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The Law of Thumb

Somebody who thinks logically is a nice contrast to the real world.
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Example Electrical Circuits

Intel 4004 (1971) Pentium 4 (2000)
2,300 xtors / 108 KHz 42 million xtors / 1.5 GHz

(Courtesy of the Intel Museum)
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Example Electrical Circuits
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Intel 4004 (1971) Pentium 4 (2000)
2,300 xtors / 108 KHz 42 million xtors / 1.5 GHz

If cars improved similarly, could now drive from SF to NYC in 13 seconds!
(Courtesy of the Intel Museum)
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Logical Abstraction

@ Electrical engineers routinely analyze circuits with thousands or even
millions of interconnected complex components.

Logical abstraction is essential to reason about such complex systems.
Can logical abstraction be applied to biochemical circuits?
Regulation of genetic circuits controlled by Hill functions.

In the limit, these Hill functions become step functions which can be
encoded logically.
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Overview

Logical encoding

Piecewise models

Stochastic finite-state machines
Markov chain analysis

Qualitative logical models

Chris J. Myers (Lecture 10: Abstraction) Engineering Genetic Circuits



Logical Encoding

@ Electrical circuits often classified as being either analog (i.e., having
continuous valued states) or digital (i.e., having discrete valued states).

@ Analog circuits must be analyzed using ODEs while digital circuits can be
analyzed using switch-level simulation.

@ Digital circuits are actually also analog circuits, but logical abstraction
reduces their complexity of analysis.

@ Logical abstraction essential since complex integrated circuits cannot be
efficiently analyzed using ODEs.

@ Can the efficiency of genetic circuit analysis also be improved using such
a logical abstraction?
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Hill Functions

@ Inhibition and activation can be modeled with Hill functions:
1 or X
(1+Kx"") (1+K"x)

where 0; = {/a/(K; — akK;) is the critical threshold where the change
occurs, and a is an amplifier in the range of [0.5,1.0).

@ As nincreases, time spent in the transition region decreases and the
function begins to behave like a step function.

@ In this case, x; could be encoded using a binary variable which is false
when x; < 6; and true when x; > 6.
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Critical Thresholds and Intervals

@ Assume that species x; has N; thresholds 6}, ,Gj’, ,GI-V’ that satisfy:

P Ni+1
6°<61<...<6/’-<...<6] <6’+

where 69 = 0 and 9N+1
o States partitioned into critical intervals (A?, A} .. ,AII-V’) where
ol ot
Al=[67,6,"").
@ An n-ary variable b; is created which can take any value in {0, 1, ..., N;}.

@ Initial value of by is the largest i such that [x]]o > 6] where [x]o is the
initial concentration of x;.

@ Critical thresholds divide space into n-dimensional regulatory domains
that are separated by hyperplanes x; = 6’

@ The total number of these n-dimensional domains is:

[T (N;+1)

@ An assignment to each b; uniquely selects an individual domain.
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Regulatory Domains

63
63
X2
6}
03
63
X3
0 0! 02 63

Chris J. Myers (Lecture 10: Abstraction) Engineering Genetic Circuits 12/108



Example Encoding for CI/CII Portion of Phage A

@ Abstracted model:

d[Cl] np Pre RNAP(KkyKo1 + kaKa[CII])

_ — ky[CI
dt 1+ Ko RNAP + K,RNAP[CI] (]
d[Ci] np koPrKop RNAP
aiell _ — kg[CI]
dt 1+ K2 ANAP + K, K4[CI]2

@ Critical thresholds and intervals assuming the amplifier, a, is 0.5:

9}:/ = L =7, 91:// = L =21
VK Ky KRNAP
=1[0,7),Ap =[7.), Az =1[0,21),Af;, = [21,00)
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Piecewise Linear Differential Equations

@ Piecewise linear differential equation (PLDE):

ax; ,
j:ﬁ(x)—gj(x)xj j=1,...,n
where f; and g; are piecewise constant functions and x = [X1,...,x7] isa

vector of species concentrations.
@ Each f; and g; changes value when a x; crosses a threshold Gj’
f(x) = Y oyBy(x)>0
leL
where oy is a constant, and By is composed of a conjunction of terms of
the form (bx = i).

@ Example:
d[Ci
[dt] = np PRE(kb+ ka(bCIl = 1)) - kd[CI]
d(Cll
[dt] —  np koPr(bor = 0) — ks[ClI]
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@ Inside each domain B, behavior is linear and quite simple.

@ Bis defined by a Boolean formula of the form: (by = iy) A... A (b, = ip)
and denoted by a state vector of the form (is ... ip).

@ Denote f=[f,...,f,] within Bby &, and g = [g1, ..., 9] by g°.

@ Within domain B, the behavior of x reduces to the simple linear
differential equation 2* = & — gBx which has the solution:

X(t) = B+ (X(t) — dB)e" o)  where dF =15/g8
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Solutions: Example

@ The domains are (00), (01), (10), and (11).
@ The solutions are:

e _ <np koPr npkaRE> = (19,0.05)

ka o

np kP,
oo = (o, ) F'E) (0,0.05)
10 _ ”Pk PH np Pre(kp + Ka) — (19,20)
kg ’
Pre(kp + k.

ol — (O’np re (Ko + a))_(0720)
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Black, White, and Transparent Boundaries

@ As t — oo, X(t) approaches ®2 until it reaches a boundary.
o If B is within B, then X(t) reaches a stable stationary point at ®&.
@ Assuming that B is bounded between 6/ and 6]

o If ® < 6/, all trajectories in B that reach x; = ] are leaving B.

o If®B > 9;“, all trajectories in B that reach x; = 9;“ are leaving B.

o 116] < ®5 < 6/"", all trajectories that reach x; = 6] or x; = /™" enter B.
@ A boundary between two domains is transparent if trajectories enter one
domain and leave the other domain through this boundary.
A boundary is black if trajectories leave both domains from this boundary.
A boundary is white if trajectories enter both domains from this boundary.
If a boundary is black or white, the result is a sliding motion.
If the boundary is black, then the solution proceeds along the boundary
until it either reaches another boundary or a stable point on the boundary.

