DC MOTORS 101

Servos, DC motors, Stepper motors, motor drivers

Agenda

I
o Start with PWM (Pulse Width Modulation)

O “analog” output feature of Arduinos — equivalent to varying
output voltage

o Use for dimming LEDs or speed control of DC motors
o DC motors

o Basic operation

o Driving with transistors

o Bi-directional drive with H-Bridge
0 Stepper motors

o Unipolar and Bipolar versions

O Stepper driving circuits

o Example of Arduino-based stepper object library

2/26/15

O Returns a range of values

Analog vs. Digital [nput

[
W A
3 A L
> A \l
11 \
0 digitalRead(pin); N
O Returns true /false, 1/0, 8 7 .
off/on 6 \% /]
o Great for switches / \ 7
3
0 analogRead(pin); 2 T A
TR AT

o Actual voltage on the input should be between 0-5v
o Converted to 0-1023 discrete steps using ADC
o ADC is why the analog pins are special...

Analog vs. Digital Output

Digital Out = on/off, up/down, left /right, black/white, etc
Analog Out = how hot, how fast, how bright, how loud, how grey? etc.

As with digital output, we have current considerations, this time, how can we
generate enough energy to control analog devices?

Can we generate an analog voltage between 0-5v on the output?

AWAWA
V...V

Digital

2/26/15

2/26/15

ADC and DAC T

Vdd
[. . — . Analo
Analog | Apc— | Binary Blnar%/ —1 DAC signalg
signal —| output nput 1 — _ 1 output
input ¢ L | —
1 e
L) . ‘
Arduino version is a 10-bit ADC Y) Arduino has no built-in DAC... \&

PWM Pulse Width Modulation

Output voltage is averaged from on vs. off time

output_voltage = (on_time / off_time) * max_voltage

5 volts

------------------- UUL+ 3.75 Volts
0 volts ——
75% 25

75% 25% % 75% 25%

5 volts

--------------- l{ e 2.5 Volts
0 volts 50% 50% 50% 50% 50% 50%
5 volts _‘ H
Ovolts — - 1 1 .0 VOItS

20% 80% 20% 80% 20% 80%

Arduino PWM
e
71 The Arduino has 6 PWM pins (3, 5, 6, 2, 10, 11)
that can receive an analogWrite() command.
analogWrite(pin, pulsewidth);
71 0 =0 volts, 255 = 5V
a number in between will provide a specific PWM
signal.
128 will be seen as 2.5v, for example
Knob Fade
e
int knobPin = AOQ; // the analog input pin from the potentiometer
int ledPin = 9; // pin for LED (a PWM pin)
int val; // Variable to hold light sensor value

void setup () {

pinMode(ledPin, OUTPUT); // declare ledPin as output
pinMode(knobPin, INPUT); // knobPin is an (analog) input

}

void loop () {
val = analogRead(knobPin); //read the value from the pot
val = map(val, 0, 1023, 100, 255); // map to reasonable values
val = constrain(val, 0, 255); // Make sure it doesn’t go out of range
analogWrite(ledPin, val); // write it to the LED using PWM

}

2/26/15

Arduino PWM Alternative

0 It is also possible to create a pwm signal by simply
‘pulsing’ a digital out pin very quickly:

(pin, HIGH);

(pulsewidth); // note: “Micro...!"
(pin, LOW);

(pulsewidth);

71 Or, use a Motor Shield...

Dimming Lights

0 Incandescent blubs

Vary the voltage, or use PWM
o LEDs

Use PWM

0 Fluorescents (compact or regular)
In general you can’t dim them...

There are a few “dimmable”

compact fluorescents —
o T

2/26/15

2/26/15

Dimming Lights

0 Fixed resistance and varying voltage = varying current
V=IR,V/R=1

01 Pay attention to the lamp ratings

Remember P = IV

01 For high current devices, you will need to electrically

Activity: Arduino “flickering candle”

11 Connect an LED to the Arduino on a
PWM output pin
Always remember current-limiting resistor...
o1 Write a program to make that LED “flicker”
like a candle
Chose between random brightness values

Choose random times to change the value

Servos Also Use PWM

e DC motor
e High-torque gearing

e Potentiometer to
read position

® Feedback circuitry to
read pot and control
motor

® All built in, you just
feed it a PVWM signal

o From Tod Kurt, totbot.com

Servos Also Use PWM

[
Servomotors

® Can be positioned
from 0- [80° (usually)

® |nternal feedback
circuitry & gearing
takes care of the
hard stuff

® Easy three-wire
PWM 5V interface

o From Tod Kurt, totbot.com

2/26/15

Servo Innards

-

Sw 000
WSz T
W0S°T
WSLT

Sw 000
WSZ'T

|

Sw 000
WsSZ'T
W0S"T
WSLT

I

W0S°T
WSLT

1.50 ms: Neutral ‘
1.25 ms: 0 degrees ‘.

1.75 ms: 180 degrees .’

Servo Specs
=

® Come in all sizes
® from super-tiny
® to drive-your-car

e But all have the same
3-wire interface

® Servos are spec'd by:

weight: 9g
speed: .12s/60deg @ 6V
torque: 2202/1.5kg @ 6V
voltage: 4.6-6V
size: 21x11x28 mm

o From Tod Kurt, totbot.com

2/26/15

Servo Control
.

Ground (0V)
Power (+5V)
Control (PWM)

180°

® PWM freqis 50 Hz (i.e. every 20 millisecs)
® Pulse width ranges from | to 2 millisecs
® | millisec = full anti-clockwise position

® 2 millisec = full clockwise position

o From Tod Kurt, totbot.com

Servo Control
.

