Homework 1
Spring 2019 Solutions

Exercise 1. (10 pts)
(a) $(72)_{10}=(1001000)_{2}$
(b) $(34)_{10}=(100010)_{2}$
(c) $(712)_{10}=(1011001000)_{2}$
(d) $(171)_{10}=(10101011)_{2}$
(e) $(888)_{10}=(1101111000)_{2}$

Exercise 2. (10 pts)
(a) $(1100)_{2}=(12)_{10}$
(b) $(10101)_{2}=(21)_{10}$
(c) $(101101)_{2}=(45)_{10}$
(d) $(1100111000)_{2}=(824)_{10}$

Exercise 3. (10 pts)

Since the venn diagrams in bottom right corner are the same, the statement is proved.

Exercise 4. (10 pts)

$$
\begin{array}{rlrl}
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right) & =x_{1} \overline{x_{3}} x_{4}+\overline{x_{2}} \overline{x_{3}} \overline{x_{4}}+\overline{x_{1}} x_{2} \overline{x_{3}} x_{4} & \\
& =\overline{x_{2}} \overline{x_{3}} \overline{x_{4}}+x_{1} \overline{x_{3} x_{4}}+\overline{x_{1}} x_{2} \overline{x_{3}} x_{4} & 10 \mathrm{~b} \text { (Commutative) } \\
& =\overline{x_{3}}\left(\overline{x_{2}} \overline{x_{4}}+x_{1} x_{4}+\overline{x_{1}} x_{2} x_{4}\right) & 12 \mathrm{a} \text { (Distributive) } \\
& =\overline{x_{3}}\left(\overline{x_{2}} \overline{x_{4}}+x_{4}\left(x_{1}+\overline{x_{1} x_{2}}\right)\right) & 12 \mathrm{a} \text { (Distributive) } \\
& =\overline{x_{3}}\left(\overline{x_{2}} \overline{x_{4}}+x_{4}\left(x_{1}+x_{2}\right)\right) & 16 \mathrm{a} \text { (DeMorgan's) } \\
& =\overline{x_{3}}\left(\overline{x_{2}} \overline{x_{4}}+x_{1} x_{4}+x_{2} x_{4}\right) & 12 \mathrm{a} \text { (Distributive) } \\
& =\overline{x_{2}} \overline{x_{3}} \overline{x_{4}}+x_{1} \overline{x_{3} x_{4}}+x_{2} \overline{x_{3}} x_{4} & 12 \mathrm{a} \text { (Distributive) }
\end{array}
$$

Exercise 5. (20 pts)

Minimum-cost sum-of-products (SOP) form is found by grouping together 1's in the Karnaugh map. Groups may also include don't cares if they help with reduction.

Following the setup for a Karnaugh map as seen on p. 84 of the textbook in Fig. 2.53, treat a_{0} as the MSB (Most Significant Bit) and b_{1} as the LSB (Least Significant Bit). Thus, minterm 1 is when $a_{0} a_{1} b_{0} b_{1}=(0001)_{2}$, and minterm 8 is when $a_{0} a_{1} b_{0} b_{1}=(1000)_{2}$.

$a_{0} a_{1}$				
00	m0	m4	m12	m8
01	m1	m5	m13	m9
11	m3	m7	m15	m11
10	m2	m6	m14	m10

$\operatorname{sum}_{1}\left(a_{0}, a_{1}, b_{0}, b_{1}\right)=\sum m(1,3,4,6,9,10,12)+D(5,7,11,13,14,15)$

Minimum-cost SOP: $\operatorname{sum}_{1}\left(a_{0}, a_{1}, b_{0}, b_{1}\right)=a_{1}+b_{1}+a_{0} b_{0}$

$$
\operatorname{sum}_{0}\left(a_{0}, a_{1}, b_{0}, b_{1}\right)=\sum m(2,3,6,8,9,12)+D(5,7,11,13,14,15)
$$

$a_{0} a_{1}$				
$b_{0} b_{1}$	00	01	11	10
00	0	0	1	1
01	0	d	d	1
11	1	d	d	d
10	1	1	d	0

Minimum-cost SOP: $\operatorname{sum}_{0}\left(a_{0}, a_{1}, b_{0}, b_{1}\right)=a_{0} \overline{b_{0}}+\overline{a_{0}} b_{0}$

$$
\operatorname{diff}_{1}\left(a_{0}, a_{1}, b_{0}, b_{1}\right)=\sum m(6,7,9,13)+D(10,11,14,15)
$$

Minimum-cost SOP: $\operatorname{dif} f_{1}\left(a_{0}, a_{1}, b_{0}, b_{1}\right)=a_{0} b_{1}+a_{1} b_{0}$

$$
\operatorname{diff}_{0}\left(a_{0}, a_{1}, b_{0}, b_{1}\right)=\sum m(5,7,13)+D(10,11,14,15)
$$

Minimum-cost SOP: $\operatorname{dif} f_{0}\left(a_{0}, a_{1}, b_{0}, b_{1}\right)=a_{1} b_{1}$
Exercise 6. (10 pts)
Minimum cost product of sums (POS) form is found by grouping together 0's in the Karnaugh map. Groups may also include don't cares if they help with reduction.

$$
\text { overflow_sum }\left(a_{0}, a_{1}, b_{0}, b_{1}\right)=\sum m(5,7,11,13,14,15)
$$

Minimum-cost POS:

overflow_sum $\left(a_{0}, a_{1}, b_{0}, b_{1}\right)=\left(b_{0}+b_{1}\right)\left(a_{0}+a_{1}\right)\left(a_{1}+b_{0}\right)\left(a_{0}+b_{1}\right)\left(a_{1}+b_{1}\right)$
underflow_diff $\left(a_{0}, a_{1}, b_{0}, b_{1}\right)=\sum m(4,6,8,12,13,14,15)$

Minimum-cost POS: underflow_diff $\left(a_{0}, a_{1}, b_{0}, b_{1}\right)=\left(a_{0}+a_{1}\right)\left(a_{0}+\overline{b_{1}}\right)\left(a_{1}+\overline{b_{1}}\right)\left(a_{1}+\overline{b_{0}}\right)$ Exercise 7. (30 pts)

This problem is meant to be a pre-lab for Lab 1, and therefore, no Verilog solution is given to avoid explicit copying.