@ If the boundary is white, the solution can either proceed sliding along the
boundary or leave it at any point, since a white wall is unstable.
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Example Flow Graph for CI/CII Portion of Phage A

6%
b1 e ¢1(l

(01) <= (1)

0L, U

(00) <= (10)
¢01 q)OO
[ )
0 91CII 92CII
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Labeled Hybrid Petri Nets

@ Hybrid Petri nets can represent piecewise differential equation models.

@ HPNs include both a discrete part that can model discrete states such as
the current regulatory domain that the system is in as well as a continuous
part that can model continuous quantities like species concentrations.

@ Numerous ways to add continuous quantities to Petri nets.

@ Labeled hybrid Petri nets (LHPNs) add the continuous values as auxiliary
variables that evolve over time.

@ These variables can be sampled in enabling conditions on transitions.
@ Their rates of change can be modified by assignments on transitions.
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LHPN Model of the CI/CII Portion of Phage A

cI>8
i ._ A
9l 0,05,
dcll .__

& =0
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Piecewise Model for the Phage A Decision Cirucit
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Stochastic Finite-State Machines

@ Piecewise models still track exact concentrations of each species making
their state space infinite.

@ A stochastic finite-state machine (FSM) only tracks the n-ary encoding
value for each species.

@ Creates a purely logical representation of the genetic circuit.

@ Analysis of a stochastic FSM can be accomplished using either stochastic
simulation or Markov chain analysis.

@ A stochastic FSM can often be efficiently analyzed while maintaining the
high-level quantitative behavior.
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Reaction Splitization

@ SAC model transformation requires reaction model to satisfy the property
that all reactions have either one reactant or one product, but not both.

@ Often true after applying the reaction-based abstractions, but if not, it can
be made to hold using reaction splitization.
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Reaction Splitization Example

S1 §2
\ /

f([s1],[s2])

/ \
S3 S4
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Reaction Splitization Example

S1 m , S2
rl m
f([s1],[s2]) f([s1],[s])
/ K
S3 S4
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Reaction Splitization Example

f([s1],[s2]) f([s1],[s2]) f([s1],[s2])

N

S3 S4
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Reaction Splitization Example

S1 S2

P N B

f([s1],[s2]) f([s1],[s2]) f([s1],[s2]) f([s1],[s2])

T

S3 S4
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Guarded Commands

@ A stochastic FSM is specified using a set of guarded commands.
@ Each guarded command, ¢, € C, has a form:

Gk(b) L5 by =i

where the function Gk (b) is the guard, g is the transition rate, and i is
the n-ary value assigned to b; as a result of ¢.

@ A guard is a conjunction of literals of the form (b; = /).

@ Each guarded command, cy, is required to monotonically change the
state of some variable in b.

@ If b; is assigned to i by ¢, then the guard must include a term of the form
(bj=i—1)or(bj=i+1).
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Guarded Command Generation: ClI

@ Production of Cl:

bci=0Abgy=0 l> be =1
bci=1Abgy=0 2) b =2
b =0Abgy =1 ﬂ) ber =1
bor=1Aboy=1 2 bg:=2
b =0Abegy=2 i ber =1
ber=1Abcy=2 i} be =2
bei=0Abcy=3 E7—> ber =1
bey=1Abgy=3 ﬁ) be =2

@ Degradation of Cl:
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Guarded Command Generation: ClI

@ Production of ClI:

2

bey=0Abey =0 % bgy:=1
bey=0Abey=1 22 bgy:=2
be=0Abey=2 2% bgy:=3
bci=1Abgy=0 G, bey =1
boy=1Aboy=1 L% boy:=2
ber=1Abgy=2 RN beoy =3
bci=2Abgy=0 a7, bey =1
boy=2Aboy=1 L& boy:=2
boy=2Abey=2 % bgy:=3

@ Degradation of Cll:
bey=3 ﬂ) bey =2
beyy =2 qi) bey =1

boy=1 2 bey:=0
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Transition Rate Generation

@ For each guarded command cx that increases b; to i:

m-;(©)
T gt
I
where m is the stochiometry of s in the corresponding reaction, f(©) is
the rate law for this reaction, and © is the critical levels that satisfy Gk(b).

@ For each guarded command ¢y that decreases b; to i:
m-1(©)

Ak = T
0 —6;
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Transition Rate Generation Example: ClI

@ Production of ClI:

bei=0Abey =0 b =1 g =10-£(0)/6
bor=1Aboy =02 bg:=2 g =10-£(0)/(85 — 6
bor=0Abgy =12 be:=1 g =10-1(67") /67
boi=1Aboy=12bg:=2 gy =10-1(65")/(65" — 6"
boi=0Aboy=2"bgi=1 g5 =10-£(65")/6{
boi=1Aboy=2 " bg:=2 g5 =10-£(85")/(65" —6")
bei=0Abey =3 bo:=1 g7 =10-£(85")/6¢
bor=1Abey=3 2 bgy:=2  gs=10-£(05")/(65' —6<)

@ Degradation of Cl:
boi=2Lboi=1  qo=15(05")/(65 — ")
bC/:1 ﬂ>bC/Z:0 Q10:f2(91CI)/91CI
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Stochastic FSM Simulation

@ If the process being modeled is in the state b, ¢, can be executed if its
guard is satisfied (i.e., Gx(b) evaluates to true).

@ The result of executing the guarded command is that a new state b’ is
reached in which b — jand b, = by and for all / # .

@ The probability that ¢ is executed is:
P(Ck) = Gk(b) *Qk At

where At must be small enough such that the probability that two or
more commands are executed in that time interval is negligible.

@ The probability that no transition is taken in a At time step is:

(1= (2, Gi(s) - i - A1)
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Stochastic FSM Simulation

@ A stochastic FSM can be analyzed using multiple stochastic simulation
runs beginning in state byg.

@ In each state, simulation process determines whether or not to execute a
guarded command in the next At.

@ If guarded command executed, assignment is performed resulting in a
new state, and transition probabilities are recalculated.

@ Process continues until desired simulation time has been reached.

