
2/26/15	

1	

DC MOTORS 101
Servos, DC motors, Stepper motors, motor drivers

Agenda

¨  Start with PWM (Pulse Width Modulation)
¤  “analog” output feature of Arduinos – equivalent to varying

output voltage
¤ Use for dimming LEDs or speed control of DC motors

¨  DC motors
¤  Basic operation
¤ Driving with transistors
¤  Bi-directional drive with H-Bridge

¨  Stepper motors
¤ Unipolar and Bipolar versions
¤  Stepper driving circuits
¤  Example of Arduino-based stepper object library

2/26/15	

2	

Analog vs. Digital Input

¨  digitalRead(pin);
¤ Returns true/false, 1/0,

off/on
¤ Great for switches

¨  analogRead(pin);
¤ Returns a range of values
¤ Actual voltage on the input should be between 0-5v
¤ Converted to 0-1023 discrete steps using ADC
¤ ADC is why the analog pins are special…

Analog vs. Digital Output

¨  Digital Out = on/off, up/down, left/right, black/white, etc
¨  Analog Out = how hot, how fast, how bright, how loud, how grey? etc.
¨  As with digital output, we have current considerations, this time, how can we

generate enough energy to control analog devices?
¨  Can we generate an analog voltage between 0-5v on the output?

2/26/15	

3	

ADC and DAC

Arduino version is a 10-bit ADC Arduino has no built-in DAC…

Pulse Width Modulation

2/26/15	

4	

Arduino PWM

¨  The Arduino has 6 PWM pins (3, 5, 6, 9, 10, 11)
that can receive an analogWrite() command.
¤ analogWrite(pin, pulsewidth);

¨  0 = 0 volts, 255 = 5V
¤ a number in between will provide a specific PWM

signal.
¤ 128 will be seen as 2.5v, for example

Knob Fade

int knobPin = A0; // the analog input pin from the potentiometer
int ledPin = 9; // pin for LED (a PWM pin)
int val; // Variable to hold light sensor value

void setup () {

 pinMode(ledPin, OUTPUT); // declare ledPin as output
 pinMode(knobPin, INPUT); // knobPin is an (analog) input
}

void loop () {

 val = analogRead(knobPin); //read the value from the pot
 val = map(val, 0, 1023, 100, 255); // map to reasonable values
 val = constrain(val, 0, 255); // Make sure it doesn’t go out of range
 analogWrite(ledPin, val); // write it to the LED using PWM

}

2/26/15	

5	

Arduino PWM Alternative

¨  It is also possible to create a pwm signal by simply
‘pulsing’ a digital out pin very quickly:

¤ digitalWrite(pin, HIGH);

delayMicroseconds(pulsewidth); // note: “Micro…!”
digitalWrite(pin, LOW);
delayMicroseconds(pulsewidth);

¨  Or, use a Motor Shield…

Dimming Lights

¨  Incandescent blubs
¤  Vary the voltage, or use PWM

¨  LEDs
¤  Use PWM

¨  Fluorescents (compact or regular)
¤  In general you can’t dim them…

¤  There are a few “dimmable”
compact fluorescents

2/26/15	

6	

Dimming Lights

¨  Fixed resistance and varying voltage = varying current
¤  V = IR, V/R = I

¨  Pay attention to the lamp ratings
¤  Remember P = IV

¨  For high current devices, you will need to electrically
isolate the Arduino from the high current circuit.

Activity: Arduino “flickering candle”

¨  Connect an LED to the Arduino on a
PWM output pin
¤ Always remember current-limiting resistor…

¨  Write a program to make that LED “flicker”
like a candle
¤ Chose between random brightness values
¤ Choose random times to change the value

2/26/15	

7	

Servos Also Use PWM

¨  From Tod Kurt, totbot.com

Servos Also Use PWM

¨  From Tod Kurt, totbot.com

2/26/15	

8	

Servo Innards

Servo Specs

¨  From Tod Kurt, totbot.com

2/26/15	

9	

Servo Control

¨  From Tod Kurt, totbot.com

Servo Control

¨  From Tod Kurt, totbot.com

2/26/15	

10	

Programming Servo Motors

¨  The first thing to do when programming servos is work out the pulse range of
the specific servo you are using.
¤  With the arduino, this can be between 0.5 and 2.5 ms.
¤  Servos also need ‘refresh’ time between pulses -- usually 20ms

¨  The frequency of the Arduino’s built-in pwm pins is too high for servos, so we
have to use the pseudo-pwm method instead:
digitalWrite(servoPin, HIGH);
delayMicroseconds(pulse);
digitalWrite(servoPin, LOW);
delayMicroseconds(refreshTime);