0 degrees 90 degrees |80 degrees
S e ===

1000 microsecs I 500 microsecs 2000 microsecs

In practice, pulse range can range from 500 to 2500 microsecs

o From Tod Kurt, totbot.com

2/26/15

Programming Servo Motors
=

01 The first thing to do when programming servos is work out the pulse range of
the specific servo you are using.

With the arduino, this can be between 0.5 and 2.5 ms.
Servos also need ‘refresh’ time between pulses -- usually 20ms

0 The frequency of the Arduino’s built-in pwm pins is too high for servos, so we
have to use the pseudo-pwm method instead:

digitalWrite(servoPin, HIGH);
delayMicroseconds(pulse);
digitalWrite(servoPin, LOW);
delayMicroseconds(refreshTime);

o Or alternatively, use the Arduino servo lib

Black = gnd
Red = +5v

o Yellow = signal

Servo Example Program
=

/l'include the built-in servo library
Servo myservo; // create a servo object to control the servo (one per servo)
int pos = 0; I/ variable to store the servo position

void setup() {
myservo.attach(9); /] attach servo control to pin 9
}

void loop() {
for (pos = 0; pos < 180; pos++) { // go from 0 to 180 degrees
myservo.write(pos); /' move the servo

delay(20);1 I give it time to get there

for (pos = 180; pos>=1; pos--) { // wave backwards
myservo.write(pos);
delay(20);

2/26/15

10

Servo Functions
0|

01 Servo is a class
o Servo myservo; // creates an instance of that class

o myservo.attach(pin);
o attach to an output pin (doesn’t need to be PWM pinl)
o Servo library can control up to 12 servos on our boards
O but a side effect is that it disables the PWM on pins 9
and 10
0 myservo.write(pos);
O moves servo — pos ranges from 0-180

o myservo.read();
O returns the current position of the servo (0-180)

Servo Obiject (class instance)
N

Pin number

4
return current
deg position

2/26/15

11

Moving on...

71 Write a program to control the position of the
servo from a pot, or from a photocell
remember (); values are from 0-1023

measure the range of values coming out of the
photocell first?

use Serial.print(val); for example

use map(val, in1,in2, 0, 180); to map in1-in2 values to
0-180

Can also use (val, O, 180);

Side Note - Power

=1 Servos can consume a bit of power

We need to make sure that we don’t draw so much
power out of the Arduino that it fizzles

If you drive more than a couple servos, you probably
should put the servo power pins on a separate power
supply from the Arduino

Use a wall-wart 5v DC supply, for example

2/26/15

12

Moving on: Electromagnetism

71 Permanent magnets have magnetic fields that flow
from North to South poles of the magnet

Electromagnets

0 Current flowing through a conductor creates a magnetic field

Right hand rule: Point your thumb in direction of current, and your fingers
curl in the direction of the magnetic field

Right Hand Rule

Thumb Points
in Direction of
Current Flow

/

\\ Fingers Point
in Direction of
Magnetic Field

NCurrent-Carrying Wire

Electric current I f

e

B Magnetic field

2/26/15

13

Electromagnets

o Current flowing through a coiled conductor creates a magnetic field

Right hand rule: Point your thumb in direction of current, and your
fingers curl in the direction of the magnetic field

Alternately, curl your fingers in the direction of the current, your
thumb points to North magnetic pole

Field (North)

N (] PPN s

Current

Electromagnets

o1 Current flowing through a coiled conductor creates a magnetic
field
Important implication: When the current it reversed, so is the

magnetic field!

Field (North)

N (] PPN s

Current

2/26/15

14

Aside: Current dir vs. Carrier dir
.

o1 Current (amps) flows from positive to negative
“positive current”
01 BUT — the charge carriers are (usually) electrons
Electrons have negative charge

So — the electrons move from /
negative to positive B0 v g

A S=p0 eHV gt
o Charge carriers move in R— S

opposite direction from current! . (a)
Yes, it’s confusing... N
We'll tackle this again talking
about transistors!

L=
S—

©2003 Thomson - Brooks/Cole (b)

Electromagnets and Motors

e
71 Motors use the reversing feature of an
electromagnet, and magnetic attraction
Permanent magnets on one side, electromagnets that
can switch polarity on the other

2/26/15

15

Basic DC Motor Behavior
.

0 Electrical energy -> mechanical
motion

0 Motors have fixed parts (stator)
and moving parts (rotor)

o1 A DC motor consists of:
Commutator
u Rotary switch
m Reverses current twice every cycle
Electromagnetic coils

m Opposing polarities switched by
commutator

® Inertia causes them to continue
rotating at the moment of polarity
switching

Fixed Magnets
m Opposing polarities

Basic DC Motor Behavior
.

01 Electrical energy -> mechanical
motion

71 Motors have fixed parts (stator)
and moving parts (rotor)

o1 A DC motor consists of:

Commutator
u Rotary switch
m Reverses current twice every cycle

Electromagnetic coils

m Opposing polarities switched by
commutator

u Inertia causes them to continue
rotating at the moment of polarity

switching
Fixed Magnets
m Opposing polarities

2/26/15

16

Basic DC Motor Behavior
.

0 Electrical energy -> mechanical
motion

0 Motors have fixed parts (stator)
and moving parts (rotor)

o1 A DC motor consists of:
o Commutator
u Rotary switch
m Reverses current twice every cycle
O Electromagnetic coils

m Opposing polarities switched by
commutator

® Inertia causes them to continue
rotating at the moment of polarity
switching

o Fixed Magnets
m Opposing polarities

Motor Speed Control
=

o For a simple DC motor, PWM works great
O Motor “integrates” the pulsing waveform for an
effective lowering of the drive voltage

O Motors have inertia, and also minimum operating
voltages. Therefore, often it will seem that the motor
will only operate at a high duty cycle initially.

o Connect motors up using external power supplies

® Make sure to connect grounds together...