@ This process is inefficient, since for small At, number of simulation steps
that do not result in a state change increases significantly.

@ More efficient to use SSA to jump to time of the next state change.
@ Can also be efficiently analyzed using Markov chain analysis.
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Markov Chains

@ Markov processes satisfy the Markov property:

PriX(t+1) <y | X(s)=x(s),Vs<t] =
PriX(t+71) <y | X(t)=x(t)], V>0

@ Process is memoryless (i.e., the time that will be spent in a state is
independent of the time already spent there).

@ A homogeneous Markov process does not depend on the time ¢:
PriX(t+7)=y | X(t)=x] = PriX(t)=y|X(0)=x],Vt,1>0

@ A Markov chainis a Markov process with a discrete state space.
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Discrete-Time Markov Chains (DTMC)

@ States observed only at discrete time points.

@ Homogenous DTMC'’s specified by a transition probability matrix, P,
composed of single-step transition probabilities of this form:

pj = Pr[Xot1=j|X,=i], foralln=0,1,...

where 0 < p; <1 a”dZaujPijZ 1.
@ Weather in Salt Lake City, Utah in January (snowy, overcast, clear):

04 04 0.2

P = 0.7 0.3 0.0
03 0.2 0.5
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n-Step Transition Probabilities

@ n-step transition probabilities can be obtained as follows:
p" = ppn—1)
@ Example:

0.5 0.32 0.18
P2 = 0.49 0.37 0.14
0.41 0.28 0.31
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n-Step Transition Probabilities

@ n-step transition probabilities can be obtained as follows:
p" = ppn—1)
@ Example:

0.48 0.33 0.19
P =p> = 0.48 0.33 0.19
0.48 0.33 0.19
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Classifications of States

@ A state is transient when there is a non-zero probability that the DTMC
will at some point never return to that state.

@ A state is recurrent when the DTMC is guaranteed to return to this state
at some point in the future.

A state is positive-recurrent when its mean time to revisit is finite.
A state is null-recurrent when its mean time to revisit is infinite.

In a finite Markov chain, all states are transient or positive-recurrent.

A state j is periodic with period p when upon leaving j it can only be
returned to after a number of transitions that is a multiple of p > 1.

A state with p = 1 is aperiodic.
An ergodic Markov chain is positive-recurrent and aperiodic.
A DTMC is irreducible if every state can be reached by every other state.

A finite, aperiodic, irreducible Markov chain is ergodic.
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Limiting and Steady-State Distributions

@ Often interested in determining the probability of being in a state:
mi(n) = PriX,=1i]
@ Probability vector for all states is written is follows:
n(n) = [mi(n),m2(n),...,mi(n),...]
@ The limit as n goes to o is the limiting distribution:
T o= Jmon(n)

@ In an ergodic Markov chain, limiting distribution is also known as a
steady-state distribution and satisfies:
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Computing the Steady-State Distribution

Can multiply P by itself repetitively or squaring the matrix.

Drawback is the time and memory requirements for matrix multiplication.
P is typically a very large and sparse matrix (i.e., many entries are zero).
After squaring, zero entries take non-zero values.

If kept sparse, P can be represented with sparse matrix data structure.

Numerous methods developed to find the steady-state distribution.
Two types of methods presented here:

e Direct methods
o [terative methods
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Direct Methods

@ Solve system of equations given by © = 1tP.
@ Use Gaussian elimination or other methods.

@ Example:

04 04 0.2
[soc] = [soc]| 0.7 03 0.0
03 0.2 0.5
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Direct Methods

@ Solve system of equations given by T = 1tP.
@ Use Gaussian elimination or other methods.

@ Example:

[soc] = [(0.4540.70+0.3c)(0.4s+0.30+ 0.2¢)(0.2s+ 0.5¢)]
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Direct Methods

@ Solve system of equations given by T = 1tP.
@ Use Gaussian elimination or other methods.
@ Example:

= 0.45+0.70+0.3c
= 0.45+0.30+0.2c
= 0.25+0.5¢
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Direct Methods

@ Solve system of equations given by T = 1tP.
@ Use Gaussian elimination or other methods.

@ Example:
s = 048
o = 033
c = 0.19

38/108
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lterative Methods

@ lterate using T, = ®,_ P until convergence.

@ Convergence can be slow and periodicity must be determined.
@ Convergence rate dependent on initial state vector.

@ Example:

04 04 02
n(1) = [1.0 0.0 0.0][ 0.7 03 00
0.3 02 05

n(1) = [0.4 0.4 0.2]
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lterative Methods

@ lterate using T, = ®,_ P until convergence.
@ Convergence can be slow and periodicity must be determined.
@ Convergence rate dependent on initial state vector.

@ Example:
04 04 02
n(2) = [0.4 04 0.2]| 0.7 0.3 0.0
0.3 0.2 05
n(2) = [0.5 0.32 0.18]
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lterative Methods

@ lterate using T, = ®,_1 P until convergence.

@ Convergence can be slow and periodicity must be determined.
@ Convergence rate dependent on initial state vector.

@ Example:

04 0.4 02
n(3) = [0.50.32 0.18]( 0.7 0.3 0.0
03 02 05

n(3) = [0.48 0.33 0.19]
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lterative Methods

@ lterate using T, = ®,_1 P until convergence.

@ Convergence can be slow and periodicity must be determined.
@ Convergence rate dependent on initial state vector.

@ Example:

04 04 02
n(4) = [0.48 0.33 0.19]( 0.7 0.3 0.0
0.3 02 05

n(4) = [0.48 0.33 0.19]
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Convergence

@ When iterations are converging rapidly, can check:
(k) —n(k=1)[| < e

where ||x|| = /X2 + ...+ x2 and € is the desired accuracy.
@ When iterations are converging slowly, it is better to check:

[n(k) —m(k—m)l| < e

where m should be set based on the convergence rate.

@ Problems occur when probabilities are small, so should normalize:

(k) — Tk — m)|
max( [ (k)| >< ¢
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@ The period of a irreducible Markov chain is:

p = gcd(hy..oyiye.osl)

where gcd is the greatest common divisor, /; is the length of the i cycle
in the Markov chain, and c is the total number of cycles.