¨  Or alternatively, use the Arduino servo library

¨  Black = gnd
¨  Red = +5v
¨  Yellow = signal

Servo Example Program
 #include <Servo.h> // include the built-in servo library Servo myservo; // create a servo object to control the servo (one per servo) int pos = 0; // variable to store the servo position void setup() { myservo.attach(9); // attach servo control to pin 9 } void loop() { for (pos = 0; pos < 180; pos++) { // go from 0 to 180 degrees myservo.write(pos); // move the servo delay(20);l // give it time to get there } for (pos = 180; pos>=1; pos--) { // wave backwards myservo.write(pos); delay(20); } }

2/26/15	

11	

Servo Functions
¨  Servo is a class

¤  Servo myservo; // creates an instance of that class
¨  myservo.attach(pin);

¤  attach to an output pin (doesn’t need to be PWM pin!)
¤  Servo library can control up to 12 servos on our boards
¤  but a side effect is that it disables the PWM on pins 9

and 10

¨  myservo.write(pos);
¤ moves servo – pos ranges from 0-180

¨  myservo.read();
¤  returns the current position of the servo (0-180)

Servo Object (class instance)

Name: myservo
position: 67 deg

Attached to: pin 9

.attach

.read

.write 0 to 180

Pin number

return current
deg position

Pin 9

2/26/15	

12	

Moving on…

¨  Write a program to control the position of the
servo from a pot, or from a photocell
¤  remember analogRead(); values are from 0-1023
¤ measure the range of values coming out of the

photocell first?
¤ use Serial.print(val); for example
¤ use map(val, in1, in2, 0, 180); to map in1-in2 values to

0-180
¤ Can also use constrain(val, 0, 180);

Side Note - Power

¨  Servos can consume a bit of power
¤ We need to make sure that we don’t draw so much

power out of the Arduino that it fizzles
¤  If you drive more than a couple servos, you probably

should put the servo power pins on a separate power
supply from the Arduino

¤ Use a wall-wart 5v DC supply, for example

2/26/15	

13	

Moving on: Electromagnetism

¨  Permanent magnets have magnetic fields that flow
from North to South poles of the magnet

Electromagnets

¨  Current flowing through a conductor creates a magnetic field
¤  Right hand rule: Point your thumb in direction of current, and your fingers

curl in the direction of the magnetic field

2/26/15	

14	

Electromagnets

¨  Current flowing through a coiled conductor creates a magnetic field
¤  Right hand rule: Point your thumb in direction of current, and your

fingers curl in the direction of the magnetic field
¤  Alternately, curl your fingers in the direction of the current, your

thumb points to North magnetic pole

Electromagnets

¨  Current flowing through a coiled conductor creates a magnetic
field
¤  Important implication: When the current it reversed, so is the

magnetic field!

2/26/15	

15	

Aside: Current dir vs. Carrier dir

¨  Current (amps) flows from positive to negative
¤  “positive current”

¨  BUT – the charge carriers are (usually) electrons
¤  Electrons have negative charge
¤  So – the electrons move from

negative to positive

¨  Charge carriers move in
opposite direction from current!
¤  Yes, it’s confusing…
¤ We’ll tackle this again talking

about transistors!

Electromagnets and Motors

¨  Motors use the reversing feature of an
electromagnet, and magnetic attraction
¤ Permanent magnets on one side, electromagnets that

can switch polarity on the other

2/26/15	

16	

Basic DC Motor Behavior

¨  Electrical energy -> mechanical
motion

¨  Motors have fixed parts (stator)
and moving parts (rotor)

¨  A DC motor consists of:
¤  Commutator

n  Rotary switch
n  Reverses current twice every cycle

¤  Electromagnetic coils
n  Opposing polarities switched by

commutator
n  Inertia causes them to continue

rotating at the moment of polarity
switching

¤  Fixed Magnets
n  Opposing polarities

Basic DC Motor Behavior

¨  Electrical energy -> mechanical
motion

¨  Motors have fixed parts (stator)
and moving parts (rotor)

¨  A DC motor consists of:
¤  Commutator

n  Rotary switch
n  Reverses current twice every cycle

¤  Electromagnetic coils
n  Opposing polarities switched by

commutator
n  Inertia causes them to continue

rotating at the moment of polarity
switching

¤  Fixed Magnets
n  Opposing polarities

2/26/15	

17	

Basic DC Motor Behavior

¨  Electrical energy -> mechanical
motion

¨  Motors have fixed parts (stator)
and moving parts (rotor)

¨  A DC motor consists of:
¤  Commutator

n  Rotary switch
n  Reverses current twice every cycle

¤  Electromagnetic coils
n  Opposing polarities switched by

commutator
n  Inertia causes them to continue

rotating at the moment of polarity
switching

¤  Fixed Magnets
n  Opposing polarities

Motor Speed Control

¨  For a simple DC motor, PWM works great
¤ Motor “integrates” the pulsing waveform for an

effective lowering of the drive voltage
¤ Motors have inertia, and also minimum operating

voltages. Therefore, often it will seem that the motor
will only operate at a high duty cycle initially.

