
Making Noise: Sound Art and Digital Media

UGS/CS 2050, Spring 2016

0 SoundClound account

1 Induction Coil Field Recordings

2 Soldering Practice

3 Arduino Sound Program - Part I

4 Arduino Sound Program - Part II

5 Hardware Hacking

6 Oscillators

7 Final Sound Art Project

5

7

14

27

38

40

72

82

5

SoundCloud Account0
Throughout this course you will be asked to share/submit recorded sound bites. We would like for you to use Sound-
Cloud to store and manage your recordings. You may then link to your SoundCloud page when submitting assign-
ments to Canvas.

For this assignment, please simply create a SoundCloud account, if you do not already have one.

We have also created a SoundCloud group associated with the class:

https://soundcloud.com/groups/ugs-2050

You should join this group once you’ve made your account. This will be a place where we can share sounds with the
rest of the class.

You should upload one or two sounds to your SoundCloud account to make sure everything is functioning, and that
you have things set up so that Nina and I can see your account. You can upload a sound clip of your own, or you can

choose a couple of the silly sound effects posted on canvas alongside the assigment to upload.

 What to turn in...

Upload your recording to SoundCloud and submit a link to your SoundCloud account on Canvas.

6

7

In this lab, you will use an induction coil pickup and a recorder/amplifier to scout for interesting electromagnetic
sounds.

Reading: Before you begin, please review Chapter 3 in the textbook.

Lab apparatus:
The lab apparatus includes a amplifier/recorder, an induction coil (a.k.a. telephone pickup), and a USB cable for
transferring your data to a machine. The complete usage instructions are provided on page 9.

To listen to/record electromagnetic sounds:
1. Plug your telephone pickup into the Mic Jack.
2. Turn the On/Off knob (this also functions as a volume control).
3. Press the mond (<M>) button until you reach “Guitar REC” mode. At this point you should be able to hear any
E&M sounds being picked up by the telephone pickup.
4. To record, press the <play/pause> button. Press again and hold for two seconds to stop recording.

5. To play back your recordings, use the mode button to get to “MP3 Play” mode.

Collecting Samples:
Once you’ve set up your amplifier/recorder, take a walk around your house/lab/dorm room/neighborhood holding
the induction coil up to various devices.

A few things to try:
	 - sniff around your laptop or desktop computer, or your cell phone
	 - if for some reason you have access to a landline, eavesdrop on a conversation
	 - sniff around the command interface of your microwave
	 - try sniffing the surface of electrical boxes on the sidewalk or near crosswalks.

Once you find an interesting sound, record it by hitting the “play/pause” button the the record mode. Record at least
five of your favorite electromagnetic sounds. Each clip should be approx. 15 seconds long. Annotate information
about each sound such as:
	 - what it is
	 - where you collected it
	 - when you collected it
	 - what you think is going on
	 - any other notes, observations.

	 - feel free to make sketches, take photos, etc.

INDUCTION COIL FIELD RECORDINGS1

telephone pickup

USB cable

amplifier/recorder

8

Extremely simple use of Audacity to normalize sound clips
Audacity is a few open-source audio-editing package. It falls in the same category of applications as things like

• Garage Band: https://www.apple.com/mac/garageband/
• WavePad: http://www.nch.com.au/wavepad/
• WaveShop: http://waveshop.sourceforge.net/
• Adobe Audition: https://creative.adobe.com/products/audition?PID=7105813
• Avid Pro Tools: http://www.avid.com/US/products/family/Pro-Tools
• Sony Sound Forge: http://www.sonycreativesoftware.com/soundforgesoftware

All of these audio editing tools have their pros and cons – and some are vastly more
complex than we’ll need. And some cost a LOT of money.

Audacity is free and open source, and it runs on Mac, Windows, and Linux. It also does everything we need it to do. It’s also
installed on the machines in our lab. I recommend you use it unless you already have and use some other tool.

You can download Audacity from:
http://audacity.sourceforge.net/

When you start up Audacity it looks something like this:

In the upper left you see the pause, play, stop, go to
beginning, go to end, and record buttons that you
might have expected for a sound-editing program.
The L and R bars on the right top of the screen are
the level indicators for playback and for recording.
At the bottom left there is an indicator of the proj-
ect sample rate in Hertz (Hz). One Hertz is one cycle
(one up and down of the signal) per second. 100 Hz
is 100 cycles (ups and downs of the signal) per sec-
ond. The Project Rate is an indication of the rate at
which digital samples are made of the music you’re
recording or playing back. 44,100Hz means that the
editor is assuming that there are 44,100 samples of
the audio waveform made every second.

That sounds like a lot, but it’s not really all that
fast for a computer. Consider that your lap-
top is likely running at a rate of more than 2GHz
(2,000,000,000Hz). That means that your laptop

is executing very basic machine-language instructions at a rate of 2 billion of those tiny instructions per second. That means
there are a LOT of computer instructions that can be done between every music sample.

In practice, the human range of hearing is roughly 20Hz to 20,000Hz (although old guys like me have lost a lot of
high-frequency range to my hearing). The default sampling rate of most “high quality” audio files is 44,100 Hz. The
reason has to do with something call the “Nyquist-Shannon sampling theorem,” or sometimes just called the ‘Ny-
quist sampling rate.” According to this theorem, if you want to accurately reproduce signals at a particular frequen-
cy (1350Hz, for example), you need to sample that signal at a rate that is at least 2x higher than the rate you’re
sampling (e.g. 2700Hz sampling rate in this example).

So, if you want to accurately represent signals up to the top end of human hearing (20,000Hz), you need to sample at least
twice as fast (40,000Hz). When they decided how to format sound on CDs, they chose 44,100Hz rate to make sure that they
could reproduce sounds that humans cared about. Here we could go into a long discussion of whether CDs really do repre-
sent correctly all the sounds people can hear, whether vinyl records are better, and whether CDs should really have used a
96,000Hz sampling rate. But we’ll save that for in-class discussion.

9

When you’ve recorded some EM “sounds” on your amplifier/recorder, the file will be an mp3 file. As another aside,
mp3 files are heavily compressed audio files to make them smaller than what you might fit on a CD. Again, we can
argue in class about whether mp3s sound as good as a CD or not (spoiler – they generally don’t sound as good as CDs,
but you may not notice in the typical mp3 listening environment).

To transfer your recordings onto your machine, or to a lab machine, connect the amplifier to the machine using the
provided USB cable. Turn the amp on, and the disk image should appear on the machine. Open the disk image, likely
called “No NAME,” and drag the “amp” directory onto the desktop. If there are many recordings in the directory, yourr
should be the most recent.

Once you’ve transferred your sound cap-
ture files to your machine, or to a lab
machine, you can open them in Audacity
and see what they look and sound like.
Here’s an example of a simple recording
I made on the amplifier/recorder and
loaded on my laptop. I used File -> Open
in Audacity to open the rec00001.mp3
file that I got from the recorder’s flash
card.