@ A periodic Markov chain (i.e., p > 1) does not converge for all m.

@ Example:
0.0 0.7 0.3
n(1) = [1.0 0.0 0.0] | 1.0 0.0 0.0
1.0 0.0 0.0
n(1) = [0.0 0.7 0.3]
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@ The period of a irreducible Markov chain is:

p = gcd(hy..oyiye.osl)

where gcd is the greatest common divisor, /; is the length of the i cycle
in the Markov chain, and c is the total number of cycles.

@ A periodic Markov chain (i.e., p > 1) does not converge for all m.

@ Example:
0.0 0.7 0.3
n(2) = [0.0 0.7 0.3]| 1.0 0.0 0.0
1.0 0.0 0.0
n(2) = [1.0 0.0 0.0]

Chris J. Myers (Lecture 10: Abstraction) Engineering Genetic Circuits 41/108



@ The period of a irreducible Markov chain is:

p = gcd(hy..oyiye.osl)

where gcd is the greatest common divisor, /; is the length of the i cycle
in the Markov chain, and c is the total number of cycles.

@ A periodic Markov chain (i.e., p > 1) does not converge for all m.

@ Example:
0.0 0.7 0.3
n(3) = [1.0 0.0 0.0] | 1.0 0.0 0.0
1.0 0.0 0.0
n(3) = [0.0 0.7 0.3]
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Periodicity: Simple Solution

@ Check convergence only after each p steps.

@ When converged, combine steady state distributions from last p steps.
@ Normalize by p.

@ Example:

n = [1.0 0.7 0.3]/2
= [0.5 0.35 0.15]
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Continuous-Time Markov Chains (CTMC)

@ States can change at any arbitrary point in time.

@ Specified using a transition rate matrix rather than a transition probability
matrix which is defined as follows for a homogeneous CTMC:

pi(t) = PriX(s+1)=Jj|X(s)=1i]
. pi(At) L
i = | f
9 Altrgo{ At for i
qi = _ZQIj
J#i
@ Example:
-6 4 2
Q = 4 —4 0
4 4 -8
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Embedded Markov Chain

@ Can find the steady-state distribution of a CTMC using its discrete-time
embedded Markov chain (EMC).

_¢D61
1003 (|4

where ¢ is steady-state distribution for the EMC, D" is the inverse of the
diagonal matrix of Q, and ||0Dg" ||1 is the norm of the D5 vector.

@ Probabilities for an EMC for Q are defined as follows:

gj L
i
sj = {Zi#iqi/” #J

0 i=j
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Embedded Markov Chain Example

-6 4 2
Q = 4 -4 0
4 4 -8
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Embedded Markov Chain Example

6 4 2
Q = 4 -4 0
4 4 -8
0 0.67 0.33
S = 1 0 0
05 05 0

Chris J. Myers (Lecture 10: Abstraction) Engineering Genetic Circuits 45/108



Embedded Markov Chain Example

0 0.67 0.33
S = 1 0 0
05 0.5 0

¢ = [0.46 0.39 0.15]
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Embedded Markov Chain Example

6 4 2
Q = 4 —4 0
4 4 -8
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Embedded Markov Chain Example

[0.46 0.39 0.15]
0.167 0 0

-Dy' = 0 025 0

0 0 0.125

<
I

|
<
O
ol
I

[0.08 0.1 0.02]
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Embedded Markov Chain Example

—¢D,' = [0.08 0.1 0.02]

0.2

10Dg"[I1
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Embedded Markov Chain Example

—¢Dgp' = [0.08 0.1 0.02]
l0Dg'[l+ = 0.2
—oD=!

= Lﬁ [0.4 0.5 0.1]
1005 (|1
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Guarded Commands for Cl

@ Production of ClI:

ber=0Aboy =02 bg:=1 g =10-£(0)/6
bor=1Aboy =02 bg:=2 g =10-£(0)/(85 — 6
bor=0Abey =12 bgy =1 g = 10-1,(65") /6
bor=1Nbor=12bo:=2  qu=10-£(85") /(85 — 6
boi=0Aboy =22 bej:=1 g5 =10-1(85")/6¢
boi=1Nboy =22 bo:=2 g5 =10-£(85") /(85 — 6
boi=0Abey=3 T bg:=1 g7 =10-£(05")/6%
bor=1Abcy =32 be:=2 g5 =10-%(65")/(65' —6%)

@ Degradation of Cl:
boi=2Lboi=1  qo=15(05")/(65 — ")
bC/:1 ﬂ>bC/Z:0 Q10:f2(91CI)/91CI
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Reachable State Space
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CTMC Transition Rates
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EMC Transition Probabilities
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Initial State Probabilities

0.99999 @
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State Probabilities
0.99999
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State Probabilities
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State Probabilities
0.99999

n=21
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State Probabilities

0.99999 @

n=31
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State Probabilities

0.99999 @

Chris J. Myers (Lecture 10: Abstraction) Engineering Genetic Circuits 51/108



Steady-State Distribution of the EMC

0.99999
0.004
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Steady-State Distribution of the CTMC

0.000003

0.0002
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Steady-State Distribution of the CTMC
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Steady-State Distribution of the CTMC

0.000003
0.0002
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Fraction of Lysogens vs. API
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Fraction of Lysogens vs. API
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Stochastic FSM results generated in only 7 minutes.
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Fraction of Lysogens vs. API
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Transient Solutions

@ Goal: calculate, m;(t), the probability of being in state i at time t.
o m(t) = (mo(t),m1(t),...) is the vector of all such probabilities.

a(t) = n(0)P(t)

where p;(t) = Prob{X(t) =j | X(0) =i}.
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Transient Solutions

@ Goal: calculate, m;(t), the probability of being in state / at time t.
o 7i(t) = (mo(t),m1(2),...) is the vector of all such probabilities.

n(t) = w(0)P(1)
where pj(t) = Prob{X(t) =j | X(0) = i}.
@ Chapman-Kolmogorov Forward Equation:

13:) — 2(1)Q
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Transient Solutions

@ Goal: calculate, m;(t), the probability of being in state i at time t.
o 7(t) = (mo(t),m(t),...) is the vector of all such probabilities.