¤ Connect motors up using external power supplies
n Make sure to connect grounds together…

2/26/15	

18	

Transistors as Switches

¨  From Tod Kurt, totbot.com

Transistors (bipolar)

¨  3 terminals (emitter, base, collector):
different voltages at the input terminal
controls the conductivity between the other
two.
¤  Faster and cheaper than relays
¤ DC only

¨  Bipolar (BJT) are common
¤  Polarity is PNP or NPN
¤ NPN has small input current and positive

voltage at Base to control a large Collector-to-
Emitter current

¤  PNP has small output current and negative
voltage at Base to control a large Collector-to-
Emitter current

2/26/15	

19	

Transistors (mosfet)

¨  3 terminals (source, gate, drain):
different voltages at the input terminal
controls the conductivity between the
other two.
¤ Faster and cheaper than relays
¤ Possible to use with AC

¨  MOSFETs are also common
¤ Polarity is Ntype or Ptype
¤ Ntype has positive voltage at gate

to control a large Source-Drain current
¤ Ptype has negative voltage at Gate to

control a large Source-Drain current

MOSFET symbols

2/26/15	

20	

BJT vs. MOSFET

¨  BJT involves current in/out of the
Base
¤ Current gain is measure of how much

more current flows from C-E than in B
¤ Predictable gain response

¨  MOSFETs have high impedance
inputs
¤ No current in/out of gate
¤ Can handle high power, but complex

gain response
¤ Can be more fragile – esp. to static

charge

Transistors for Motors

¨  Use a transistor to switch the motor’s voltage source
¤ Can be different from Arduino power

1000
Inductive loads
(like motors) need
a “kickback diode”
to protect against
reverse current ¨  From Tod Kurt, totbot.com

2/26/15	

21	

Transistors for Motors

¨  Use a transistor to switch the motor’s voltage source
¤ Can be different from Arduino power

1000

¨  From Tod Kurt, totbot.com

Bidirectional DC Motor

¨  By reversing the current, you can change motor direction
¤ Clever circuit – H-Bridge
¤ Can be switches or transistors…

2/26/15	

22	

Bidirectional DC Motor

¨  By reversing the current, you can change motor direction
¤ Clever circuit – H-Bridge
¤ Can be switches or transistors…

Bidirectional DC Motor

¨  By reversing the current, you can change motor direction
¤ Clever circuit – H-Bridge
¤ Can be switches or transistors…

2/26/15	

23	

H-Bridge

¨  Could build this from individual
transistors (like TIP120)

H-Bridge

¨  OR, you could get this in a handy chip form
¤ Quad Half H-Bridge
¤ L293D or SN774410

2/26/15	

24	

H-Bridge

¨  OR, you could get this in a handy chip form
¤ Quad Half H-Bridge
¤ L293D or SN774410

Quad Half H-Bridge

M

Vmotor

Ctl1 Ctl2

En En

Not shown – built-in inversion at Ctl inputs - one switch is always on, other is off…

Can use PWM on the En signal to modulate speed

2/26/15	

25	

Quad Half H-Bridge

Real Life (big) example

¨  Saltgrass Printmakers in Salt Lake City
¤  www.SalrtgrassPrintmakers.org

¨  We have a Vandercook proof press with a powered carriage

2/26/15	

26	

Vandercook Electronics

¨ ¼ HP DC motor moves the press bed back and forth
¤ Large mechanical “reversing contactor” is the H-Bridge

Vandercook Schematic

2/26/15	

27	

Vandercook Schematic

Vandercook Schematic

2/26/15	

28	

Vandercook Schematic

Activity: Bidirectional Motor

¨  Grab a SN754410 or L293D
¤ Wire it up for a bidirectional motor
¤ Connect a DC motor – use external power
¤ Control directional switching and speed from Arduino
¤ Look at DC_motor_hbridge on class page

2/26/15	

29	

Stepper Motors

¨  DC motors with precise control of how far they spin
¤ They have a fixed number of “steps” the take to turn

one full revolution
¤ You can control them one step at a time
¤ Makes for very precise and repeatable positioning

Why use steppers?