What you see here is a stereo signal with
the left channel on the top and right
channel on the bottom. This is a bit of
a lie. I used the inductive coil to do the
recording, so it only recorded one signal.
But it recorded that signal to both the
left and right channel according to the
mp3 file.

By the way – note that the Project Rate has gone down to 32,000Hz. This is because the amplifier/recorder was set
to a quality setting that used a lower sampling rate to make the files smaller. It’s still completely fast enough to get
good-sounding EM sounds.

fig 2

fig 1

So, the first thing I can do is get rid of
that fake stereo issue. I used Tracks
-> Stereo Track to Mono and collapse
the signal to a single mono signal (fig
2).

Now you can play your signal using
the green play button and see what
it sounds like. It’s probably pretty soft
if it looks like this image. What you’re
seeing is a visual representation of
the waveform. Time goes from left to
right, and the loudness of the signal
(the amplitude) is shown on the ver-
tical axis. The audio is scaled so that
the loudest sound possible goes from
the bottom of the graph (-1.0) to the
top of the graph (1.0). In this image
the sound is pretty faint – it only goes
up to a tiny bit above the 0 point.

10

That’s pretty quiet!

One way to make it louder is to select the
track and adjust the volume with Effect
-> Amplify. You could, for example, select
the entire clip (double click in the clip),
and then use the Amplify effect to make
things louder. In general, the Effect menu
choice has a huge number of audio ef-
fects you can apply to your tracks. We
won’t use most of them, but they’re fun
to play around with.

One problem with “Amplify” is that you
might amplify too much. Especially with
digital audio, there is a maximum signal
that can be represented. If you try to
make it louder than the loudest that the
digital representation will allow, it will
just stop at the biggest value and stick
there. Think about it this way – if the

fig 3

If I use the zoom buttons (the ones that look like little magnifying glasses) I can see more detail on the audio signal.
If I zoom WAY in to that little lump just to the right of the cursor in the previous figure, here’s what I see (fig 3). It’s a
little wiggle of the audio signal.

loudest number you can represent in the digital format is 32,768 (to pick a (sort of) random value), and you try to
amplify things so that the loudest part of the signal is 50,000, then everything from 32,768 to 50,000 would be stuck
at 32,768. This is called “clipping” because the signal, which should be round on the top, is clipped to be flat on the
top. This turns out to sound terrible! This is what it looks like to vastly over-amplify a signal:

fig 4

11

So, we’d like to avoid that if possible, but also amplify the weak signal so it’s louder. This is where Effect -> Normalize
comes in. This is an effect that looks at the highest and lowest parts of the audio file, and then adjusts the volume
of the whole clip so that the highest and lowest are at a nice loud volume, and that no clipping happens. Here’s the
same starting waveform but with the Normalize Effect added to the entire clip. Use the default settings of “remove DC
offset” and “max value -1.0db.”

If I zoom in again you can see the clipping. It’s a little hard to see until you know what you’re looking at, but all those
flat bottoms on the waveforms are clipped, and will sound awful.

Now – this is more like it! The waveform has been amplified, but amplified just enough so it’s as loud as it can get
without clipping. This will get the most out of your recorded signals in terms of hearing everything that’s in the
signal.

12

After you perform the Normalization, you can output the sound as either a .wav file (high quality, but big files) or as
an mp3 (highly compressed, and absolutely fine for our purposes). Use File -> Export Audio to save your file. Select
mp3 to save space, and you don’t need to mess with the options unless you want to. You can fill in the meta-data
during the mp3 writing process if you want to, but its not required.

I’d like you to normalize all your inductive field recordings. Here’s the cheat-sheet version of the process:

1. Download your sound files from your amplifier/recorder
2. Start Audacity
3. Read your mp3 files with File -> Open
4. Select the entire track with a double-click
5. Use Tracks-> Stereo to Mono to get it back to a single sound track
6. Use Effect -> Normalize to normalize the volume of the track
7. Write the new normalized mp3 using File -> Export Audio

The normalized recordings are what you should turn in.

We will use other effects and features of Audacity later, but this is the important part for now...

 What to turn in...

- Recording of at least five of your favorite electromagnetic sounds, uploaded to SoundCloud (provide links in
Canvas) Each clip should be approx. 15 seconds long. Annotate information about each sound such as:
	 - what it is
	 - where you collected it
	 - when you collected it
	 - what you think is going on
	 - any other notes, observations, etc. including sketches, photos, and other documentation about the
location and circumstances of the collection.

13

14

SOLDERING PRACTICE2
For this project I'll hand out a small kit for an electronic
flashing circuit. Assembling the kit involves soldering a
set of through-hole components on a small circuit board.
When assembled, the kit will flash a set of LEDs when it
hears sounds above a certain volume. The main purpose
of this assignment is to get some practice with soldering.

I'll hand out the kits in class.

Soldering - basic instructions
- Heat the material to be soldered
- Let the Solder melt and flow around that material
- At the same time...don’t heat things too much or for too long.
- It takes a little practice to get things just right.

Through-hole components
- Components designed to go through a hole... :-)
- Circuit boards have holes in them with little met-
al donuts around the holes
- Those metal donuts connect the hole with wires
(traces) on the circuit board
- Through-hole components have leads that stick
through those holes so you can solder them to the
donuts.

Printed Circuit Board (PCB) PCB’s with holes

The following section provides a breif introduction to soldering and through-hole components.

15

Soldering through-hole components

Through-hole components

16

Proto-boards

Good through-hole joints Bad through-hole joints

17

Amplifier schematic Proto-board amplifier

 Light Flasher

- LEDs will flash when you hold the
mic up to noise/music

Circuit diagram

18

 Light Flasher - kit parts

Light Flasher - components

- LEDs have a direction.

- Anode is connected to the +
side of the circuit (battery) and
Cathode to the - side.

- They light up when current
flows from + to -.

19

 Light Flasher - components

- Capacitors have their
value printed on them

- Resistors have a color code
to indicate their value

Light Flasher - components

- Transistors have three
connections. The flat side
of the case orients the device

20

 Light Flasher - components

-The battery connector and
the mic round out the
components

Next we provide a step-by-step on the actual kit you'll be soldering. We'll also hand out some battery cases that you
can use to power your circuit.

21

1 Start with the resistors. Bend the leads to fit through the holes

The leads poke through to
the solder side of the board. Solder ‘em up

And then clip the excess leads!

1

22

Now add the transistors. Use the flat side to orient them properly.

Apply solder... and clip the leads

2

2

23

Now add the capacitors. Note that the white stripe is the - side of these caps. It’s
important to orient them correctly…

Solder and clip!

3

3

24

Solder in the battery connector

Now add the mic in the middle

Note the bent leads to help hold it in
while soldering

5

5

25

Finally add the LEDs.

Solder...

Make sure to get the
direction correct. Remember
that the Anode (+ input) is
the longer lead.

You want current to flow
from + (long) to - (short).

...and clip. And we’re done!

6

6

26

Hold the mic near sound, and the LEDs will light up in time with the music7

 What to turn in...

On Friday for the due date, please use Canvas to hand in a photo of your completed board. We’ll demo
the boards in class on Tuesday.

