

255 S. Central Campus Drive | Room 2100 | Salt Lake City | UT | 84112 phone 801.581.6214 | humanities.utah.edu

December 13, 2018

Curriculum Committee Office of Undergraduate Studies Sterling Sill Center CAMPUS

Dear Committee Member,

I am writing to offer my strong endorsement of the proposed certificate in Computational Linguistics. This collaboration between Linguistics and Computer Science will enable us to graduate students who are prepared to play significant roles in technology industries. As the Department of Linguistics letter indicates, tech companies have been hiring linguists in recent years and this program should give those students a head start by developing computing skills alongside their curriculum in linguistics.

I was pleased to note that this certificate has the strong support of the Department's faculty, recognizing that this program will also introduce students to much of their most significant research and direct them to innovative classes. I believe that the Department's current advisor will be able to provide students in the program with the support they need.

Sincerely,

Stuat & UM

Stuart Culver Dean, College of Humanities

50 C. Central Campus Drive RM 3190 Salt Lake City, UT 84112 801.581.8224 (Fax) 801.581.5843

December 10, 2018

Dear Office of Curriculum Administration,

I am pleased to lend my support to the proposal for a new undergraduate certificate in Computational Linguistics, which is being submitted by the Department of Linguistics. Faculty members and undergraduate advisors from the School of Computing have worked collaboratively with the Department of Linguistics in developing the proposal, and we believe that students in both departments who earn the certificate will gain the specialized knowledge and skills they will need to compete for jobs involving language-related technologies. I hope you see fit to approve this exciting, new certificate program.

Sincerely,

Yours truly,

Ross Whitaker Professor, Director

December 10, 2018

Dear Curriculum Committee,

I am fully in favor of the proposed undergraduate certificate in Computational Linguistics. Several of our past BA and MA graduates have gotten jobs in industry with companies such as Amazon and Attensity that develop or use technologies that require sophisticated knowledge of language and linguistics. The market is becoming increasingly competitive, however, and it is clear that future graduates will need not only linguistic knowledge but also advanced computing skills and specific training in computational linguistics in order to get good jobs like this in the future...and also to make meaningful contributions to this sector of industry. The proposed certificate fills this need and seems especially relevant in the greater Salt Lake City area, where language and technology play such an important role in both society and the local economy.

The tenure-line faculty of the Department of Linguistics agree that the proposed Computational Linguistics certificate will serve our students well. Six voted in favor of the proposed certificate, no one opposed it, two faculty members abstained from voting, and three others did not vote.

Computational linguistics is a growing field, and the technologies that have come out of it (e.g., search engines, speech synthesis, speech recognition, language data mining, language-related machine learning, language encryption) represent some of the most important areas of current technological development. It is important for the University of Utah to be able to produce graduates who can participate meaningfully in these developments, and the proposed certificate is an important incremental step in the right direction.

Sincerely,

Post Jair

Scott Jarvis, Ph.D. Professor and Chair Department of Linguistics

September 5, 2019

Dear Office of Curriculum Administration,

The Department of English at Salt Lake Community College (SLCC) has learned about the Computational Linguistics Certificate proposed by the Linguistics Department at the University of Utah. This is of interest to us because the linguistics courses offered at SLCC are housed in our department, and several of our graduates continue their studies in the Department of Linguistics at the University of Utah. We have recently entered into an articulation agreement with the Linguistics Department, and we believe that the number of our students who go on to earn a BA in linguistics at the University of Utah will continue to increase. The proposed Computational Linguistics Certificate will probably be of interest and value to many of them.

On behalf of the Department of English at SLCC, I have agreed to make our students aware of this certificate and to help prepare interested students to be able to enter into the certificate's curriculum in their junior or senior year at the University of Utah.

Sincerely,

Stephen Ruffus

Stephen Ruffus Associate Dean, School of Humanities and Social Sciences Chair, Department of English

Taylorsville Redwood Campus

September 11, 2019

Dear Office of Curriculum Administration,

I have met and spoken with Scott Jarvis about the proposed Computational Linguistics Certificate. As I meet with our QAMO students and come across students who would benefit from such a certificate or curriculum, I am happy to share the information with them and connect them with Professor Jarvis.

Sincerely,

Ken Aoki

Computational Linguistics Undergraduate Certificate

Learning Outcomes

1. <u>Linguistic knowledge</u>. Know the core areas of theoretical and empirical linguistics and how the discoveries of these fields are critical to the technology behind search engines, digital libraries, speech recognition, speech synthesis, part-of-speech taggers, syntactic parsers, machine translation, text classification, linguistic data mining, and other forms of Natural Language Processing (NLP).

2. <u>Computational knowledge</u>. Know the core data structures and computational algorithms used in NLP.

3. <u>Application of knowledge</u>. Apply existing NLP tools in order to perform phonological, morphological, lexical, syntactic, semantic, and/or pragmatic data mining of natural language (i.e., of any natural human language).

4. <u>Analysis</u>. Use NLP tools to analyze large corpora (or document collections) by classifying texts according to characteristics of the texts (e.g., topic, genre, readability, whether the text is original or translated text) or characteristics of the writers of the texts (e.g., gender, age, level of education, country of origin, native language, author's sentiment toward the topic).

OUTCOME	Evidence	
1. Linguistic knowledge	A term paper or final exam from LING 3300 (alternatively	
	from LING 4010, 4020, 5030, or 5190 for students who	
	take CS 3505 instead of LING 3300)	
2. Computational knowledge	A final project from CS 3500	
3. Application of knowledge	A final project from CS 5340	
4. Analysis	A final project from LING 5300	

Outcomes Assessment Evidence

Outcomes Assessment Rubric

OUTCOME	Unacceptable	Satisfactory	Superior
1. Linguistic knowledge	Unable to explain	Able to explain in	Able to explain in
	satisfactorily how	depth how at least	detail how several
	linguistic theory or	two principles from	principles from
	empirical research	linguistic theory	linguistic theory
	contributes to NLP	and/or at least two	and/or several
	technologies	findings from	findings from
		empirical linguistic	empirical linguistic
		research form the	research form the
		basis of current	basis of current
		NLP technologies	NLP technologies
2. Computational knowledge	Unable to	Able to identify and	Able to create a
	demonstrate a	manipulate a	variety of data
	satisfactory	variety of data	structures and
	knowledge of data	structures and	algorithms used in
	structures or	algorithms used in	current NLP
	algorithms used in	current NLP	technologies
	current NLP	technologies	
	technologies		
3. Application of knowledge	Unable to	Able to successfully	Able to write
	successfully use	use existing NLP	algorithms that
	NLP tools to	tools to extract,	successfully extract,
	extract, assemble,	assemble, organize,	assemble, organize,
	organize, or	and quantify	and quantify
	quantify linguistic	linguistic data from	linguistic data from
	data from language	language sources	language sources
	sources (e.g., the	(e.g., the Internet	(e.g., the Internet
	Internet and/or	and/or language	and/or language
	language corpora)	corpora)	corpora)
4. Analysis	Unable to make use	Able to make use	Able to create
	of existing machine	of existing machine	machine learning
	learning tools to	learning tools to	protocols that
	successfully classify	successfully classify	successfully classify
	texts based on their	texts based on their	texts based on their
	linguistic content	linguistic content	linguistic content