¨  Very precise
¨  Much stronger than servos

¤ But, they use more current than Arduino can provide
¤ So, you need some sort of external power source

¨  They’re a little tricky to drive
¤  It’s handy to have some sort of code library, or external

driver board

¨  I suggest to use both – a library, and an external
board

2/26/15	

30	

They always have multiple wires

How do they Work?

¨  Like all motors – electro-magnets get energized and
push/pull the rotor around.

2/26/15	

31	

Steppers have precise internals

Steppers have precise internals

2/26/15	

32	

Steppers have precise internals

Steppers have precise internals

2/26/15	

33	

Stepper Internals

Different Flavors of Steppers

¨  Unipolar vs. Bipolar

2/26/15	

34	

Different Flavors of Steppers

¨  Unipolar vs. Bipolar

Unipolar used as Bipolar

2/26/15	

35	

Make it Turn

¨  Energize the coils in a very specific sequence

Make it Turn

¨  Energize the coils in a very specific sequence

2/26/15	

36	

Use a Library

Simple Example

2/26/15	

37	

Knob Example

Stepper Object

Stepper
name: mystepper

Internal state:

What step am I on?
What sequence

do I use?

.setSpeed

.step

2/26/15	

38	

Stepper Object

.setSpeed

.step D
riv

er
s Stepper

name: mystepper

Internal state:
What step am I on?

What sequence
do I use?

Driver Circuits… (unipolar)

2/26/15	

39	

Driver Circuits… (bipolar)

Driver Circuits… (chips)

2/26/15	

40	

Driver Circuits

Control inputs
from Arduino

You can use the
<Stepper.h>
library for this

Make sure you consider power!

2/26/15	

41	

Stepper Specs

¨  Degrees/Step
¤ Common values: 15, 7.5, 3.6, 1.8 deg/step
¤ This is the same as 24, 48, 100, and 200 steps/full-rev

¨  Coil Resistance
¤ Measured resistance of motor coils

¨  Volts/Amps
¤ Rated values for running the motor
¤ Amps is the important one!
¤ Remember V=IR, so V/R = I
¤ Example: 6VDC, 7.9Ω = .76A

So far…

¨  Steppers move very precisely and are relatively
powerful

¨  But are a bit of a pain to drive
¤ Four wires from the Arduino
¤ External driver circuits
¤ Extra power supply to worry about
¤ Use stepper library to make stepper “objects” for each

one that you use
¤ Your program needs to keep track of how far you’ve

turned

2/26/15	

42	

Easier Motor Driving…

¨  There are chips specifically designed for driving
steppers
¤ They manage the sequence of signals
¤ They manage the higher voltages of the motors
¤ They have “chopper drives” to limit current
¤ They can even do “microstepping”

n This lets you do ½, ¼, 1/8, or 1/16 step
n  Increases resolution and smoothness, but might reduce power

Easy Driver

¨  Available from Sparkfun (among others)

Adjustable from 150mA
to 750mA per coil

Motor power from 6v
to 30v

Onboard regulator for
5v or 3.3v power for
Arduino

Microstepping full, ½, ¼,
and 1/8th step

2/26/15	

43	

Pololu A4988 driver

Up to 2A per coil
(with heat sink)

8 – 35V on motor
Provides 3.3v or 5v to Arduino

Limits current to a set level

Uses only 2 wires
for control: Dir, Step

Pololu A4988 driver

2/26/15	

44	

“Chopping” current driver…

¨  These boards have a little magic in them:
Chopping Current Driver
¤ Constant current source – you set limit

¨  This means you can use a higher voltage than your
stepper is rated for
¤ Chip will limit current to correct value
¤ Higher voltage means more torque
¤ Make SURE you set the current limit correctly though…

Wiring up the EasyDriver

Note: MS1 and MS2 default
high if you don’t pull them low.
This defaults to 1/8th microstepping

2/26/15	

45	

EasyDriver chip

A3967

One
EasyDriver
per
Stepper…

2/26/15	

46	

Wiring the Pololu A4988 driver
Minimal Connection

Using the Pololu A4988 driver
Minimal Connection

Need one driver
for each motor

Need to set this
pot to set current
limit

Check REF to
see what the
current limit
will be

2/26/15	

47	

Current Limit on Pololu

¨  Turn pot (use a tiny screwdriver) and check REF

¤ Rs = 0.05Ω

V REF Current Limit

.1v .250A

.15v .375A

.2v .500A

.25v .625A

.3v .750A

.35v .875A

.4v 1.000A

.45v 1.125A

Using a Dir/Step driver

¨  Set the Dir pin – 0 is one dir, 1 is the other
¨  Toggle the Step pin up and down