) = n(0)P(t)

where p;(t) = Prob{X(t) =j | X(0) =i}.
@ Chapman-Kolmogorov Forward Equation:

PO~ pa
P(t) = ¥

Chris J. Myers (Lecture 10: Abstraction) Engineering Genetic Circuits 55/108



Transient Solutions

@ Goal: calculate, m;(t), the probability of being in state / at time t.
o 7t(t) = (mo(t),m1(t),...) is the vector of all such probabilities.

n(t) = m(0)P(t)

where pj(t) = Prob{X(t) =j | X(0) = i}.
@ Chapman-Kolmogorov Forward Equation:

P(t)

20— ena
P(t) = &%
n(t) = n(0)e¥
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Uniformization

n(t) = mn(0)e
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n(t) = n(0)e

t k
R Z (Q)
P = I+1FQ where I' = max| qji|
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n(t) = m(0)e¥
o (anf
= k!
Q = T[(P—1) wherel = maxi|qil

D
9

I
]

=
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’n(t) = TC(O)th
P (e/s
o = ) K|
k=0
Q = T[(P—1) wherel = max|qil
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n(t) = n(0)e
a _ v (@)
= Ly
k=0
Q = T[(P—1) wherel = max|qil
e — Pt
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n(t) = n(0)e
a _ v (@)
= Ly
k=0
Q = T[(P—1) wherel = max|qil
e — o TtglPt

Chris J. Myers (Lecture 10: Abstraction) Engineering Genetic Circuits 56/108



n(t) = n(0)e”
QO i(it!)k

=

=0
Q = T[(P—1) where = max|qjl

o e (TPX
e? = e ;(;)7"!
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n(t) = n(0)e”
QO i(it!)k

=

=0
Q = T[(P—1) where = max|qjl

o _ —rrz k(rt)
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n(t) = m(0)e¥
¢ o (O
e = kgo Kl

Q = T[(P—1) wherel = maxi|qil
)
th _ 7rt Z ( )

n(t) = O)e’”ZPk ”)
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n(t) = m(0)e¥
¢ o (O
e = kgo Kl

Q = T[(P—1) wherel = maxi|qil
)
th _ 7rt Z ( )

n(t) = *”Z n(0)P< LU ”)
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n(t) = m(0)e¥
a _ v (o
M

Q = T(P—1) wherel = max;|q;l
o gl

TC(t) — fFIZ (0 Pk(rt)

m(0)P* = ((O)P" P
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Truncation Error

TC(t _ —rt Z (rt)
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Truncation Error

Ft)k

TC* — frt Z (0
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Truncation Error

) o~ ety (ro)k

T = rlgoﬁ(O)Pk Kl
K k
0w @l < 1-eF
k=0 :
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Truncation Error

= k!
K (Tt)
ok o < 1 —It (
I 2(t)-7(0) | < Y
K K
ey (M)
1 ) - S €
k=0 K
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Truncation Error

w0 = oy xoe )
| m(t) =7 () [ < 1 —né(rk?k
L _”é(rk?k < e
kio (Fkt|)k . 1e e
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Transient Analysis Algorithm

Q@ K=0,E=1,0=1
@ n=>1-¢g)/e
© Whiles <mndo
Q@ K=K+1
@ t=Cx(M)/K
©@ 6=0+¢§
Q@ n=y=m(0)
© Fork=1toKdo
0 y=yPx(lt)/k
Q@ T=Tn+y
QO n(t)=e"n
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Transient Analysis Example

6 4 2
Q = 4 —4 0
4 4 -8
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Transient Analysis Example

6 4 2
Q = 4 -4 0
4 4 -8
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Transient Analysis Example

-6 4 2
Q = 4 —4 0
4 4 -8
r = 8
e = 0.01
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Transient Analysis Example

-6 4 2
Q = 4 —4 0
4 4 -8
r = 8
e = 0.01
n(0) = [1.0 0.0 0.0]
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Transient Analysis Example

-6 4 2
Q = 4 —4 0
4 4 -8
r = 8
e = 0.01
n(0) = [1.0 0.0 0.0]
t = 0.01
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Transient Analysis Example

-6 4 2
Q = 4 —4 0
4 4 -8
r =8
e = 0.01
n(0) = [1.0 0.0 0.0]
t = 0.01
n o= 1.1
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Transient Analysis Example

-6 4 2

Q = 4 —4 0
4 4 -8

r =8

e = 0.01

n(0) = [1.0 0.0 0.0]

t = 0.01

n = 1.1

K = 1
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Transient Analysis Example

-6 4 2
Q = 4 —4 0
4 4 -8
r =8
g = 0.01
n(0) = [1.0 0.0 0.0]
t = 0.01
n = 1.1
K = 1
1(0.01) = [0.94 0.04 0.02]
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Transient Analysis Example

-6 4 2
Q = 4 —4 0
4 4 -8
r = 8
e = 0.01
n(0) = [1.0 0.0 0.0]
t = 0.1
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Transient Analysis Example

-6 4 2
Q = 4 —4 0
4 4 -8
r =38
e = 0.01
n(0) = [1.0 0.0 0.0]
t = 0.1
n = 22
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Transient Analysis Example

-6 4 2

Q = 4 —4 0
4 4 -8

r = 8

e = 0.01

n(0) = [1.0 0.0 0.0]

t = 0.1

n = 22

K = 3
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Transient Analysis Example

-6 4 2
Q = 4 —4 0
4 4 -8
r = 8
g = 0.01
n(0) = [1.0 0.0 0.0]
t = 0.1
n = 22
K = 3
n(0.1) = [0.62 0.27 0.10]
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Transient Analysis Example

-6 4 2
Q = 4 —4 0
4 4 -8
r = 8
e = 0.01
n(0) = [1.0 0.0 0.0]
t = 1.0
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Transient Analysis Example

-6 4 2

Q = 4 —4 0
4 4 -8

r = 8
e = 0.01

n(0) = [1.0 0.0 0.0]
t = 1.0
n = 2951
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Transient Analysis Example