Power this with 3 to 5v
 (2 or 3 batteries in series)

27

Arduino Sound Program - Part I3

For this assignment you’ll turn in three programs for your Arduino that make sounds. The three programs need to
generate compositions/music/noise in the following three ways:

1. Make sounds directly from the Arduino program. You can use arrays to play a specific melody, or use the ran-
dom(<min>, <max); function to add randomness to your composition.

2. Use the CdS light sensor as input to your composition. This adds an element of environmental sensitivity. You
can think about the values you receive from the light sensor as “correlated randomness.” That is, they are a way
of influencing the composition in a somewhat random way, but correlated to the amount of light falling on the
sensor. You can use the sensor values to influence pitches, or durations, or both.

3. A composition of your own choice that uses whatever techniques you like.

All three compositions should be handed in in two ways:

1. Hand in the Arduino code that you used to make each composition. The Arduino code is in your Arduino
directory and has a file extension of .ino. Your Arduino directory is under Documents/Arduino on a Mac, or
My Documents\Arduino on a Windows machine. Each “sketch” you make (Arduino-speak for “program”) lives in
the Arduino directory inside a directory that is named for you your program. That is, if I made a program called
Composition1, the file to turn in would be inside the Arduino/Composition1 folder, and would be named Com-
position1.ino.

2. Hand in captured sound samples from each composition. You can capture the sound samples using the micro-
phone on your phone, or on your laptop, or even using your amplifier/recorder if you put the inductive pickup
right next to the speaker coil of your tiny speaker connected to your Arduino. The sound samples should be at
least 15sec each.

28

Preparing your Speaker

Your tiny little speaker is a standard 8Ω speaker. That means that if you measure the resistance between the red and
black wires of the speaker, it will measure 8Ω of resistance. If you connect the speaker in a circuit, it will look to the
rest of the circuit like an 8Ω resistor.

Actually it’s a little more complicated than that because speakers represent a slightly variable resistance depending
on what frequency you’re sending it, but it’s close enough!

You will be connecting one wire of your speaker to a digital output pin on your Arduino. The other wire will be con-
nected to ground (GND) in the Arduino. Your Arduino will be sending audio signals to your speaker by changing the
voltage on that digital output pin from 0v to +5v at whatever frequency you want the speaker make.

So, if you think about it, when your Arduino is setting the pin high, there is a path for current to flow from the digital
output pin, through the speaker, to ground. We can use Ohm’s Law to figure out how much current will flow in that
circuit:

Ohm’s Law: V = IR

So, I = V/R = 5v/8Ω = 0.625A

The only problem here is that 0.625A is much too much current for the poor little Arduino to supply! 0.625A is the
same as 625mA – remember that 1mA (milli-Amp) is 1/1000 of an amp.
It turns out that the Arduino can supply a maximum of 40mA on each digital pin. That’s 0.040A which is a lot less
than 0.625A!

To fix this we need to add another resistor in series with the speaker. Resistances in series add together. That is, if we
put a 100Ω resistor in series with an 8Ω resistor, the total resistance will be 108Ω in that circuit.

We can use Ohm’s Law again to figure out what the right total resistance should be to not exceed the 40mA max
that the Arduino can supply.

V=IR So,R=V/I=5v/0.040A=125Ω

This means that with 125Ω of total resistance, the Arduino will be asked to supply exactly 0.040A of current.

We’ll be safer by using a slightly larger resistor to make sure we don’t even get close to the 0.040A max. That’s why
we’re using a 150Ω resistor in series with your speaker. That will provide a total of 158Ω resistance in the circuit, and
I = V/R = 5v/158Ω = 0.032A (32mA). That’s nice and safe, and will still be loud enough to hear.

29

You should take your speaker, and solder the 150Ω resistor to one of the leads. Kirchhoff’s current law says that all
components in series will see the same current, so it doesn’t matter if you solder the resistor to the red or the black
wire.
I recommend that you also solder some 20 gauge solid-core wire to each of the speaker wires so that they’ll be eas-
ier to stick into the holes in the Arduino board. Remember to shrink-wrap your solder connections so that they’ll be
insulated, and be a little stronger physically.

Here’s what your speaker/resistor/Arduino connection should look like:

Preparing your CdS Light Sensor

Your CdS light sensor is essentially a small resistor that changes its resistance depending on how much light falls on
it. The more light that falls on the squiggly line in the face of the sensor, the smaller the resistance. The darker it
is, the more resistance there is. This is very nice because you can now use this behavior to sense how much light is
falling in the environment in which you’ve installed the sensor.

The (slight) problem is that it’s a little tricky to measure resistance directly using Arduino. The good news is that it’s
very easy to sense analog voltages using Arduino. That’s what the analog input pins are for. They are connected to
circuits called “Analog to Digital Converters” also know as ADC circuits. An ADC will measure the voltage (between 0v
and 5v in our case), and return a number (integer) that represents where the voltage falls in that range.

The ADCs on Arduino have 10 binary bits of precision. That means that they can return numbers between 0 and
1023. So, if the voltage on the analog input pin is 0v, the ADC will return 0. If the voltage is 5v it will return 1023. If
it’s 2.5v it will return a number halfway between – so it will return 511.

Luckily for us, there’s a very simple circuit that takes resistances and converts the ratio of resistors to a variable volt-
age – this is called a Voltage Divider. We saw this in class. It’s basically two resistors in series with 5v on one end, and

30

GND on the other. The voltage is dropped across each of the two resistors in proportion to the size of the resistors.
So, the voltage in the middle is related to the ratio of resistances of the two resistors. If both resistors are equal, the
voltage in the middle will be exactly half of the power supply voltage (2.5v in this case).

Here’s what a general voltage divider looks like (fig xa)

The formula for the voltage at OUT (with respect to GND) is Vout = Vdd (R2 / (R1 +R2)). That is, the output is the ratio
of R2 to the total resistance (R1 + R2) multiplied by the original power supply voltage Vdd.

Now if you make one of the resistors variable, then the output voltage at OUT changes as the resistance of the vari-
able resistor changes. This is excellent, because a changing voltage is exactly that the ADC in the Arduino senses!
Here’s what the CdS light sensor version of the voltage divider looks like (fig xb).

Note that really doesn’t matter whether the variable resistor (the light sensor) is closer to Vdd or closer to GND –
because these are resistors in series, they will both see the same current, and both drop voltage across the compo-
nents. The only functional difference is whether the voltages at OUT range from (for example) 0v to 3v, or from 2v to
5v. The circuit on the left will give voltages up to 5v, but not all the way to 0v. The circuit on the right is the opposite
– it will return voltages at OUT as low as 0v, but not all the way to 5v.

Note that we should ask the current question here! With this circuit, how much current will flow from VDD to GND?
Back to Ohm’s Law!

V = IR So, I = V/R

In this case we really want as little current to flow as possible. That will burn less power. The trade off is that with tiny
currents, the change in voltage will be slower as the light sensor changes. But, that’s probably fine. Slow in this case
is still fast for humans...