2/26/15

17

Transistors as Switches

Act like switches

electricity flicks the switch instead of your finger

r\
collector
; base @

emitter

TIP120

base / /

collector emjtter schematic symbol

o From Tod Kurt, totbot.com

l collector

base ——---

I emitter

how it kind of works

Transistors (bipolar)

0 3 terminals (emitter, base, collector):
different voltages at the input terminal

controls the conductivity between the other

two.
Faster and cheaper than relays
DC only
01 Bipolar (BJT) are common
Polarity is PNP or NPN
NPN has small input current and positive

voltage at Base to control a large Collector-to-

Emitter current

PNP has small output current and negative
voltage at Base to control a large Collector-to-

C
B

E

E
B

Emitter current \//
C

2/26/15

18

Transistors (mosfet)

0 3 terminals (source, gate, drain):

different voltages at the input terminal D
controls the conductivity between the
other two. S [)
Faster and cheaper than relays
Possible to use with AC S

1 MOSFETs are also common
Polarity is Ntype or Ptype

Ntype has positive voltage at gate

to control a large Source-Drain current
Ptype has negative voltage at Gate to
control a large Source-Drain current

MOSFET symbols

S S S
G G S G_| G P-channel
D D D
D D D
G] G—| G N-channel
G
S S S S

JFET MOSFET enh MOSFET enh (no bulk) MOSFET dep

w
v

o
o

o
(=]

w

2/26/15

19

BJT vs. MOSFET

1 BJT involves current in/out of the
Base pNp |E P-FET

Current gain is measure of how much g
more current flows from C-E than in B

)
T¥1

Predictable gain response

C
o1 MOSFETs have high impedance
inputs NeN |C N-FET
No current in/out of gate B —
Can handle high power, but complex G E
gain response £

Can be more fragile — esp. to static
charge

Transistors for Motors

71 Use a transistor to switch the motor’s voltage source

Can be different from Arduino power

+9V battery
+5V
f DC motor 1N4001
Arduino <
board
pin 9 WA TIP120

1000 Inductive loads

gnd (like motors) need
| a “kickback diode”
— to protect against

reverse current

1 From Tod Kurt, totbot.com

2/26/15

20

Transistors for Motors

71 Use a transistor to switch the motor’s voltage source

Can be different from Arduino power

+9V battery
+5V
f DC motor 1N4001
Arduino diode
board — ﬂ.—__
pin 9 WWA TIP120 _
1000 line
gnd

i I e

= = schematic symbol
o From Tod Kurt, totbot.com

Bidirectional DC Motor

o1 By reversing the current, you can change motor direction
Clever circuit — H-Bridge

Can be switches or transistors...

A
S1 S3
Dr @
S2 5S4

2/26/15

21

2/26/15

Bidirectional DC Motor

01 By reversing the current, you can change motor direction
Clever circuit — H-Bridge

Can be switches or transistors...

o Lan
o |

of

Bidirectional DC Motor

o1 By reversing the current, you can change motor direction
Clever circuit — H-Bridge
Can be switches or transistors...

Aforward Breverse
HI Lo

MOTOR

%

'S ov
POWER SUPPLY

Figure 1: Connecting up a DPDT switch

22

H-Bridge
=

transistors (like TIP120)

Vee = 5 Volt

Py
~ i

>

i

Diode: 4 x INS148

/Lm

01 Could build this from individual

H-Bridge
=

o Quad Half H-Bridge
0 L293D or SN774410

g

1.2EN [11 ™ 18] Vet
1A []2 15[] 4A
1Y I3 14]] 4Y

HEAT SINK AND { 4+ 3] } HEAT SINK AND
GROUND N\ [Is 12[] & GROUND

2Y []s 11[] 3Y
2A [}7 10(] 3A

Vee [8 9[1 3.4EN

71 OR, you could get this in a handy chip form

To maotor supply (+5-30%)

To microcontroller outputs

To microcontroller

PN output
12 en. L4

1in

H Bridge
GND | SNP54410NE

Zout

4
dout

GND

To Microcontroller

supply (+5V)
W

GND

[Sout
in_
34 en.

2/26/15

23

H-Bridge

71 OR, you could get this in a handy chip form

Quad Half H-Bridge
L293D or SN774410

1,2EN]

1A

1Y]

HEAT SINK AND { (]
GROUND 1

2Y]

2A]

Veez []

0 N OAs WN =

g

16
15
14
13
12
1
10

] Veet 4
] 4A

] 4y 1
1 "\ HEAT SINK AND |
] | GROUND

] 3Y

] 3A

] 3,4EN 1

1

2

3 i

4

5

6
A
8

Quad Half H-Bridge

En En
Cth Ctl2
A 4

Not shown — built-in inversion at Ctl inputs - one switch is always on, other is off...

Vmotor

Can use PWM on the En signal to modulate speed

2/26/15

24

2/26/15

Quad Half H-Bridge

Veer

i
n L

o -

f
E
> < olm“u?j»-
S
=<haa

A

h G

Veez

Real Life (big) example

e
0 Saltgrass Printmakers in Salt Lake City

o www.SalrtgrassPrintmakers.org

1 We have a Vandercook proof press with a powered carriage

25

Vandercook Electronics
o

o V4 HP DC motor moves the press bed back and forth

Vandercook Schematic

= o o e
e — T T — L — —

SHUNT FIELD ILS-FOR.STOP
2LS-REV.STOP
3LS-FOR. SLOW
4LS-REV.SLOW

k RUBBER CORD

- b, ™
Lo WBV-1F-60~-s6A ARMATURE SERIES FIELD
N\ _/ o 1P oL Va P
.®. e ' s u M s s
INK DRUM DRIVE
/ g .
Al T2 /"-_- - —’L_‘ e —
" (8RN YEL WH BLK RED BL
| e
2n
50w