-6 4 2

Q = 4 —4 0
4 4 -8

r =38

e = 0.01

n(0) = [1.0 0.0 0.0]

t = 1.0

n = 2951

K = 15
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Transient Analysis Example

-6 4 2

Q = 4 —4 0
4 4 -8

r = 8
e = 0.01

n(0) = [1.0 0.0 0.0]
t = 1.0
n = 2951
K = 15

n(1.0) = [0.4 0.5 0.1]
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Classical Chemical Kinetics: ODE Analysis

Genetic Toggle ODE Simulation Results
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Stochastic Simulation of the Genetic Toggle Switch

Genetic Toggle SSA Simulation Results

70
65

45
40
35
30
25
20
15
10

Number of Molecules

60 A
55
50

|

0 2,500 5,000

Chris J. Myers (Lecture 10: Abstraction)

7,500

10,000 12,500 15,000
Time (s)

= aTc GFP - PTG

Engineering Genetic Circuits

17,500 20,000 22,500 25,00

61/108



Stochastic Simulation of the Genetic Toggle Switch
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Genetic Toggle Stochastic Simulation Results
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Population Simulation for Toggle Switch Failure

(Loading ToggleFailSim.mov)

Stevens et al., ACS Synthetic Biology (2013)
Watanabe et al., Frontiers (2014)
Watanabe et al., ACS Synthetic Biology (2016)
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ToggleFailSim.mov
Media File (video/quicktime)


Population Simulation for Toggle Switch Response Time

(Loading ToggleResponseSim.mov)

Stevens et al., ACS Synthetic Biology (2013)
Watanabe et al., Frontiers (2014)
Watanabe et al., ACS Synthetic Biology (2016)
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ToggleResponseSim.mov
Media File (video/quicktime)


Abstraction for Genetic Circuits

SBML Reaction-based Aggggt?éid __|State-based| _ nggggtlic . Stﬁ,%];;t'c
Abstraction | Abstraction ;
Model Model \ Model Checking
L Generate Detailed Full Stochastic / J
Reaction Model R&afg'f?” Simulation Results
ode

Kuwahara et al., Trans. on Computational Systems Biology (2006).

Kuwahara et al., Journal of Computational Biology (2008).

Kuwahara et al., PLoS Computational Biology (2010).

Madsen, Zhang et al., Comp. Int. in Bioinfo./CompBio., 2012 (best student paper).
Madsen, Zhang et al., ACM Jour. on Emerging Tech. in Comp. Sys. (2014).
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Abstraction for Genetic Circuits

SBML Reaction-based Aggggt?éid ___|State-based| _ nggggtlic . Stﬁ,%];;t'c
Abstraction | Abstraction ;
Model Model Model Checking
L Generate Detailed Full Stochastic / J
Reaction Model R&a(gn?n Simulation Results
ode

Kuwahara et al., Trans. on Computational Systems Biology (2006).

Kuwahara et al., Journal of Computational Biology (2008).

Kuwahara et al., PLoS Computational Biology (2010).

Madsen, Zhang et al., Comp. Int. in Bioinfo./CompBio., 2012 (best student paper).
Madsen, Zhang et al., ACM Jour. on Emerging Tech. in Comp. Sys. (2014).
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Abstraction for Genetic Circuits

- i Stochastic
Reaction-based Abstracted [ State-based| _ Stochastic
,\SAEZA;] Abstraction Reaction ~| Abstraction |~ Logical ] C:YIO?(G-"I
Model Model ecking
L Generate Detailed Full .| Stochastic / J
Reaction Model R&afg'?n Simulation Results
ode

Kuwahara et al., Trans. on Computational Systems Biology (2006).

Kuwahara et al., Journal of Computational Biology (2008).

Kuwahara et al., PLoS Computational Biology (2010).

Madsen, Zhang et al., Comp. Int. in Bioinfo./CompBio., 2012 (best student paper).
Madsen, Zhang et al., ACM Jour. on Emerging Tech. in Comp. Sys. (2014).

66/108

Chris J. Myers (Lecture 10: Abstraction) Engineering Genetic Circuits



Abstraction for Genetic Circuits

. - Stochastic
Reaction-based Abstracted [ State-based| _ Stochastic
I\S/IEZA;_I T Abstraction |  Reaction 7] Apstraction |~ Logical T ChMocliel
Model Model ecing

L Generate Detailed Full Stochastic / J
> Reaction — 7] Results

Reaction Model Simulation
Model

Kuwahara et al., Trans. on Computational Systems Biology (2006).

Kuwahara et al., Journal of Computational Biology (2008).

Kuwahara et al., PLoS Computational Biology (2010).

Madsen, Zhang et al., Comp. Int. in Bioinfo./CompBio., 2012 (best student paper).
Madsen, Zhang et al., ACM Jour. on Emerging Tech. in Comp. Sys. (2014).
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Genetic Toggle Switch: Original Model

IPTC Lacl
internal | internal |

f e 4o e
AddIPTG f £ s
Ty v e
i T ]
internal J P2 =
RemovelPTG i
Cell
ate TetR ) CFP 3
internal internal | d internal

AddATC
RemoveATC 52
internal
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Genetic Toggle Switch: Full Reaction Model

PZ ]
internal
e
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Genetic Toggle Switch: Abstracted Reaction Model

| AddIPTG | |Ranme|rrrc| | AddATC | |REmnveATC|

IP;FG & [ . afc | ]
internal ‘ (L

. P s
o duction_P1 R_ahstract_duction_PZ

R_abstracte

| 3 Cell X
10.0 10.0 : 10.0
TetR CFP Lacl
internal | internal | internal
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Abstraction Results for the Genetic Toggle Switch

Genetic Toggle SSA Simulation Results

70
65

2 AT ]

45
40 ‘
35 |
30 ‘

25

20 ‘
15
10
° [ |
0 2,500 5,000 7,500 10,000 12,500 15,000 17,500 20,000 22,500 25,00

Time (s)

|-I— aTc GFP (abstract) GFP (full) +IPTG|

Number of Molecules

Average of 100 simulation runs.
Full results in about 4 minutes while abstracted results in 15 seconds.
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State-based Abstraction
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State-based Abstraction

Lacl=100
TetR=0

Lacl=100
TetR=10

Lacl=10
=10 — TetR=10

di1/10

Lacl=10
TetR=100

Lacl=100
TetR=100

Lacl=0
TetR=100
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State-based Abstraction

@ Our method partitions the state space into equivalence classes given a
level set for each species.

