_1b_0b_1 = (1000)_2$.

	a_0a	1			
b_0b_1	\backslash	00	01	11	10
	00	m0	m4	m12	m8
	01	m1	m5	m13	m9
	11	m3	m7	m15	m11
	10	m2	m6	m14	m10

$$\mathbf{sum}_1(a_0, a_1, b_0, b_1) = \sum m(1, 3, 4, 6, 9, 10, 12) + D(5, 7, 11, 13, 14, 15)$$

a_0a_1					
b_0b_1	00	01	11	10	
00	0	1	1	0	
01	1	d	d	1	
11	1	d	d	d	
10	0	1	d	1	

Minimum-cost SOP: $sum_1(a_0, a_1, b_0, b_1) = a_1 + b_1 + a_0b_0$

$$\mathbf{sum}_0(a_0, a_1, b_0, b_1) = \sum m(2, 3, 6, 8, 9, 12) + D(5, 7, 11, 13, 14, 15)$$

$\setminus a_0a_1$					
b_0b_1	00	01	11	10	
00	0	0	1	1	
01	0	d	d	1	
11	1	d	d	d	
10	1	1	d	0	

Minimum-cost SOP: $sum_0(a_0, a_1, b_0, b_1) = a_0 \bar{b_0} + \bar{a_0} b_0$

$$\mathbf{diff}_1(a_0, a_1, b_0, b_1) = \sum m(6, 7, 9, 13) + D(10, 11, 14, 15)$$

a_0a_1						
b_0b_1	00	01	11	10		
00	0	0	0	0		
01	0	0	1	1		
11	0	1	d	d		
10	0	1	d	d		

Minimum-cost SOP: $diff_1(a_0, a_1, b_0, b_1) = a_0b_1 + a_1b_0$

$$\mathbf{diff}_0(a_0, a_1, b_0, b_1) = \sum m(5, 7, 13) + D(10, 11, 14, 15)$$

$\setminus a_0 a_1$					
b_0b_1	00	01	11	10	
00	0	0	0	0	
01	0	1	1	0	
11	0	1	d	d	
10	0	0	d	d	

Minimum-cost SOP: $dif f_0(a_0, a_1, b_0, b_1) = a_1b_1$

Exercise 6. (10 pts)

Minimum cost product of sums (POS) form is found by grouping together 0's in the Karnaugh map. Groups may also include don't cares if they help with reduction.

overflow_sum
$$(a_0, a_1, b_0, b_1) = \sum m(5, 7, 11, 13, 14, 15)$$

	$\setminus a_0 a_1$						
$b_0 b_1$	\backslash	00	01	11	10		
	00	0	0	0	0		
	01	0	1	1	0		
	11	0	1	1	1		
	10	0	0	1	0		

Minimum-cost POS:

overflow_sum
$$(a_0, a_1, b_0, b_1) = (b_0 + b_1)(a_0 + a_1)(a_1 + b_0)(a_0 + b_1)(a_1 + b_1)$$

underflow_diff
$$(a_0, a_1, b_0, b_1) = \sum m(4, 6, 8, 12, 13, 14, 15)$$

\backslash	$\setminus a_0 a_1$						
b_0b_1	\backslash	00	01	11	10		
	00	0	1	1	1		
	01	0	0	1	0		
	11	0	0	1	0		
	10	0	1	1	0		

Minimum-cost POS: $underflow_diff(a_0, a_1, b_0, b_1) = (a_0 + a_1)(a_0 + \bar{b_1})(a_1 + \bar{b_0})$ Exercise 7. (30 pts)

This problem is meant to be a pre-lab for Lab 1, and therefore, no Verilog solution is given to avoid explicit copying.