TO CARRIAGE

B ‘X_ FRONT m;nv
B O

12 @ | REAR RELAY
AN . 1

4 /F\ FORWARD
I~
4 3 2 N
22 @ | CONTROL RELAY
1-4-5
aLs 4
16 07022
6 2) REVERSE
N 1

2/26/15

26

Vandercook Schematic

i — | ——.
SHUNT FIELD ILS-FOR.STOP
20S-REV.STOP
3L5-FOR. SLOW
4LS-REV.SLOW
fo— A 9re
—_
pou|
k RUBBER CORD
TO CARRIAGE

FRONT RELAY ™\,

| REAR RELAY
10

FORWARD

| CONTROL RELAY
1-4-5

REVERSE
1

——n—

SHUNT FIELD ILS-FOR.STOP

2LS-REV.STOP
3LS-FOR. SLOW
4LS-REV.SLOW

x RUBBER CORD

TO CARRIAGE

FRONT RELAY
7-

| REAR RELAY
10

FORWARD

| CONTROL RELAY
1-8-8

REVERSE
]

2/26/15

27

Vand k Sch ti
s
P - P — : R . .
e — L T — L —e— — e — —]
N (5 V~1f-60~-6A ARMATURE SERIES FIELD SHUNT FIELD ILS-FOR.STOP
L2 2LS-REV.STOP
3LS-FOR. SLOW
N S oL a 4LS-REV.SLOW
.@. I[—O—JS al a2 s s2 = o— Ao
" DRIV \
/ .
YT T ———l — = e ———
(ern e H LK RED 8L GRN ecH|)
25 A . _&
. 1 ;
- RUBBER_CORD
) l ov-grr TO GARRIAGE
; {‘ — a 2a
25 wro. 50w
F FI 1+
1000V 0.6
i
| BRRKE Tou fa R 200 - Wgct . SR -
. R & -
g T Tl
25
2 -
3 FRONT RELAY "\
1=
5 { REAR RELAY
6 o
. 2"Ra FORWARD
-
s
| CONTROL RELAY
1-a-8
9
AR >
0 s e 8/) REVERSE
7 & L

Activity: Bidirectional Motor

71 Grab a SN754410 or L293D
O Wire it up for a bidirectional motor
o Connect a DC motor — use external power
o Control directional switching and speed from Arduino

O Look at DC_motor_hbridge on class page

2/26/15

28

Stepper Motors

-1 DC motors with precise control of how far they spin

They have a fixed number of “steps” the take to turn
one full revolution

You can control them one step at a time

Makes for very precise and repeatable positioning

Why use steppers?

01 Very precise

01 Much stronger than servos
But, they use more current than Arduino can provide
So, you need some sort of external power source

01 They’re a little tricky to drive

It's handy to have some sort of code library, or external
driver board

0 | suggest to use both — a library, and an external
board

2/26/15

29

They always have multiple wires
=

How do they Work?
=

0 Like all motors — electro-magnets get energized and
push/pull the rotor around.

2/26/15

30

Steppers have precise internals

Steppers have precise internals

2/26/15

31

Steppers have precise internals

Steppers have precise internals
|

2/26/15

32

2/26/15

Stepper Internals

Different Flavors of Steppers

o1 Unipolar vs. Bipolar

http://www.ermicro.com/blog

Unipolar Stepper Motor Bipolar Stepper Motor
Al LY
._‘ .—‘
A2 3/ >
| Sm— p
A3 3 A2]
o *—
NMB-MAT
PM20S-020
Blg B2g B3 B1 B:

The Unipolar and Bipolar Stepper Motor Windings

33

MAN

o Unipolar vs. Bipolar

-

Different Flavors of Steppers

o
™)

B D
RED BLU
6-lead 5-lead 8-lead
Red Red Red3
Black Black Red/White
Yellow
Red / White Red / White 3
Yellow/white
[0] [n] © ® @ WO O
= = = = T o =
§ i : St
5 3 oz
T 5 F
Unipolar Stepper Motor
Unipolar used as Bipolar
'Wire Connection Diagrams
4 Lead 6 Lead 6 Lead
Bipolar Connection Unipolar Connection Bipolar (Series) Connection
Black Biack (4), Black (4)
Groon Green (6) Graen (6)
Red Blue Red Whie Blue Red N.C. Blue
@ @ @) @ M
8 Lead 8 Lead 8 Lead
Unipolar Connection Bipolar (Series) Connection Bipolar (Parallel) Connection
Black Black -
Yellow Yellow Yelow
Orange Orange Orangeg
Green Green fmmljvmq G (VT
i Blue
Red © Wit © Tproun® V8 Red © yite Y argun *o Red 7 WS 2o own §

2/26/15

34

VMTR

o 0O o >
9]
9]

Unipolar Motor and Drive

b
=
zan /_\
UJJ_JULLLU
1a
1b !

Stepper Motor Operation (Unipolar, Half step)

Make it Turn

~<um LIOJRJ0Y 3SIMNYI0|D

71 Energize the coils in a very specific sequence
Index |[1a |1b [2a]|2b Index [1a |1b |2a|2b
Index |1a [1b |[2a|2b %’ 1 1/0(0/1 %’ 1 1]0j/0]0
(et i
z 9f1j900 g. 4 0|0(1]1 g. 4 0(1]|1]0
3 0oj(o|1](0 2 z
1 ololol1 g 5 1/0[(0]1 g 5 0|0|1]0
5 1110100 | 6 [1]1]o0]0 | 6 [ofo]1]1
= =
VR e
7 0oj(o|1(0
8 |ojofo|1 Atternate Full Step Sequence 9 |1]o0lojo
(Provides more torque) 10 1]1]0]0
1 0|1/0]|0
12 0(1|1]/0
13 0|{0|1]0
14 0(0|1(1
15 0|{0|0]|1
16 1/0(0]1
Half Step Sequence

2/26/15

35

Use a Library
SIS,
Functions

+ Stepper(steps, pini, pin2)

+ Stepper(steps, pini, pin2, pin3, ping)

+ setSpeed(rpm)

+ step(steps)

Example

+ Motor Knob

Simple Example

S
/* By Tom Igoe */

#include <Stepper.h>

const int steps = 20@; // change for steps/rev for your motor

Stepper myStepper(steps, 8,9,10,11); // init and attach your stepper

void setup() {
myStepper.setSpeed(60); // set the speed at 60 rpm:

