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Potential Uses of Synthetic Genetic Circuits
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Challenges to Genetic Circuit Design

Require precise balancing of regulators to generate a correct response.
Can be difficult to screen for correct performance.

Few tools available to measure circuit performance other than
flurorescent reporters, which are limited for measuring dynamics.

Sensitive to environment, growth conditions, and genetic context.

Assembly of large genetic circuits is difficult and often has errors.
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Overview

@ Methods of modifying circuit behavior.

@ Common failure modes from connecting circuits.

@ Circuit performance within the context of a living cell.

@ Alternative regulatory mechanisms for genetic logic gates.
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Methods of Modifying Circuit Behavior
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Methods of Modifying Circuit Behavior (cont)
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Connecting Circuits: AND Gate Example
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Connecting Circuits: Oscillator Example
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Failure Modes: Mismatched Response Functions
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Failure Modes: Mismatched Response Functions
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SOLUTION:
Select RBSs and promoters to achieve the required expression levels.

Chris J. Myers (Lecture 11: Principles)

Engineering Genetic Circuits



Failure Modes: Promoter Context
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Failure Modes: Promoter Context
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SOLUTION:
Insulator sequences standardize the DNA sequences flanking promoters.
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Failure Modes: RBS Context
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Failure Modes: RBS Context
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SOLUTION:
5" UTR can be cleaved with ribozymes to standardize RBS accessibility.
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Failure Modes: Transcriptional Read Through
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Failure Modes: Transcriptional Read Through
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SOLUTION:
Use strong, tandem terminators.
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Failure Modes: Part Junction Interference
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Failure Modes: Part Junction Interference
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SOLUTION:
Scan for unintended functional sequences.
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Failure Modes: Orthogonality
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Failure Modes: Orthogonality
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SOLUTION:
Screen parts to test every combination of promoter and regulatory element.
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Failure Modes: Recombination
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Failure Modes: Recombination
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SOLUTION:

Use large libraries of parts with enough sequence diversity.
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Host Context Issues: Host Overload
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Host Context Issues: Queuing
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Context Issues: Retroactivity
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Context Issues: Host Variation

Host variation
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Context Issues: Environmental Conditions
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DNA Binding Proteins
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Challenges with DNA Binding Proteins

@ Expanding protein libraries is difficult, since they must be orthogonal.
e zinc-finger proteins
o transcription activator-like (TAL) effectors
o TetR and Lacl homologs.
@ Even when individual transcription factors are nontoxic, multiple
regulators may be toxic.
@ Circuits are dependent on growth rate, since dilution rate affects
steady-state concentration of regulators.

@ Response functions are often suboptimal and difficult to control (high
OFF states and low dynamic ranges).
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Recombinases
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Recombinases: Advantages/Disadvantages

@ Tyrosine recombinases (Cre, Flp, FimBE) - require host-specific factors,
can be reversible and irreversible.

@ Serine integrases - catalyze unidirectional reactions to invert DNA without
host factors and often have excisonases to return to original orientation.

@ Advantages:

o I|deal for memory storage since they flip DNA permanently.
o All two-input logic gates have been built using serine integrases.

@ Disadvantages:

o Reactions can be slow and generate mixed populations.
o Reversing the state change requires extra circuitry.
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CRISPRI
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CRISPRI: Advantages/Disadvantages

@ Clustered, regularly interspaced, short palindromic repeat (CRISPR)
function as a bacterial immune system that targets specific DNA
sequence motifs for degradation.

@ Use a Cas (CRISPR-associated) nuclease and guide RNA to introduce
double-strand breaks to specific DNA sequences.

@ CRISPR interference (CRISPRI) uses dCas9/Cas9y_, which does not
have a nuclease, as a transcription factor to repress gene expression by
producing a DNA bubble.

@ Advantages:

e Can create orthogonal set of guide sequences to target different promoters.
o Operate at speeds similar to protein-based circuits.
@ Disadvantages:

o Predicting guide RNA orthogonality is complicated.
o Toxicity can result if Cas9 binds to and interferes with the host genome.
o Retroactivity can be an issue since Cas9 is a shared resource.
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RNA IN/OUT
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RNA IN/OUT: Advantages/Disadvantages

Natural system represses translation with a short non-coding RNA.

Synthetic system adapted to repress transcription using the
transcriptional adapter, tna, composed of RBS and CDS for TnaC.

When TnaC translation is blocked, Rho binds knocking off the RNAP.

Advantages:
o Could be used to generate a large set of orthogonal regulators.
e Have been successfully used for 2/3/4-input NOR gates.
Disadvantages:

o Each transcriptional regulator requires the same tna regulatory element
(~290 bp), which could lead to homologous recombination.
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Conceptual Circuit for a Therapeutic Bacterium
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The Road Ahead

@ Standards:
o Experimental synthetic biologists should be encouraged by journals and
funding agencies to share their data using standards and repositories.
o Computational synthetic biologists need to develop software tools that can
easily create models and capture design information using standards.

@ Abstraction:
e Experimental synthetic biologists must determine design details that are
critical to achieving a desired phenotypic behavior.
o Computational synthetic biologists must fall out of love with their models,
accept abstraction, and create tools supporting multiple abstractions levels.

@ Decoupling:
o Experimental synthetic biologists need to create libraries of components
that are more orthogonal and well characterized.
o Computational synthetic biologists need to develop design flows that allow
the biologically naive to build genetic circuits that actually work.
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J. R. R. Tolkien

Faithless is he that says
farewell when the road darkens.
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