One problem is that we don’t know the actual range of resistances in the CdS light sensors! They’re all different. So,
let’s assume that resistance can go all the way to 0Ω. It won’t, but that’s the worst case. In that case, all the resis-
tance in the circuit is in the other (fixed) resistor.

In these cases, it’s very common to use a 10,000Ω (10kΩ) resistor. That’s large enough to really limit the current, and
not so large that things get noticeably slow.
￼
Let’s see how much current that really is: I = V/R = 5v/10,000Ω = 0.0005A = 0.5mA. Half a milli-Amp is a really nice
small number! That will work well.

So, you need to do a little more soldering. You need to solder your CdS light sensor, and a 10kΩ resistor to look like
the circuit on the previous page. I recommend also soldering some 20 gauge solid-core wire on the leads so that
they’re easy to plug into the Arduino – they are also insulated so that they won’t short out. Remember the shrink
wrap too.

31

The circuit looks like this:

Here’s what your CdS sensor looks like when you connect it to your Arduino:

32

Program Examples

On the Canvas page for this class I’ve put some example programs to get you started. To use
these programs make folders in your Arduino directory, and then put the <name>.ino and
<name>.h files inside those folders. There are details in the following section “A Brief Intorduc-
tion to Programming.”

The example programs are:

• SimpleTone: This shows extremely simple tone making. It uses the “tone” function to make
a series of five tones at particular frequencies. The frequencies are hard-coded with numbers,
in Hertz.

SimpleTone.ino

/* VERY simple tone program */
int speakerPin = 9; // attch the speaker to pin 9

void setup(){
 pinMode(speakerPin, OUTPUT); // Make speakerPin an output
}

void loop(){
 tone(speakerPin, 440); // tone fires up at 440Hz
 delay(1000); // play it for 1 sec
 tone(speakerPin, 494);
 delay(1000);
 tone(speakerPin, 131);
 delay(500);
 tone(speakerPin, 554);
 delay(2000);
 tone(speakerPin, 143);
 delay(1000);
}

• SimpleTone1: This version adds two things:
a. It uses the “pitches.h” file to “name” the notes. That is, it gives names
to each of the pitch frequencies so that you can call standard pitches
by their name instead of knowing their frequencies
b. It shows how to make silence between notes using the noTone()
function to turn off the signal to the pin.

SimpleTone1.ino

/* VERY simple tone program */
#include “pitches.h”
int speakerPin = 9; // attch the speaker to pin 9

33

void setup(){
 pinMode(speakerPin, OUTPUT); // Make speakerPin an output
}

void loop(){
 tone(speakerPin, NOTE_A4); // tone fires up an A4
 delay(1000); // play it for 1 sec
 noTone(speakerPin); // stop the tone
 delay(300); // “play” some silence
 tone(speakerPin, NOTE_B4); // play another tone
 delay(1000);
 tone(speakerPin, NOTE_C3);
 delay(500);
 tone(speakerPin, NOTE_CS5);
 delay(2000);
 tone(speakerPin, NOTE_D3);
 delay(1000);
}

• SimpleTone2: This uses a slightly different way of deciding how long a note plays. This is not that different
from SimpleTone1, and you can ignore it if you like. I find this version a little counter-intuitive, but am including

it for completeness.

SimpleTone2.ino

/* VERY simple tone program */
#include “pitches.h”
int speakerPin = 9; // attch the speaker to pin 9

void setup(){
 pinMode(speakerPin, OUTPUT); // Make speakerPin an output
}

void loop(){
 tone(speakerPin, NOTE_A4, 1000); // tone fires an A4 for 1sec
 delay(1500); // delay for 1.5sec for...
 tone(speakerPin, NOTE_B4, 1000); // some space
 delay(1500);
 tone(speakerPin, NOTE_C3, 500);
 delay(700);
 tone(speakerPin, NOTE_CS5, 1500);
 delay(2000);
 tone(speakerPin, NOTE_D3, 1000);
 delay(1300);
}

34

• toneMelody: This is not on the Canvas page because it’s in the examples that come with the Arduino program-
ming interface. It’s in the Examples-Digital- toneMelody menu in your Arduino program. This program also uses

pitches.h and shows how to make arrays that hold note values and duration values.

toneMelody.ino

/* Melody Plays a melody
 circuit:
 * 8-ohm speaker on digital pin 8

 created 21 Jan 2010
 modified 30 Aug 2011
 by Tom Igoe

This example code is in the public domain.
 http://www.arduino.cc/en/Tutorial/Tone

 */
#include “pitches.h”

// notes in the melody:
int melody[] = {
 NOTE_C4, NOTE_G3, NOTE_G3, NOTE_A3, NOTE_G3, 0, NOTE_B3, NOTE_C4
};

// note durations: 4 = quarter note, 8 = eighth note, etc.:
int noteDurations[] = {
 4, 8, 8, 4, 4, 4, 4, 4
};

void setup() {
 // iterate over the notes of the melody:
 for (int thisNote = 0; thisNote < 8; thisNote++) {

 // to calculate the note duration, take one second
 // divided by the note type.
 //e.g. quarter note = 1000 / 4, eighth note = 1000/8, etc.
 int noteDuration = 1000 / noteDurations[thisNote];
 tone(8, melody[thisNote], noteDuration);

 // to distinguish the notes, set a minimum time between them.
 // the note’s duration + 30% seems to work well:
 int pauseBetweenNotes = noteDuration * 1.30;
 delay(pauseBetweenNotes);
 // stop the tone playing:
 noTone(8);
 }
}

void loop() {
 // no need to repeat the melody.
}

35

• RandomMelody: This is a version of the toneMelody program, but one that uses the ran-
dom() function to choose notes and durations randomly from the arrays to make a random
melody instead of the “shave and a haircut, two bits” melody from toneMelody.

RandomMelody.ino

// use the pitches.h file to select some notes to choose from
// then select a random duration
// and play random sequences of these notes.
 #include “pitches.h”
int speakerPin = 9; //
int randomNote; // variable to hold which note you’re playing
int randomDuration; // variable to hold random duration
int noteDuration; // The duration scaled by 1sec

// notes to choose from (array goes from 0 to 7)
// Note that one of the choices is 0 meaning “play nothing”
int notes[] = {
 NOTE_A4, NOTE_B3, NOTE_C3, NOTE_D3, NOTE_E3, NOTE_F3,
NOTE_G3, 0};

// note durations: 4 = quarter note, 8 = eighth note, etc.:
// Note that by putting more 8’s and 4’s, those durations will
// be more common when chosen at random from the array
// This arrary goes from 0 to 9
int durations[] = {
 1, 2, 4, 4, 4, 8, 8, 8, 16, 16 };

void setup() {
 pinMode(speakerPin, OUTPUT); // make sure it’s an output pin
}

void loop() {
 // Choose a random note
 randomNote = notes[random(0, 8)]; // remember (min, max-1)
 // and a random duration
 randomDuration = durations[random(0,10)];

 // to calculate the note duration, take one second
 // divided by the note type.
 //e.g. quarter note = 1000 / 4, eighth note = 1000/8, etc.
 noteDuration = 1000/randomDuration;

 tone(speakerPin, randomNote); // now play a random note
 delay(noteDuration); // and delay by a random duration

}

36

• Calibration: This program shows how to use the Serial library to output the values that
you’re getting back from the light sensor. This is a way to calibrate the highest and lowest val-
ue you can expect from the current environment in which you’ve installed your light sensor.