@ It begins by creating a sparse matrix where each entry, p; ;, represents
the rate of moving from state i to state j.

@ A state is then created with an encoding of the initial values of the species
in the genetic circuit.

@ Next, a depth first search is performed by changing species values to find
the state space.
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State Graph for Toggle Switch

@ Levels selected at 0, 30, and 60 for both Lacl and TetR.

<Lacl, TetR>
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Transition Rate Calculations

@ The transition rates of moving between states are computed using either
an operator site reduction approximation which uses a quasi-steady state
assumption or an amplified degradation rate.

Y, np-rate(p)

P
production(s,/,/') = %
kal’
degradation(s,/,/') = (/,d_ D)
npkongKonr i
if |Act(p)| =0
1+Kon+ ), (Krvs,)™ Aele)
s-€Rep(p)
rate(p) = NpkongKonr + ) MpkangKoan:(Kavs,)"™
sa€Act(p) otherwise
1+ Kony + Z (Ker,)nc + Z Koanr(KaVSa)nc
s,€Rep(p) sacAct(p)

@ These rates are added to the transition matrix resulting in a continuous
time Markov chain (CTMC).
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CTMC for Toggle Switch

0.001454

0.001454 0.001454
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@ In order to determine the probability of an interesting event, a property
that represents an event occurring in the system must be specified.

@ This is accomplished with a subset of continuous stochastic logic (CSL):

Prop = U(T,V,V)|F(T,V)|G(T,¥)|st(V)
VU o= true| VAV |-V [0>0]0>0|0=0
0 == vilclo+0/0—¢|0x0]0/0|Prop
T = true|T/\T’—|T|Z‘ZC,"t>C,'|f=C,'

@ For example, the property, F(t < 100, Lacl = 0), can be used to
determine the probability that Lacl goes to 0 within 100 seconds.
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Pruned CTMC for Toggle Switch

F(t <100,Lacl = 0)

0.001454

0.001454 0.001454
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Pruned CTMC for Toggle Switch

F(t <100,Lacl = 0)

<Lacl,TetR>
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Markov Chain Analysis

@ The CTMC can be analyzed using steady state Markov chain analysis or
transient Markov chain analysis.

@ Steady state Markov chain analysis uses the power iteration method to
compute the invariant distribution of the CTMC.

@ Transient Markov chain analysis uses the uniformization method to
determine the probability of being in each state at a specified time.
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Probability of Satisfying the Property

F(t <100,Lacl = 0) ~ 0.0591

S2 0.000366 S1 0.000366 SO
<60,60> <60,30> <60,0>
Prob = 0.0001 Prob = 0.0130 Prob = 0.8416

S3 S4 S5
<30,0> <Lacl,TetR>

<30,60> <30,30>
Prob = 0.0006 0.001454 Prob = 0.0125 0.001454 Prob = 0.0731

S8 S7 S6
<0,60> <0,30> <0,0>
Prob = 0.0002 Prob = 0.0049 Prob = 0.0540
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Repressilator

o @ Lacl @ TetR @
f t }

cf lacl tetR

@ Applied steady-state analysis to the repressilator using 9 levels evenly
spaced between 0 and 80 for Cl, Lacl, and TetR.

@ Determine the likelihood that the value of the Cl species is low and goes
high or is high and goes low within a predetermined amount of time.

st((Cl > 30 AF(t < limit,Cl < 30) > 0.95)V
(Cl < 30 AF(t < limit,Cl > 30) > 0.95))

@ Verification w/STORM (RWTH Aachen) completes in < 1 second.
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Repressilator

Repressilator Probability of Oscillating
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Dual-feedback Genetic Oscillator

AraC °
> [ ]
Lacl . @ Q@
L)

lacl araC

@ Applied steady-state analysis to this oscillator using 8 levels evenly
spaced between 0 and 120 for AraC and Lacl.
@ Determine the likelihood that the value of the AraC species is low and
goes high or is high and goes low within a predetermined amount of time.
st((AraC > 60 AF(t < limit, AraC < 60) > 0.95)V
(AraC < 60 AF(t < limit,AraC > 60) > 0.95))
@ Verification w/STORM (RWTH Aachen) completes in < 1 second.
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Dual-feedback Genetic Oscillator

Dual-Feedback Oscillator Probability of Oscillating
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Genetic Toggle Switch Failure Rate

cz @O €«—@ aTc

¢t @O© «—@ PTG T
T @ TetR
Lacl . 1 Q@ crp

1 t

trc 2
lacl tetk GFP
| | A
Operator sn
Promoters

Genes

-

@ Applied transient analysis using 9 levels for Lacl between 0 and 80, and
11 levels for TetR between 0 and 50.
@ Lacl setto 60, TetR set to 0, IPTG set to 0, and aTc set to 0.

F(t <2100,Lacl < 20 A TetR > 40)
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Genetic Toggle Switch Failure Rate

F(t <2100,Lacl < 20 A TetR > 40)

Genetic Toggle Switch Failure Rate

1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

Percent

0 250 500 750 1,000 1,250 1,500 1,750 2,000
Time (s)

|i Markov Simulation (Abstracted) -®- Simulation (Full)l

Simulation time: 43 min. (Full), 3 min. 15 sec. (Abstracted), <1 sec. (Markov).
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Genetic Toggle Switch Response Time

cz @O €«—@ aTc

¢t @O© «—@ PTG T
T @ TetR
Lacl . 1 Q@ crp

1 t

trc 2
lacl tetk GFP
| | A
Operator Snl
Promoters

Genes

-

@ Applied transient analysis using 14 levels for Lacl between 0 and 130,
and 5 levels for TetR between 0 and 60.
@ Lacl set to 60, TetR set to 0, IPTG set to 100, and aTc set to 0.