Serial.begin(9600); // initialize the serial port:
}

void loop() {

Serial.println("clockwise");// step one revolution in one direction:
myStepper.step(steps);
delay(500);

Serial.println("counterclockwise"); // step one revolution in other direction:
myStepper.step(-steps);
delay(500);

2/26/15

36

Knob Example

#include <Stepper.h>

#define STEPS 200 // Number of steps inh one rev

Stepper stepper(STEPS, 8, 9, 19, 11); // Create and attach stepper
int previous = @; // previous reading from analog in

void setup() {
stepper.setSpeed(30); // set the speed of the motor to 3@ RPMs
}

void loop() {
int val = analogRead(®); // get the sensor value
// move a number of steps equal to the change in the
// sensor reading
stepper.step(val - previous);
previous = val; // remember the previous value of the sensor

Stepper Object
N |

R R)

2/26/15

37

2/26/15

R R)

Stepper Object

1%

in 1 out1 7407 1% TIP110 — A1 3
in2 out2 A IN4001 %
in 3|
in out3 g 1k A2
in 4 2004 outd ! A2 =
B Darlington
in5 Array out5 E 1K > B1 g

ing| [ot B1 ES ;
in7| out? é > B2

— —— 1k

GND| | COM B2
To Motor Supphy voltage

38

Driver Circuits... (bipolar)

, [Em]
5 BAH | BAL [|
7 |oee [sen =7
M

Bipolar Motor and Drive

Driver Circuits... (chips)

To microcontroller voltage supply
To microcontroller outputs 1 and 2 To microcontroller outputs 3 and 4
To motor supply|
(5300 12 en:) bl
lin 4in
Tout dout
GND HBrdge GND
GND | SNIS4410NE | GND
Zout Jout
Zin 3in
M2 3den
Motor
/«« T _“‘\\
Fa X
{ E \\\
bt 3@ |
\\ % /
\\\ / 7l

2/26/15

39

HEAT SINK AND I []
GROUND]

Driver Circuits - :

Control inputs
from Arduino

You can use the
<Stepper.h>
library for this

d

1,2EN]
1A]
1Y [

2Y]
2A [}

© NG A ®N =
-
N

] Vect

Veez (]

—

HEAT SINK AND

~——

GROUND

[l 3,4EN

X

ay

o~ 1
=T

lt.s.w,ﬂ
= GND

Figure 3. Two-Phase Motor Driver (L293D)

14

Make sure you consider power!

2/26/15

40

Stepper Specs

- Degrees/Step
Common values: 15, 7.5, 3.6, 1.8 deg/step
This is the same as 24, 48, 100, and 200 steps/full-rev

11 Coil Resistance
Measured resistance of motor coils
1 Volts/Amps
Rated values for running the motor
Amps is the important onel!
Remember V=IR, so V/R = |
Example: 6VDC, 7.9Q = .76A

So far...

o1 Steppers move very precisely and are relatively
powerful

71 But are a bit of a pain to drive
Four wires from the Arduino
External driver circuits
Extra power supply to worry about

Use stepper library to make stepper “objects” for each
one that you use

Your program needs to keep track of how far you've
turned

2/26/15

41

Easier Motor Driving...

71 There are chips specifically designed for driving
steppers
They manage the sequence of signals
They manage the higher voltages of the motors
They have “chopper drives” to limit current

They can even do “microstepping”
= This lets you do V2, V4, 1/8, or 1/16 step

¥ Increases resolution and smoothness, but might reduce power

Easy Driver

o Available from Sparkfun (among others)

EasyDriver v4 .4 Pins

Motor Coil B PDF Input Enable Power In (6-30v)
Motor Coil A Reset Ms2 -+

oAn rBorg | PFORST ENABLERGZ @ ONO - Adjustable from 150mA

.-3-990 Pe: Z00°C° ” to 750mA per coil
_- HO()DR iy | FrEErer T 3 ' et Motor power from 6v

CUR ADJ v\ to 30V
<>

T4 1) Ay
e \=ax A in nangweneggn L Onboard regulator for

Eu g imaty i S 5L B L % S BEIIEGTR 5v or 3.3v power for

() ichmalzHaus.com *

QO8I 09 7 e 000 Arduino

GND MS1 Input GND Microstepping full, 2, Va,

+5V Output Sleep Input Step Input and 1/8" step

Direction Input

2/26/15

42

Pololu A4988 driver

Uses only 2 wires
for control: Dir, Step

Up to 2A per coil
(with heat sink)

8 — 35V on motor
Provides 3.3v or 5v to Arduino

Limits current to a set level

Pololu A4988 driver

MS1 MS2 MS3 Microstep Resolution

Low Low Low Full step
High Low Low Half step
Low High Low Quarter step
High High Low Eighth step
High High High Sixteenth step

2/26/15

43

“Chopping” current driver...
e
01 These boards have a little magic in them:
Chopping Current Driver
Constant current source — you set limit
71 This means you can use a higher voltage than your
stepper is rated for
Chip will limit current to correct value
Higher voltage means more torque

Make SURE you set the current limit correctly though...

up the EasyDriver

Note: MS1 and MS2 default
high if you don’t pull them low.
This defaults to 1 /8™ microstepping

EasyDriver v4 4 Pins

Motor Coil B PDF Input Enable Power In (6-30v)
-+

MS1 Input GND
+5V Output Sleep Input Step Input
Direction Input

2/26/15

44

2/26/15

MS1 MS2 Resolution
o o L Full step (2 phase)
EasyDriver chip 2 e
(o L Quarter step
H H Eighth step
A e b
brer
LR @—%m&
il P A3967
smp@_ |
o dE [T || ¢ b
Ms1 ([(—| é 8 =
ms2@—| £ I g -
= Q)
e k |
"“g PWM TIMER
e ?m B
s o
T s

One
EasyDriver
per
Stepper...