Calibration.ino

/*
 * This program demonstrates how to calibrate a resistive sensor by
 * printing the values you get back from the sensor to the serial
 * monitor. You can eyeball the values and get a good feel for the
 * range of values you can expect from the sensor.
 */

int sensorPin = A0; // analog input pin for the potentiometer
int sensorValue = 0; // variable to store value from the sensor

void setup() {
Serial.begin(9600); // Init serial communication at 9600 baud
}

void loop() {
 sensorValue = analogRead(sensorPin);//read the value from the sensor:
 Serial.print(“Sensor value is: “); //print a message (no newline yet)
 Serial.println(sensorValue); //print the value you got (with new line
 delay(100); // wait so you don’t print too much!
}
// VERY useful for getting a feel for the range of values coming in
// Remember to open the Serial Monitor to see the values

• tonePitchFollower2: This will take the analog sensor values from your light sensor and make
a Theremin-like sound on your speaker. That is, the pitch will follow the amount of light on
your light sensor.

tonePitchFollower2.ino

/* Pitch follower

 Plays a pitch that changes based on a changing analog input
 circuit:
 * 8-ohm speaker on digital pin 8
 * photoresistor on analog 0 to 5V
 * 4.7K resistor on analog 0 to ground

 created 21 Jan 2010
 modified 31 May 2012
 by Tom Igoe, with suggestion from Michael Flynn

37

This example code is in the public domain.

 http://arduino.cc/en/Tutorial/Tone2 */

void setup() {
 // initialize serial communications (for debugging only):
 Serial.begin(9600);
}

void loop() {
 // read the sensor:
 int sensorReading = analogRead(A0);
 // print the sensor reading so you know its range
 Serial.println(sensorReading);
 // map the analog input range
 // (in this case, 400 - 1000 from the photoresistor)
 // to the output pitch range
 // (in this case 120 - 1500Hz)
 // change the minimum and maximum input numbers below
 // depending on the range your sensor’s giving:
 int thisPitch = map(sensorReading, 400, 1000, 120, 1500);

 tone(9, thisPitch); // play the pitch:
 delay(10); // play for 10ms, then resample
}

Good luck – have fun – try things – and let us know if you have problems or questions!

 What to turn in...(repeated from pg. 27)

All three compositions should be handed in in two ways:

1. Hand in the Arduino code that you used to make each composition. The Arduino code is in your Arduino
directory and has a file extension of .ino. Your Arduino directory is under Documents/Arduino on a Mac, or
My Documents\Arduino on a Windows machine. Each “sketch” you make (Arduino-speak for “program”)
lives in the Arduino directory inside a directory that is named for you your program. That is, if I made a
program called Composition1, the file to turn in would be inside the Arduino/Composition1 folder, and
would be named Composition1.ino.

2. Hand in captured sound samples from each composition. You can capture the sound samples using
the microphone on your phone, or on your laptop, or even using your amplifier/recorder if you put the
inductive pickup right next to the speaker coil of your tiny speaker connected to your Arduino. The sound
samples should be at least 15sec each.

38

Arduino Sound Program - Part II4

At this point you’ve seen a variety of abstract scores for computer generated music - a few of which are shown in the
above figure. In the second part of this assignment, compose another short piece (music/sounds/noise), and do the
following:

1. Draw an abstract score for your piece, in whatever notation you’d like.

2. Write the code to implement the score, and include a description about how the score and the program are con-
nected.

3. Make a 15 second recording of your piece using the same methods described in part I.

4. Import your sound recordings into audacity and play with some filters. What difference do you see in the shape of
the sound waves? How might this correspond to the noises you’re hearing?

Experimental scores for computer music. Top row: Stockhausen; bottom row: Xenakis.

39

 What to turn in...

Your composition should be handed in in several ways:

1. Scan and upload and image of your score.

2. Hand in your arduino code, as you did in the previous assignment.

3. Hand in a description about how your score and program are connected. This can be written in your
journal and scanned/uploaded to canvas, or written in a separate document.

4. Hand in captured sound samples from your composition, once again, as you did in Part 1 of this assign-
ment.

5. In your journal, jot down any additional observations you make while experimenting with your recording
in Audacity.

40

Hardware Hacking5
For this assignment you should acquire a toy that makes music or noise or speech. You can acquire this toy from a
thrift store (such as Deseret Industries where toys of this sort are typically $1 or $2), or steal it from your younger
siblings. Don’t steal anything that they’ll miss though - the toy will never be the same after you’re finished with it.
Take the toy apart and hack it to make new sounds that it was never intended to make. We have lots of supplies to
help you: potentiometers, wires, resistors, diodes, etc. We also have a bunch of cigar boxes you can use to repackage
your new noise instrument.

Reading: This project is based on material in Part III (Chapters 12-17) in our textbook.

There are on-line versions of the videos from the book that show examples of two hacks. We’ll go over these in class,
but you might want to watch them on your own time too:

Laying of Hands on a battery powered radio:
http://www.nicolascollins.com/hackingtutorial09.htm (Links to an external site.)

Tickling the clock on a noise-making toy:
http://www.nicolascollins.com/hackingtutorial10.htm

The following section provides some details on the various components you might encounter in your circuit bending.

Resistors

41

Capacitors

Diodes

42

Transistors

Surface Mount Components

43

Clock Resistors

Resistor Whiskers

44

Alligator Clips

Pot Connection

45

Pot Connection

 What to turn in...

1. Write up instructions on how to play your toy. You can write these instruction up in your journal and
scan/upload them to Canvas.

2. Hand in captured sound samples from your toy. Upload your sound recordings to SoundCloud and turn in
links on Canvas.

3. Plan to demo your bent toy in class on the due date.

46

Disclaimer
Much of this material is mine. Some is taken from various places on the web:

- todbot.com – Bionic Arduino and Spooky Arduino class notes from Tod E.Kurt
- ladyada.net – Arduino tutorials by Limor Fried

To start, what is a program?

- Essentially just a list of actions to take
- Each line of the program is step to take
- The program just walks through the steps one at at time
- Maybe looping too

 It’s like a recipe!

Take meatloaf, for example:

Or shampoo directions:

A Breif Introduction to Programming

Meatloaf Recipe Ingredients:

1 package Lipton Onion Soup Mix 2
pounds lean ground beef
1 large egg
2/3 cup milk
3 Tablespoons catsup
3 Tablespoons brown sugar 1 Table-
spoon yellow mustard

Directions:

1. Preheat the oven to 350 degrees F.
2. Mix the onion soup mix, ground beef, egg and milk
together.
3. Form the combination into a loaf shape in a 13 X 9 X 2
loaf pan.
4. Combine the rest of the ingredients and spoon onto the
top of the meatloaf. 5. Bake uncovered, for about an hour.
6. When done, take the meatloaf out of the pan and place
on a serving plate. Let stand for 10 minutes before slicing.