F(t <2100,Lacl < 20 A TetR > 40)
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Genetic Toggle Switch Response Time

F(t <2100,Lacl < 20 A TetR > 40)

Genetic Toggle Switch Response Rate

Percent

0 250 500 750 1,000 1,250 1,500 1,750 2,000
Time (s)

|i Markov Simulation (Abstracted) -®- Simulation (Full)l

Simulation time: 3 hours 12 min. (Full), 1 min. (Abstracted), 0.5 sec. (Markov).
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Failure Rate Versus Degradation Rate

Effect of Varied Degradation Rate on Failure Rate

Percent
=
N
(4]

1.00
0.75
0.50
0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01C
kd
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Response Time Versus Degradation Rate

Effect of Varied Degradation Rate on Response Rate
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Toggle Switch Failure with Diffusion

(Loading ToggleFailSimDiff.mov)
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ToggleFailSimDiff.mov
Media File (video/quicktime)


Genetic Muller C-Element

A A B C
A c 0 0 0
@—< 0 1 C

B S 1 0 C

1 1 1

IPTG

Toggle Switch C-element Speed-independent C-element

Nguyen et al., 13th Symposium on Async. Ckis. & Sys., 2007 (best paper)
Nguyen et al., Journal of Theoretical Biology (2010)
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Genetic Muller C-element Failure Rate

Genetic Muller C-element Failure Rate
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Genetic Muller C-element Response Time

Genetic Muller C-element Response Rate

Percent

0 250 500 750 1,000 1,250 1,500 1,750 2,000
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Failure Rate Versus Degradation Rate

Effect of Varied Degradation Rate on Failure Rate
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Response Time Versus Degradation Rate

Effect of Varied Degradation Rate on Response Rate
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Application: Bacterial Consensus

@ One interesting application is designing bacteria that can hunt and kill
tumor cells (Anderson et al.).

@ Care must be taken in determining when to attack potential tumor cells.

@ Can use a genetic Muller C-element and a bacterial consensus
mechanism known as quorum sensing.

@ C-element combines a noisy environmental trigger signal and a density
dependent quorum sensing signal.

@ Activated bacteria signal their neighbors to reach consensus.

Env / \

Concentration
Threshold

Muller C-element
(state error rate d)

Detect
(error rate €)

Action

cell boundary

Winstead et al., IBE Conference (2008)
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Confidence Amplifier

@ A noisy C-element with a confidence-feedback loop:

C
S

@ The output “rails” to maximum confidence, even if S has low confidence.

@ This configuration only works if the C-element is “noisy”. Otherwise, the
circuit is permanently stuck in its initial state.
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Quorum Trigger Circuit

medium

}

30C6HSL
Env

1
LuxR Complex LuxI LuxR

Y m e o
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Quorum Trigger Simulation Results

F(t <10000,GFP > 300)

Probability of Single Quorum Trigger Switching On (kb=0)
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Quorum Trigger Simulation Results

F(t <10000,GFP > 300)

Probability of Single Quorum Trigger Switching On (kb=0.0001)

100

75
<]
[}
o 50
[
o

25

0 00000000

0 1000 2,000 3000 4000 5000 6000 7,000 8000 9,000 10,00

Time (s)

-#- Environmental Signal High -®- Environmental Signal Low

Chris J. Myers (Lecture 10: Abstraction) Engineering Genetic Circuits 102/108



Quorum Trigger Simulation Results

F(t <10000,GFP > 300)

Probability of Single Quorum Trigger Switching On (kb=0.01)
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Qualitative Logical Models

@ Models typically require the estimation of binding affinities and kinetic
parameters which are often difficult to obtain for genetic circuits.

@ Systems, however, are often quite robust to parameter variation.

@ May be possible to make reasonable behavioral predictions with only
qualitative information.

@ A qualitative logical model is similar to the stochastic FSM model except
that no rate parameters are provided.

@ Note that while a stochastic FSM may potentially enter any state, it would
not be informative if a qualitative logical model also could reach any state.

@ Qualitative logical models only describe the most likely states and state
transitions.
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Qualitative Logical Model for CI/CI Portion of Phage A

@ Qualitative logical model for the CI/ClI portion of the phage A:

bey = (bc=0)
bci = (bey=1

where Cl and ClI are binary encoded variables.

@ In order to analyze a qualitative logical model, one first finds all reachable
states using a depth first search assuming some initial state.
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State Graph for the CI/CII Portion of the Phage A Model

@ Note that this represents only the most likely scenario as it is potentially
possible that through basal production of Cl, that Cl goes to a high
concentration before Cll increases.
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Qualitative Logical Model for the Complete Phage A

@ The full phage A decision circuit can be represented logically as follows:

by = (bc/ =+ 2) A (bCro = 0)
bem = (b~n=1)A(bci # 2) A (bcro =0)

bey = (bn=1)A(bcm=1)A(bci#2)A(bcro=0)

bei = (((ben=1)A(bci=0))+2(bc # 0)) A(bcro = 0)
bcro = (bCI 7& 2)

where N, ClI, Clll, and Cro are binary and Cl is a ternary variable.
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Partial State Graph for the Complete Phage A Model

10001 N-,CIII-,CII-
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00001
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Sources

@ Relation of electrical and biochemical circuits:
o Arkin (2000).
@ Piecewise models:
o Glass (1977), Plahte et al. (1994), and Gouze (2001).
e Phage A - McAdams and Shapiro (1995).
o Hybrid Petri nets - Matsuno et al. (2000) and Little et al. (2006).
@ Stochastic FSMs:
o Kuwahara et al. (2006) and Kuwahara (2007).
@ Markov Chains:
o Stewart (1994).
@ Qualitative logical models:

o Boolean logical models - Kauffman (1969) and Kauffman et al. (1978).
o Generalized logical models - Thomas (1991) and Thieffry/Thomas (1995).
o Qualitative differential equations - DeJong et al. (2001).

@ Chapter 6 of Engineering Genetic Circuits - Myers (2009).

Chris J. Myers (Lecture 10: Abstraction) Engineering Genetic Circuits 108 /108