45

e

Wiring the Pololu A4988 driver

e
Minimal Connection
GND [
e " "=
vDD
3.3V
GND T
REF power Suppiy
ENABLE VMOT |
MS1 GND
MS2 2B
oy MS3 2A
5V RESET 1A
microcontroller SLEEP 1B
STEP VDD =
DIR

e
GND
Check REF to — 5V
see what the e VDD
current limit \
) GND
will be

—| VDD
5V

microcontroller

STEP

|—<GND DIR

Using the Pololu A4988 driver

Minimal Connection

3. Need one driver
i
=t £ for each motor
"\ 2 .
\ &
, _J\ '
S AR VMOT
LIPSl GND ——

-

Need to set this

\ »* pot to set current
— limit

2/26/15

46

Current Limit on Pololu

71 Turn pot (use a tiny screwdriver) and check REF

Irripmax = VRer/ (8 X Rg)
Rs = 0.05Q

dv
15v
2v
.25v
3v
.35v
A4v
45v

.250A
375A
.500A
625A
.750A
.875A

1.000A
1.125A

Using a Dir/Step driver

01 Set the Dir pin — O is one dir, 1 is the other

71 Toggle the Step pin up and down

You get one step per rising edge

for (int i=0; i < steps; i++) {
digitalWrite(STEP_PIN, HIGH);
delayMicroseconds(usDelay);
digitalWrite(STEP_PIN, LOW);
delayMicroseconds(usDelay);

}

2/26/15

47

Use StepperDS Library

power supply
(8-35v)
-

Use the StepperDS Library

#include <StepperDS.h>

#define STEPS 200 // Steps per rev for your motor

#define DIR_PIN 8 // Dir pin

#define STEP_PIN 9 // step pin

#define knobPin A®@ // potentiometer pin

StepperDS myStepper(STEPS, DIR_PIN, STEP_PIN); // make StepperDS object
int previous = @; // the previous reading from the analog input

void setup() {
myStepper.setSpeed(60); // set speed to 60 RPMs
i

void loop() {

int val = analogRead(knobPin); // get the sensor value

// move a number of steps equal to the change in the sensor reading
myStepper.step(val - previous);

previous = val; // remember the previous value of the sensor

I

2/26/15

48

2/26/15

Use the StepperDS Library

[

void loop() {
Serial.println("rotateDeg(360) - 6@ RPM i.e. clockwise fast");
stepper.stepDeg(360@); //rotate a specific number of degrees
delay(1000);

Serial.println("rotateDeg(-36@) - at speed 10 i.e. CCW slow");
stepper.setSpeed(10);

stepper.stepDeg(-360); // degrees in reverse

delay(1000);

Serial.println("rotate(400) CW at half speed two times around");
stepper.setSpeed(30);

stepper.step(400); // rotate a specific number of steps - remember
delay(1000); // to take microstepping into account..

Serial.println("rotate(-400) CCW at quarter speed, two times around");
stepper.setSpeed(15);

stepper.step(-(STEPS*2)); //steps 1in reverse

delay(1000);

Installing StepperDS
=

o1 Grab the zip file from the class web site
o1 unpack — put the StepperDS folder in your
Arduino/libraries folder

This is your “Sketchbook Location” , libraries sub-folder

Find out where this is using the Preferences dialog in
Arduino

® Mine is in Documents/Arduino/libraries on my Mac
71 Restart Arduino and you should be good to go
#include <StepperDS.h>

Examples will show up in your “Examples” menu

49

Activity: Wire up a stepper

01 Use a BigEasy stepper driver
o1 Use my StepperDS library if you like

71 Or roll your own with your own code

1 Make the stepper do for (int i=0; i < steps; i++) {
thi digitalWrite(STEP_PIN, HIGH);
somerthing... delayMicroseconds(usDelay);
Follow a fixed pattern digitalWrite(STEP_PIN, LOW);
delayMicroseconds(usDelay);
Follow a knob }

Follow a light sensor

React from Processing over the serial port

StepperDS

1 Example of using classes/methods in Arduino
Also example of making a library that you can
re-use and export to others

1 Arduino language is really C/C++
Class definitions go in a .h file
Class code goes in a .cpp file

Both files go in a folder named for the library

Examples go in an “Examples” sub-folder
Each example gets its own sub-sub-folder

Examples are “regular” Arduino sketches (.ino files)

2/26/15

50

StepperDS.h
s e
StepperDS.h - - Stepper library for Arduino, using a Dir/Step (DS) driver

such as the EasyDriver or Pololu (A4988) driver

version (0.1) by Erik Brunvand

Loosly based on the "Stepper" library:

Original library (0.1) by Tom Igoe.

Two-wire modifications (0.2) by Sebastian Gassner

Combination version (0.3) by Tom Igoe and David Mellis

Bug fix for four-wire (08.4) by Tom Igoe, bug fix from Noah Shibley

This is based on the original Arduino Stepper library, but uses the
step/dir interface instead of driving the stepper phases directly.

These Dir/Step drivers use a two wire interface where one pin says
what direction, and the other causes the stepper to move one step Include LOTS of ts i
for each rising edge on the step pin. nclude Of commenis in

: ; : oo the header to explain what's
These drivers also allow microstepping by driving the motors so

that they move a fraction of a full step on each "step" pulse. The going on...
microstepping is set by some configuration pins on the driver boards.

This library doesn't manage the microstepping configuration pins. It

assumes that you've already done that. But, you can tell the StepperDS

objects what you've set things to.

If you do set the microstepping to something besides 1, then the
library scales the delay_per_step so that you're still operating

at the overall RPM that you specified. That is, it automatically
reducesthe delay_per_step to compensate for the larger number of
steps required to go 360 degrees. But, it's up to the user to know
how many steps it takes to go all the way around. The "step" method
always takes the raw number of (micro)steps to move.

StepperDS.h
N |

Some standard housekeeping stuff for Arduino libraries...