1. Lather
2. Rinse
3. Repeat

But when do you stop?

What about the following?

1. Lather
2. Rinse
3. If this is the first
lather, then Repeatelse
stop and towel off

47

For (count=1; count<3;
count=count+1) {
Lather
Rinse
}

 Repeat twice {
 Lather
 Rinse
 }

We can write this as the following:

Or as this:

//The above would executes as follows
count=1
lather
rinse
count=2
lather
rinse
count=3
continue to next instruction...

Ok, lets move onto something a little more interesting.

//make a flashlight
1. Turn light on
2. Wait for 1 second
3. Turn light off
4. Wait for one second
5. repeat

We’ll come back to this...Let’s first talk about lights!

First, electricity!!

48

Making A Flightlight - components

Circuits

Heart pumps, blood flows Voltage pushes, current flows

LED’s Resistors

On LED’s polarity
matters. Shorter side
is negative, and goes
to ground.

Polarity doesn’t
matter on resistors.

Cathode - Anode +

Cathode - Anode +

Current flows from Anode to Cathode

Lights up when current flows

49

Making A Flightlight - wiring it up

wiring diagram

Making A Flightlight - wiring it up

schematic wiring it up

Electricity flow is in a loop. Can stop flow by breaking the loop.

wiring diagram schematic

Arduino Diecimila board has this circuit built-in. To turn on LED use digitalWrite(13, HIGH)

50

Arduino Programming

Arduino

Digital I/O pins

USB Interface

Test LED on pin 13

tx/rx LEDs

External power

Analog inputs

ATmega328

Reset

Power LED

Programming area

Notification area

Verify, Upload, New, Open, Save

51

Digital Pins

Each of the digital pins can be set to one of two values:

- High and Low (+5v and 0v)

- digitalWrite(<pin-number>, <value>);

- digitalWrite(13, HIGH);

- digitalWrite(13, LOW);

Wiring it up

wiring diagram schematic

Arduino Diecimila board has this circuit built-in. To turn on LED use digitalWrite(13, HIGH)

52

Back to our flashlight

Let’s look at what each statement does...

//make a flashlight
1. Turn light on
2. Wait for 1 second
3. Turn light off
4. Wait for one second
5. repeat

//make a flashlight
1. digitalWrite(13,HIGH)
2. delay(1sec)
3. digitalWrite(13,LOW)
4. delay(1sec)
5. repeat

We can rewrite this in terms of our “digitalWrite” function:

rewritten as a loop:

//make a flashlight
loop()
{
digitalWrite(13,HIGH);
delay(1000); //in milliseconds
digitalWrite(13,LOW);
delay(1000);
}

It’s very common to write things in “pseudo-
code” (above) before writing the real program!

//make a flashlight
void setup(){
pinMode(13,OUTPUT);
}

loop()
{
digitalWrite(13,HIGH);
delay(1000); //in milliseconds
digitalWrite(13,LOW);
delay(1000);
}

//do once at first
//select pin 13 as an output

//loop forever

//set pin 13 to HIGH
//delay 1000ms (1sec)
//set pin 13 to LOW
//delay 1000ms (1sec)
//return to loop

The setup function executes once at the begining of the function.

53

Writing an Arduino program - required functions

Variables

 /* define global variables here */
void setup() { 	 //run once, when the program starts
<initialization statement>; 	 //typically pin definitions
 … 	 // and other init stuff
<initialization statement>;
}

void loop() { 	 // run over and over again
/* define local variables here */
<main loop statement>; // the guts of your program
… // which could include calls
<main loop statement>; // to other functions…
}

“void” means that those functions do not return any values

 Variables are like mailboxes – you can store a value in them and retrieve it later
 They have a “type”

	 - tells you what values can be stored in them

// define a variable named “LEDpin”
// start it out with the value 13
int LEDpin = 13;
//you can now use LEDpin in your program
// Wherever you use it, the program will look inside
// and use the 13

 Variable names must start with a letter or underscore
 variable names are case sensitive!

- Foo and foo are different variables!
 After the letter or underscore you can use numbers too

 Questions: Are these valid names?
- Abc
- 1st_variable
- _123_
- pinName
- another name
- a23-d

- aNiceVariableName

54

Example program

/*
*Blink
* The basic Arduino example. Turns on an LED on for one second,
* then off for one second, and so on... We use pin 13 because,
* depending on your Arduino board, it has either a built-in LED
* or a built-in resistor so that you need only an LED.
*/

int ledPin = 13;			 // LED connected to digital pin 13

void setup()
{ // run once, when the sketch starts
pinMode(ledPin, OUTPUT); // sets the digital pin as output
}

void loop() // run over and over again
{
digitalWrite(ledPin, HIGH); // sets the LED on
delay(1000); // wait for a second
digitalWrite(ledPin, LOW); // sets the LED off
delay(1000); // wait for a second
}

Let’s take a look at one of the example programs included in the Arduino software.

LED Pin

55

Blink Modifications

More blink modifications

 A few things to try with the Blink program:
-Change so that blink is on for 500msec and off for 100msec
 What happens?
-Change so that blink is on for 50msec and off for 50msec
 What happens?
-Change so that blink is on for 10ms and off for 10ms
 What happens?

 Most actuators are switched on and off with a digital output
- The digitalWrite(pin,value); function is the software command that lets you control almost anything

 LEDs are easy!
- Motors, servos, etc. are a little trickier, but not much
- More on that later…

 Arduino has 14 digital pins (inputs or outputs)
- can easily add more with external helper chips
- More on that later…

So...we just made an LED blink...Big Deal?

 Change to use an external LED rather than the one on the board
- Connect to any digital pin
- LED is on if current flows from Anode to Cathode
- LED is on if the digital pin is HIGH, off if LOW
- How much current do you use?

- not more than 20mA
- How do you make sure you don’t use too much?

- use a resistor

Pay attention to current! Use a current-limiting resistor!

Cathode - Anode +

56

Making A Flightlight - LEDs and Resistors

LED’s Resistors

On LED’s polarity
matters. Shorter side
is negative, and goes
to ground.

Polarity doesn’t
matter on resistors.

Cathode - Anode +

Cathode - Anode +

Current flows from Anode to Cathode

Lights up when current flows

Arduino

Pin 13

Ground

Proto boards

A.K.A. Solderless bread board

57

Wire it up!

A slightly closer look

58

Wire it up!

