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John Locke

Things of this world are in so
constant a flux, that nothing remains
long in the same state.
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Overview

Metabolic networks

Flux balance analysis (FBA)
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Metabolic Networks

Metabolic networks consist of a series of chemical reactions that modify a
substrate to produce a new biomolecule within a cell.

Product may be used immediately, initiate another pathway, or stored.

Metabolic reactions are often catalyzed by enzymes.

Enzymes may be gene products allowing for genetic control.
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Metabolic Networks

(Courtesy of Wikipedia)
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Cellular Respiration

The energy conversion pathways of a cell.

Complex sugars broken down into glucose that enters the cell through
glucose transporters in the cell’s membrane.
Cellular respiration breaks down glucose to make ATP using:

Glycolysis
Citric acid (Kreb’s) cycle

Products of each pathway are reactants in following pathway.

Glycolysis occurs in the cytoplasm while later steps occur in mitochondria.

Capable of generating enough ATP to run all the cell functions.
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Glycolysis

(Courtesy of Wikipedia)
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Glycolysis

Requires no oxygen and is referred to as anaerobic metabolism.

Glycolysis occurs in the cytoplasm outside the mitochondria.

Glucose is broken down into a molecule called pyruvate.

Each reaction produces hydrogen ions to make ATP.

Only four ATP molecules can be made from one of glucose.

In prokaryotes, glycolysis is the only method to produce energy.
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Citric Acid (Kreb’s) Cycle

(Courtesy of Wikipedia)
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Pyruvate Oxidation

Begins with two molecules of pyruvic acid.

Next, pyruvic acid is altered by the removal of a carbon and two oxygens,
which go on to form carbon dioxide.

When CO2 is removed, energy is given off, and NAD+ molecule is
converted into the higher energy form NADH.

Another molecule, coenzyme A, then attaches to the remaining acetyl
unit, forming acetyl CoA.
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Citric Acid (Kreb’s) Cycle

Acetyl CoA binds to a four-carbon molecule called oxaloacetate to make
a six-carbon molecule called citric acid.

Citric acid is then broken down and modified in a stepwise fashion
releasing hydrogen ions and carbon molecules.

The carbon molecules are used to make more carbon dioxide.

The hydrogen ions are picked up by NAD and another molecule called
flavin-adenine dinucleotide (FAD).

Eventually, the process produces the four-carbon oxaloacetate again,
ending up where it started off.

Further processing of the ions released can result in 24 to 28 ATP
molecules from one molecule of glucose.
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Flux Balance Analysis (FBA)

Most analysis methods require detailed kinetic information.

Metabolic networks can be reconstructed from an annotated genome and
literature.

FBA determines theoretical capabilities of metabolic networks using only
stoichiometry and fundamental physiochemical capacity constraints.

Capacity constraints include maximum uptake rates of oxygen and
substrates, such as, glucose, acetate, lactose, etc.

FBA determines optimal flux distribution for given conditions.

Cell growth is used as the objective function approximated by production
of growth precursors in certain ratios.
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FBA Procedure

(Courtesy of Orth et al., Nature Biotechnology, 2010)
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Metabolic Network Reconstruction

Identify homologous genes in sequence data to assign functions.
Examine metabolic reaction database to find:

The substrates, products, and stoichiometry of each metabolic reaction,
The name of the enzyme catalyzing the reaction, and
The genes that code for the respective enzymes.

Review literature for metabolic genes/reactions not found in the database.
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Hypothetical Metabolic Genotype

(Courtesy of Palsson et al., Nature Biotechnology, 2001)
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Hypothetical Metabolic Network

(Courtesy of Palsson et al., Nature Biotechnology, 2001)
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Formulate Stoichiometric Matrix

Metabolic reactions defined by a m×n stoichiometric matrix, S.
Each of the m rows represents a chemical species.
Each of the n columns represents a chemical reaction.
The Si,j entry is the net stoichiometry for species i in reaction j .
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Stoichiometric Matrix for Hypothetical Metabolic Network

(Courtesy of Palsson et al., Nature Biotechnology, 2001)
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Defining Mass Balance Constraints

(Courtesy of Palsson et al., Nature Biotechnology, 2001)
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Apply Mass Balance Constraints

Rate of accumulation of Xi :
dXi

dt
= Vsyn−Vdeg−Vuse±Vtrans

= Vsyn−Vdeg−Vuse +bi

Single equation for complete metabolic network:

dX
dt

= S ·v+b

where S is the m×n stoichiometric matrix, v is the vector of metabolic
fluxes, and b is the vector of metabolic exchange fluxes.
Assuming steady-state yields:

S ·v+ I ·b = 0

[Sreactions | Suse | U]

 vreactions

vuse

br

 = 0

S′ ·v′ = 0
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Mass Balance for Hypothetical Metabolic Network

(Courtesy of Palsson et al., Nature Biotechnology, 2001)
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Additional Constraints

Solutions of mass balance equation are metabolic flux distributions that
do not violate mass, energy, and redox balance constraints.