// ensure this library description is only included once
#ifndef StepperDS_h
#define StepperDS_h

// Hack to include the right .h file depending on which version of
// the Arduino IDE you're usi

#if defined (ARDUINO) && ARDUINO >= 100

#include "Arduino.h"

#else

#include "WProgram.h"

#endif

2/26/15

51

StepperDS.h Define StepperDS class
o

Start with the public stuff
Constructor functions, and method prototypes

/ library interface description
klass StepperDS {
public:

// constructors:
StepperDS();
StepperDS(int dirPin, int stepPin);
StepperDS(int steps_per_rev, int dirPin, int stepPin);
StepperDS(int steps_per_rev, int dirPin, int stepPin, int microStepping);
StepperDS(int steps_per_rev, int dirPin, int stepPin, int microStepping, int whatSpeed);

// Attach (or change) the pin assignment of a stepper
void attach(int dirPin, int stepPin);

// speed setter method (in rpm)
void setSpeed(int whatSpeed);

// set microstepping parameter (1, 2, 4, 8, or 16)
void setMicroStepping(int microStepping);

// move by number of (micro)steps method
void step(int number_of_steps);

StepperDS.h: Define StepperDS class
o

More method prototypes, and private information

// move by degrees method (both int degrees and float degrees)
// I'm including all the possibilities, just for completeness
void stepDeg(int number_of_degrees);

void stepDeg(long number_of_degrees);

void stepDeg(float number_of_degrees);

void stepDeg(double number_of_degrees);

// return the version number
int version(void);

private:
void initStepperPins(); // initialize the stepper pins
int RPM; // speed in RPM
unsigned long step_delay; // delay between steps, in ms, based on speed and microSte
int steps_per_rev; // steps in one full revolution at full-stepping
long last_step_time; // time stamp in ms of when last step was taken
int microStepping; // microStepping divisor (1, 2, 4, 8, or 16)

// motor driver pin numbers:
int dirPin;
int stepPin;

I

#endif Note “#endif” for “Hifndef StepperDS_h"

2/26/15

52

StepperDS.cpp: Fill in the methods
=

Start with comments again, of course!
Make sure to include StepperDS.h
Make some default definitions to use later...

#include "StepperDS.h"
// STEP_EDGE is the delay in microseconds between step-pin edges

// The A4988 driver used on the Pololu board has a lus min
// delay between step edges.

#define MS_PER_MIN 60L x 1000L // number of microseconds in a second

#define STEP_EDGE 1 // delay between step-pin edges (us)

#define DEFAULT_RPM 60 // default RPM speed of the motor

#define DEFAULT_STEPS 200 // default steps/rev (200 = 1.8deg/step)

#define DEFAULT_MICRO 1 // default microstepping divisor (1, 2, 4, 8, or 16)

StepperDS.cpp - constructors

Each constructor — with different number of arguments — needs to
have its code filled in.
Zero-arg constructor is all defaults...
“this” refers to the object being constructed...
/%

* zero-arg constructor.

Py

*/

StepperDS: :StepperDS()
{
this=>RPM = DEFAULT_RPM; // motor speed in RPM

this->microStepping = DEFAULT_MICRO; // microstepping divisor
// step_delay is ms per step.

// 60000ms/min * 1min/6@rev * 1lrev/200steps = ms/step
this->step_delay = MS_PER_MIN / DEFAULT_RPM / DEFAULT_STEPS;

// Arduino pins for the motor control connection. It's not valid
// to have them both @. If you use this constructor, you need to
// use the name.attach(dir,step); function to assign pins
this->dirPin = 0;

this->stepPin = 0;

this->steps_per_rev = DEFAULT_STEPS; // total number of steps for this motor

2/26/15

53

StepperDS.cpp - constructors
|

Three-arg constructor is probably the most common...

Note that it calls the private function initStepperPins()

/*

* three-arg constructor.

* Sets steps per rev, and which wires should control the motor
*/

StepperDS::StepperDS(int steps_per_rev, int dirPin, int stepPin)
{

this->RPM = DEFAULT_RPM; // motor speed in RPM

this->microStepping = DEFAULT_MICRO; // microstepping divisor
this->step_delay = MS_PER_MIN / DEFAULT_RPM / steps_per_rev;

// Arduino pins for the motor control connection:
this->dirPin = dirPin;
this->stepPin = stepPin;

initStepperPins(); // init the stepper pins

this->steps_per_rev = steps_per_rev; // total number of steps for this motor

StepperDS.cpp: initStepperPins
|

This function is private to the class — it can’t be called by user code

/*

*/
void StepperDS::initStepperPins()
{

// setup the pins on the microcontroller as outputs
pinMode(dirPin, OUTPUT);

pinMode(stepPin, OUTPUT);

// set the output values to some defaults
digitalWrite(dirPin, LOW);

digitalWrite(stepPin, LOW);

Initialize the step/dir pins as ouputs, and to a LOW value

2/26/15

54

StepperDS.cpp: method code

e
Each method needs to be filled in — basically they set internal values in
the stepper obiject...
/*
x Set the dir and step pins for the stepper
*/

void StepperDS::attach(int dir, int step)
{

this->dirPin = dir;
this->stepPin = step;

initStepperPins(); // init the stepper pins

/%
Sets the speed in revs per minute
*/
void StepperDS::setSpeed(int whatSpeed)
{

this—->RPM = whatSpeed;
this->step_delay = MS_PER_MIN / whatSpeed / steps_per_rev / microStepping;

}
StepperDS.cpp: method code
e
Remember to comment things!
Even you will have a hard time remembering what you did
when you come back to your code later...
/*

Sets the microStepping parameter - also sets speed as a byproduct

The microStepping should be 1, 2, 4, 8, or 16 depending on what your
driver board supports. If it's something else, the stepper will still
operate, but the number of steps to make a full revoluation won't be

so obvious. But, the function doesn't check to make sure the number is
in range...