A slightly closer look

59

Current Limiting Resistor

 Ohm’s Law

- V = IR I = V/R R = V/I

 Every LED has a Vf “Forward Voltage”

- How much voltage is dropped (used up) passing through the LED

Cathode - Anode + Arduino

Pin 13

Ground

V

I R

“HIGH” forces output

pin to 5v (called V)

LED “uses up” Vf of it

Resistor “uses up” the rest (V – Vf)

Current Limiting Resistor

 Ohm’s Law

- V = IR I = V/R R = V/I

 Every LED has a Vf “Forward Voltage”

- How much voltage is dropped (used up) passing through the LED

 R = (V – Vf) / I

- Example – If Vf is 1.9v (red LED), and V = 5v, and you want 15mA of current (0.015A)

- R = (5 – 1.9)/0.015 = 3.1/0.015 = 206Ω

- Exact isn’t critical – use next size up, i.e. 220Ω

- Or be safe and use 330Ω or 470Ω

- This would result in 9.4mA or 6.6mA which is fine

V

I R

60

Resistor Color Codes

Wire it up!

In this course we will be using 4-band

5% resistors with a ¼ watt rating

What’s the color code for a 330Ω resistor?

	 orange orange brown gold

What’s the color code for a 1kΩ resistor?

	 brown black red gold

What’s the color code for a 470Ω resistor?

	 brown black orange gold

Wire up an external LED of your choice, and change the Blink program to use that external
LED

- Choose your resistor based on
the Vf of the LED you’re using

- Usually 1.8-2.2v
- Listed on class web site

- If you don’t know Vf pick 330Ω

or 470Ω

61

Another View

Sound!

Now – how do we make noise with an Arduino?
- Use a digital output
- Flip it up and down at an audio frequency

62

Why include a resistor?

 Ohm’s Law: V = IR or R = V/I
 Arduino pins can provide, or consume 40mA

 40mA is 0.040A (1 mA is 1/1000 of an Amp)

 So, 5v/0.040A = 125Ω
 Or, if you want to be safe, 5v/0.035A = 143Ω

 Speakers are typically 8Ω
 125-8 = 117Ω 143-8= 135Ω

This is a "current limiting resistor"

Sound!

Now connect a speaker to that pin...

63

Standard pitches – “pitches.h”

Make Sound from a Program

The Arduino function that makes a sound is
tone(<pin>, <freq-in-Hertz>);
tone(<pin>, <freq-in-Hertz>, <duration-in-ms>);

Examples:

tone(10, 440); // play a 440Hz tone on pin 10
noTone(10); // stop playing the tone on pin 10

int myPin = 9; // define a variable named myPin
int myTone = 440; // another named myTone
tone(myPin, myTone, 1000); // play for 1sec

Codifies “standard” pitches

#define NOTE_FS4 370
#define NOTE_G4 392
#define NOTE_GS4 415
#define NOTE_A4 440
#define NOTE_AS4 466
#define NOTE_B4 494

tone(myPin, NOTE_A4); //
play standard A above

Example:

64

Getting the file pitches.h

 Go to http://arduino.cc/en/Tutorial/Tone
 Copy the pitch data
 In the Arduino editor make a new “tab”
 Name the tab “pitches.h”
 Paste in the data

 Making a new tab -->

 name it "pitches" and add the data
from the website.

65

 compile and run! add space between notes

 add space between notes

66

Additional programming

 Generate random number
 random(<min>,<max>)
 Returns random number between min and max-1

 random(2, 5); // returns random number between 2 and 4

int myNum; // variable to hold a number
myNum = random(1000, 2001); // between 1000, 2000

tone(9, myNum, 1000); // play a random tone

tone(9, random(500, 1500)); // play another random tone

tone(9, 440, random(1000, 2000)); // play for a random duration

Random

Example from arduino

67

C "for" loop (iteration)

for (<initialization>; <condition>; <increment>) {
// do something…
}

int i;	 // define an int to use as a loop variable
for (i = 0; i < 256; i=i+1) { // repeat 256 times
tone(9, i+100); // play a tone on pin 9
delay(1000); // delay for a second while it’s playing
} 			 // plays tones from 100 to 355 Hz

Another view of a "for loop"

68

Aside: C Compound Operators

x = x + 1;		 // adds one to the current value of x
x += 5;	 	 // same as x = x + 5
x++;		 // same as x = x + 1

x = x – 2;		 // subtracts 2 from the current vale of x
x -= 3;		 // same as x = x - 3
x--;		 // same as x = x – 1

x = x * 3;		 // multiplies the current value of x by 3

x *=5;		 // same as x = x * 5

Arrays

 Def: A collection of variables accessed with an index number.
All of methods below are valid ways to create (declare) an array:

int myInts[6];
int myInts[] = {2, 4, 8, 3, 6};
int mySensVals[6] = {2, 4, -8, 3, 2};
char message[6] = "hello";

 Indices matter! Consider the following:
int myArray[10] = {9, 3, 2, 4, 3, 2, 7, 8, 9, 11};
// myArray[9]	 contains 11
// myArray[10]	 is invalid and contains random information

 To assign a value to an array:

mySensVals[0] = 10;

 To retreive a value from an array:

x = mySensVals[4];

 One more thing to note: Arrays are often used
inside loops:

int i;
for (i = 0; i < 5; i = i+1){
	 Serial.println(myPins[i]);
}

69

Back to our example from Arduino

Summary - Whew!

 Digital Pins
- use pinMode(<pin>, <INPUT/OUTPUT>) for setting direction

 Put these in the setup() function
 pinMode(13, OUTPUT); // set pin 13 as an output

- use digitalWrite(<pin>, <HIGH/LOW>) for on/off
int LEDpin = 10; digitalWrite(LEDpin, HIGH); // turn on pin “LEDpin”

 delay(val) delays for val-number of milliseconds
- milliseconds are thousandths of a sec (1000msec = 1sec)
- delay(500); // delay for half a second

 random(min, max) returns a random number between min and max-1
- You get a new random number each time you call the function
- foo = random(10, 255); // assign foo a random # from 10 to 254

 Two required Arduino functions
- void setup() { … } // executes once at start for setup
- void loop() { … } // loops forever

statements execute one after the other inside loop, then repeat after you run out

70

Summary cont...

int i = 10; // define an int variable, initial value 10

 Other types of variables:
- char – 8 bits
- long - 32 bits
- unsigned…
- float – 32 bit floating point number

for (<start>; <stop>; <change>) { … }
for (int i=0; i<8; i++) { … } // loop 8 times. T the value of i in each it-
eration is 0, 1, 2, 3, 4, 5, 6, 7

if (<condition>) { … }
if (foo < 10) {digitalWrite(ledPin, HIGH);}
Conditions: <, >, <=, >=, ==, !=

if (<condition>) { …} else { … }
if (num == 10) { <do something> }
else { <do something else> }

Speakers

 If you’re going to use a speaker, use a current-limiting resistor
- Most speakers have 8Ω of resistance
- Some are 4Ω or 16Ω

 Arduino pins can provide or consume 40mA (0.040A)
- Be conservative – if you’re between resistors, use a slightly larger one…
- 150Ω is a great choice for a speaker

 LEDs – turn on when current flows from anode to cathode
- Always use a current-limiting resistor!
- Remember your resistor color codes
- 220-470 ohm are good, general-purpose values for LEDs
- Drive from Arduino on digital pins
- Use PWM pins if you want to use analogWrite for dimming

Last but not least...