Many vectors though within this nullspace are not physiologically feasible.

Capacity and thermodynamic constraints can be expressed as
inequalities of the form: αj ≤ vj ≤ βj where j = 1 . . .n.
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Constraints on the Hypothetical Metabolic Network

(Courtesy of Palsson et al., Nature Biotechnology, 2001)
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Define Objective Function

Many metabolic flux vectors satisfy all constraints.

Goal is to find one that maximizes (or minimizes) an objective function.

Maximize Z

where Z = ∑ci · vi = 〈c·v〉

Objective for hypothetical metabolic network: Z = Vgrowth.
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Optimize Using Linear Programming

Canonical form of a flux balance analysis problem:
maximize 〈c·v〉
subject to S′ ·v′ = 0
and α≤ v′ ≤ β

Can be solved using linear programming, a technique for finding an
optimal solution in a convex space defined by linear equalities and
inequalities.

Many efficient algorithms and software packages exist.
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Conceptional Basis for FBA

(Courtesy of Orth et al., Nature Biotechnology, 2010)
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Phenotype Phase Plane Example

(Courtesy of Palsson et al., Nature Biotechnology, 2001)
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Applications of Flux Balance Analysis

Predict the growth or yields on different mediums.

Study the effects of gene/reaction deletions and other perturbations.

Fill in gaps in genome-scale metabolic reconstructions.

Improve the efficiency of metabolic engineering.
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Map of the E. coli Metabolic Network

(Courtesy of Orth et al., Nature Biotechnology, 2010)
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Flux Map for Aerobic and Anaerobic Growth

(Courtesy of Orth et al., Nature Biotechnology, 2010)

Chris J. Myers (Lecture 13: Flux Balance Analysis) Engineering Genetic Circuits 30 / 40



Flux Map for Maximum ATP Yield in Aerobic Conditions

(Courtesy of Orth et al., Nature Biotechnology, 2010)
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Flux Maps for Aerobic Growth on Succinate

(Courtesy of Orth et al., Nature Biotechnology, 2010)
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Maximum Growth Rate Versus Glucose Uptake

(Courtesy of Orth et al., Nature Biotechnology, 2010)
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Maximum Growth Rate Versus Oxygen Uptake

(Courtesy of Orth et al., Nature Biotechnology, 2010)
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Phenotypic Phase Planes for Growth

(Courtesy of Orth et al., NBT, 2010)

1. No growth
2. Growth limited by excess oxygen
3. Acetate is secreted
4. Acetate/formate secreted
5. Acetate/formate/ethanol secreted
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Effects of Gene Knockouts on Growth

(Courtesy of Orth et al., Nature Biotechnology, 2010)
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Effects of Gene Knockouts on Biomass Precursors

(Courtesy of Orth et al., Nature Biotechnology, 2010)
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Advanced Flux Balance Analysis Methods

Flux variability analysis - returns boundaries of reaction fluxes.

Minimization of Metabolic Adjustment (MOMA) - determines flux
distribution immediately following a perturbation.

Regulatory On-Off Minimization (ROOM) - minimizes regulatory changes
needed to adapt after a perturbation.

Dynamic FBA - runs FBA, changes model using dynamic simulation, and
reruns FBA.
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FBA Discussion

Advantages:
Does not require any kinetic parameters.
Only requires network and its stoichiometric matrix.
Results have been shown to agree with experimental data.

Disadvantages:
Difficult to know true objective function for optimal fluxes.
Does not describe dynamic behavior.
Results do not always agree with experimental data.
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Sources

Early works by Papoutsakis (1984), Watson (1984), Fell/Small (1986).

FBA has been championed by Palsson and his collaborators (see Orth et
al., NBT, 2010 for a good overview).

Palsson’s book, Systems Biology: Properties of Reconstructed Networks
(2006), is another good reference.

Example used in this lecture can be found at:
http://www.nature.com/nbt/web_extras/supp_info/nbt0201_125/info_frame.html
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