¤ You get one step per rising edge

 for (int i=0; i < steps; i++) {
 digitalWrite(STEP_PIN, HIGH);
 delayMicroseconds(usDelay);
 digitalWrite(STEP_PIN, LOW);
 delayMicroseconds(usDelay);
}

2/26/15	

48	

Use StepperDS Library

StepperDS
name: mystepper

Internal state:

DirPin
StepPin

.setSpeed

.step

.setMicrostepping

.stepDeg

Use the StepperDS Library

2/26/15	

49	

Use the StepperDS Library

Installing StepperDS

¨  Grab the zip file from the class web site
¨  unpack – put the StepperDS folder in your

Arduino/libraries folder
¤ This is your “Sketchbook Location” , libraries sub-folder
¤ Find out where this is using the Preferences dialog in

Arduino
n Mine is in Documents/Arduino/libraries on my Mac

¨  Restart Arduino and you should be good to go
¤ #include <StepperDS.h>
¤ Examples will show up in your “Examples” menu

2/26/15	

50	

Activity: Wire up a stepper

¨  Use a BigEasy stepper driver
¨  Use my StepperDS library if you like
¨  Or roll your own with your own code
¨  Make the stepper do

something…
¤ Follow a fixed pattern
¤ Follow a knob
¤ Follow a light sensor
¤ React from Processing over the serial port

 for (int i=0; i < steps; i++) {
 digitalWrite(STEP_PIN, HIGH);
 delayMicroseconds(usDelay);
 digitalWrite(STEP_PIN, LOW);
 delayMicroseconds(usDelay);
}

StepperDS

¨  Example of using classes/methods in Arduino
¤ Also example of making a library that you can

re-use and export to others

¨  Arduino language is really C/C++
¤ Class definitions go in a .h file
¤ Class code goes in a .cpp file
¤ Both files go in a folder named for the library

¤ Examples go in an “Examples” sub-folder
¤ Each example gets its own sub-sub-folder
¤ Examples are “regular” Arduino sketches (.ino files)

2/26/15	

51	

StepperDS.h

Include LOTS of comments in
the header to explain what’s
going on…

StepperDS.h

Some standard housekeeping stuff for Arduino libraries…

2/26/15	

52	

StepperDS.h Define StepperDS class

Start with the public stuff
 Constructor functions, and method prototypes

StepperDS.h: Define StepperDS class

More method prototypes, and private information

Note “#endif” for “#ifndef StepperDS_h”

2/26/15	

53	

StepperDS.cpp: Fill in the methods

Start with comments again, of course!
Make sure to include StepperDS.h
Make some default definitions to use later…

StepperDS.cpp - constructors

Each constructor – with different number of arguments – needs to
have its code filled in.
Zero-arg constructor is all defaults…
“this” refers to the object being constructed…

2/26/15	

54	

StepperDS.cpp - constructors

Three-arg constructor is probably the most common…

Note that it calls the private function initStepperPins()

StepperDS.cpp: initStepperPins

This function is private to the class – it can’t be called by user code

2/26/15	

55	

StepperDS.cpp: method code

Each method needs to be filled in – basically they set internal values in
the stepper object…

StepperDS.cpp: method code

Remember to comment things!
Even you will have a hard time remembering what you did
when you come back to your code later…

2/26/15	

56	

StepperDS.cpp: method code

2/26/15	

57	

StepperDS.cpp: method code
Also versions with float and double as inputs…

StepperDS.cpp: method code

More standard housekeeping stuff
Return a version number so that later on
if there are multiple versions, the programmer
could do something different based on the
version being used

2/26/15	

58	

StepperDS library folder

Keywords is a text file that defines special words used in this
library that should be colored differently in the Arduino IDE

StepperDS Keywords

2/26/15	

59	

Whew! Summary…

¨  PWM is a standard way to approximate analog output
¤ Useful for dimming LEDs and speed control on DC motors

¨  Servos also use PWM
¤ Very handy, fairly precise positioning on limited range

(0-180 degrees)

¨  DC motors move bigger things
¤ Use H-bridge to reverse direction

¨  Stepper motors enable precise angular control
¤ Use stepper driver board for best results
¤ Pay attention to electronics (volts, amps, ground, etc.)

What to use?

¨  Your go-to motors should probably be:
¤ Servos – for anything that doesn’t require a huge range

of motion or lots of power
¤ Steppers – for anything that requires full rotation

and/or precise positioning
n Use an EasyDriver or Pololu
n You can often harvest steppers from broken printers and

scanners…

¤ DC motors for anything that just needs to spin without
precise control
n Could add a shaft encoder, but that’s another story…