Cathode - Anode +

Current flows from Anode to Cathode

Lights up when current flows

Arduino

Pin 13

Ground

71

Resources

 http://arduino.cc/en/Tutorial/HomePage
 http://www.ladyada.net/learn/arduino/index.html
 http://todbot.com/blog/bionicarduino/
 http://todbot.com/blog/spookyarduino/
 http://sheepdogguides.com/arduino/aht0led.htm

72

Oscillators4

For this assignment you’ll be designing and building an oscillator-based instrument. The instrument can be of your
own design, but should incorporate at least three oscillators, and use both the CD40106 inverter chip and the CD
4093 NAND chip.

Reading: The source material for this assignment is contained in Chapter 18 and Chapter 20 of your text book.

- Chapter 18 talks about using the CD40106 inverter chip to make an oscillator, and how to mix multiple os-
cillators into a single output. Note that the book calls the chip a 74C14, but this is essentially the same chip
as the CD40106 chips that we have, and they behave the same way.

- Chapter 20 talks about using the NAND gate to make a gated oscillator. This means that you can use a
switch to turn the oscillator on and off, or use one oscillator to switch, or modulate, another oscillator. It also
talks about volume control, and simple filtering. Finally, Chapter 20 also briefly mentions “voltage starving”
as a way to increase the complexity of the tones coming from the oscillators.

The basic assignment is to explore these oscillators, and build a small oscillator-based instrument in some sort of
enclosure. You’ll demonstrate your instrument on Thursday, April 9th in class.

Some things to consider...

• I recommend building at least the oscillators in Figures 18.8, 18.10 and 18.19 to try them out and see
how they sound.

• In Chapter 20 I recommend trying the oscillators in Figure 20.4 and perhaps 20.13, and trying voltage
staving.

• That should give you a range of options that you can build upon to decide what your own instrument
should contain. You are in charge of your own instrument – use the oscillators that you like the sound of.

• You should have a breadboard with one each of the CD40106 and CD4093 chips on them. If you need
more chips, let me know.

• You should make you own jumper wires using the solid-core wire that’s in the lab. The best practice here
is to cut the jumpers to be the right size for where they need to go so that they don’t make too much of a

light sensor

jack

switch

slide pot

chord

potentiometers

light sensor

switch

73

rainbow shape above the board. This way they won’t fall out and get caught as easily.

• There are pots and switches in the lab on the lab bench in the plastic bags. You can use slide pots or knob
pots, and you can use switches to connect and disconnect oscillators from the circuit.

• There are diodes, resistors, capacitors, and CdS light sensors (variable resistors) in the small plastic cabinet
on the north wall of the lab. The drawers are labeled. Please put things back in the correct drawer if you’re
done with them. Nothing is worse than grabbing a part from a labeled drawer and finding that it’s not the
right part!

• For your final instrument, put it inside an enclosure of some sort. You can use a cigar box (I put some ad-
ditional boxes in the lab), or your own enclosure that you get from wherever you like. You could even use an
Altoids tin or something like that if you like. Or a tin can. Or a Tupperware. Or a cereal box. Or a plush toy.
Or an old shoe. Pretty much anything that you want to pick up and interact with when you’re finished.

• If you use a metal box, make sure that you aren’t shorting your circuits to the metal box! This may require
some care and thinking about how things are organized, and perhaps even some extra shrink tubing, or
other insulation.

• If you’d like to solder your instrument together once you’ve prototyped it, you’re welcome to do that. See
Chapter 19 for thoughts on soldering a project like this. I can provide small boards to solder on.

• Consider how you’re going to get the sound out of your instrument. You’ll need to send the signal to an
amplifier of some sort. The amplifier you’ve been using for recording works fine.

• Your basic choices for getting the sound out are to make a plug (either 1⁄4” or 1/8”) that you can plug
directly into the amplifier (there are plugs with wires poking our hanging on the rack in the lab). Or you can
use a jack (again, either 1⁄4” or 1/8”) that you can plug into. In this case, you’ll need a cable with 1⁄4” or
1/8” plugs on both ends (like an instrument cable). We have some of these too.

• Your instrument should have multiple sounds – that is it shouldn’t just buzz at one boring frequency. It
should be “playable” by manipulating things. The “things” to manipulate can be switches, knobs, sliders,
CdS light sensors, body contacts, or anything else that you can think of to influence the oscillator behavior.

 • Make your finished instrument look good! I’m looking forward to seeing what you come up with!

Don’t hesitate to ask for advice or suggestions!

74

 What to turn in...

On Canvas:

1. Turn in photos of your instrument showing both the inside and outside.

2. Turn in (using SoundCloud) sound samples from playing your instrument.

3. Turn in a one-page guide to using/playing your instrument. Let us know what the controls are,
and perhaps even some suggestions for “good” settings of those controls.

In Class:

4. Bring your instrument to class and demonstrate it on Thursday, April 9th.

In the following, we show various components which may be useful for your oscillator

75

Both Chips

Example Oscillator

Figure 20.4 Figs 18.8, 18.10

Figure 18.19

Please see the corresponding figures in the textbook for more detail.

76

Potentiometer (a.k.a “pot”)

Diodes

77

Switches

Slide Pot

L1
COM

L2

L1
COM

L2

78

Adding the chord to the breadboard

1/4 Chord - Prepping

Sleeve

Tip

Tip
Sleeve

Tip

Sleeve

1 2

3 4

Tip

Sleeve

79

1/4 Jack

1/4 Jack

Tip

Shunt

Sleeve

Tip

Shunt

Sleeve

Tip

Shunt

Sleeve

80

Components Storage

1/8 Chord

Tip

Sleeve

Tip Sleeve

81

Component Storage

82

Final Sound Art Project7
For your final project you can use any or all of the raw material that you have collected throughout the semester:

Inductive coil recordings
Contact mic recordings
Arduino sound programs
Hacked toys turned into strange instruments
Your own oscillators
We also have other materials that you can use - for example you could build a cigar-box amplifier, use multiple
small speakers, etc.
The project is to make some sort of sound art - the specific project and deliverables are up to you. Some
examples:

You could compose a longer piece of electronic music using your sound clips as source material
You could make and refine a more complex hacked toy instrument. Along with the instrument you could come up
with a “musical” notation that describes how to play the instrument, then compose some music and perform for the
class.

You could design and build a sound art installation of some sort. This could be portable where you bring it into class,
or it could be site-specific where you install the piece in some other location.
You could come up with some other type of project - it should involve sound/circuits/noise of some sort.

As usual - more details are forthcoming. We will discuss all sorts of project ideas in class before you have to decide on
one.

Prior to begining the final project, project proposals must be submitted and approved.

Please submit a one page (or more if you have more to say) document describing your proposed final project. Tell
me what you hope to do, what your final demo/performance will be like, what supplies you'll need, and how it builds
on the material that we've used in class so far.

Project Proposal

 What to turn in...

Proposals may be submitted as a text entry or text document uploaded to canvas.

Details and requirements for the final project will be discussed in class.