*/
void StepperDS::setMicroStepping(int microStepping)
{

this->microStepping = microStepping;
this->step_delay = MS_PER_MIN / RPM / steps_per_rev / microStepping;

2/26/15

55

/%
Moves the motor steps_to_move steps. If the number is negative,
the motor moves in the reverse direction. This measures the time
in ms since the last step so that other things can keep going in
the background.

Because we're targetting a step/dir stepper driver, we need
to set the dir pin, and then make the step pin go both high
and low to take a single step.

*/

void StepperDS::step(int steps_to_move)

{

int steps_left = abs(steps_to_move); // how many steps to take

// determine direction based on whether steps_to_move is + or -:

// set the direction pin to the correct value

digitalWrite(dirPin, (steps_to_move > @) ? HIGH:LOW);
delayMicroseconds(STEP_EDGE); // tiny delay for dirPin to take effect

// the stepPin will start out low because it's initialized that way, and
// this step function leaves it LOW when it's done.

// Decrement the number of steps, moving one step each time.
// A full step needs both rising and falling edges on stepPin.
while(steps_left > 0) {
// move only if the appropriate delay has passed:
if (millis() - last_step_time >= step_delay) { // time to take a step
// get the timeStamp of when you stepped:
this->last_step_time = millis();

steps_left--; // decrement the number of steps left
digitalWrite(stepPin, HIGH); // Take a single step
delayMicroseconds(STEP_EDGE) ; // make sure to delay a little
digitalWrite(stepPin, LOW); // between stepPin edges
delayMicroseconds (STEP_EDGE) ;

StepperDS.cpp: method code

void StepperDS::step(int steps_to_move)
int steps_left = abs(steps_to_move); // how many steps to take

// determine direction based on whether steps_to_move is + or =-:

// set the direction pin to the correct value

digitalWrite(dirPin, (steps_to_move > @) ? HIGH:LOW);
delayMicroseconds(STEP_EDGE); // tiny delay for dirPin to take effect

// the stepPin will start out low because it's initialized that way, and
// this step function leaves it LOW when it's done.

// Decrement the number of steps, moving one step each time.
// A full step needs both rising and falling edges on stepPin.
while(steps_left > @)
// move only if the appropriate delay has passed:
if (millis() - last_step_time >= step_delay) { // time to take a step
// get the timeStamp of when you stepped:
this->last_step_time = millis();

steps_left--; // decrement the number of steps left
digitalWrite(stepPin, HIGH); // Take a single step
delayMicroseconds (STEP_EDGE) ; // make sure to delay a little
digitalWrite(stepPin, LOW); // between stepPin edges
delayMicroseconds (STEP_EDGE) ;

2/26/15

56

StepperDS.cpp: method code
=

Also versions with float and double as inputs...

/*

Moves the motor by deg degrees. This value can be negative to move

in the other direction. This has both an int and float version. Especially
with microstepping, you might wnat to specify degrees with a decimal point
*/

void StepperDS::stepDeg(int number_of_degrees)

{

// Figure out how many steps are in that number of degrees

// degrees x steps/rev * microsteps/step x 1lrev/360deg = # of microsteps

// Need a long here for the intermediate values in steps

long steps = ((long)number_of_degrees * steps_per_rev * microStepping) / 360L;
// Now, move that number of steps

step((int)steps);

}
zoid StepperDS: :stepDeg(long number_of_degrees)

// Figure out how many steps are in that number of degrees

// degrees % steps/rev x microsteps/step * lrev/360deg = # of microsteps
// Need a long here for the intermediate values in steps

long steps = (number_of_degrees * steps_per_rev * microStepping) / 360L;
// Now, move that number of steps

step((int)steps);

StepperDS.cpp: method code
=

More standard housekeeping stuff

Return a version number so that later on

if there are multiple versions, the programmer
could do something different based on the
version being used

/*

version() returns the version of the library:
*/
int StepperDS::version(void)

return 1;

}

2/26/15

57

StepperDS library folder

®en0e6 (. StepperDS
G it B) () (Sl Gl
FAVORITES Name 4 Date Modified Size Kind
[All My Files > [examples Feb 11, 2012 10:31 PM - Folder
et . .
@ keywords Feb 14, 2012 10:46 AM 759 bytes Plain Text Document
w AlrDrop & StepperDS.cpp Feb 14, 2012 10:53 AM 10KB C++ Source File
|| Desktop I StepperDS.h Feb 14, 2012 10:33 AM 4 KB C Header Source File
72} elb
) Documents
#/\ Applications
DEVICES
P :

Keywords is a text file that defines special words used in this
library that should be colored differently in the Arduino IDE

StepperDS Keywords

keywords

Syntax Coloring Map For StepperDS

Datatypes (KEYWORD1)

StepperDS KEYWORD1

Methods and Functions (KEYWORD2)

step KEYWORD2

stepDeg KEYWORD2

setSpeed KEYWORD2
setMicroStepping KEYWORD2
version KEYWORD2

Instances (KEYWORD2)

Constants (LITERAL1)

STEP_EDGE LITERAL1
DEFAULT_RPM LITERAL1
DEFAULT_STEPS LITERAL1
DEFAULT_MICRO LITERAL1
MS_PER_MIN LITERAL1

2/26/15

58

Whew! Summary...

0 PWM is a standard way to approximate analog output
Useful for dimming LEDs and speed control on DC motors
o1 Servos also use PWM

Very handy, fairly precise positioning on limited range
(0O-180 degrees)

-1 DC motors move bigger things
Use H-bridge to reverse direction

01 Stepper motors enable precise angular control
Use stepper driver board for best results

Pay attention to electronics (volts, amps, ground, etc.)

What to use?

71 Your go-to motors should probably be:
Servos — for anything that doesn’t require a huge range
of motion or lots of power
Steppers = for anything that requires full rotation
and/or precise positioning
u Use an EasyDriver or Pololu

® You can often harvest steppers from broken printers and
scanners...

DC motors for anything that just needs to spin without
precise control

m Could add a shaft encoder, but that’s another story...

2/26/15

59

