
Engineering Genetic Circuits

Chris J. Myers

Lecture 8: SSA Variations

Chris J. Myers (Lecture 8: SSA Variations) Engineering Genetic Circuits 1 / 101



Outline

Hierarchical SSA (hSSA)

Weighted SSA (wSSA)

Incremental SSA (iSSA)
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Cellular Population Models

Genetic circuits have been constructed for many applications, such as
genetic timers, oscillators, and logic gates, among others.

These applications are usually analyzed in a single cell.

However, there are applications in which population modeling is a
necessity, such as biomedical applications.
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Population-based Models within iBioSim
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Visualization of Population-based Models
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Hierarchical Model Composition Package

The hierarchy in grid models is represented using SBML’s hierarchical
model composition package.

Allows top-level models to be constructed from a collection of sub-models.

Replacements and deletions customizes connection of sub-models.
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Problems with Hierarchy

Dealing with hierarchy can be difficult.

Many modeling tools flatten (inline) the hierarchy of a model before
simulation.

Flattening causes the size of the model representation to grow quickly.

The flattening process can be very time consuming.
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Comparison of Flattening to Simulation Runtime

Num. Components Flattening (sec) Simulation (sec)
4 1.101 0.488
16 9.482 2.458
36 40.065 8.408
64 119.619 24.272
100 285.714 62.709

Chris J. Myers (Lecture 8: SSA Variations) Engineering Genetic Circuits 8 / 101



Hierarchical Stochastic Simulation Algorithm (hSSA)

These results motivated the development of the hSSA.

The hierarchical simulator avoids the cost of flattening while preserving
identical simulation results.
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hSSA Algorithm

Algorithm 1: Hierarchical SSA

1 Input: Hierarchical reaction model, M = 〈M0, . . . ,Mp〉;
2 Output: Time series simulation, α;
3 α := 〈〉;
4 〈t,x〉 := initialize(M);
5 repeat
6 α := α · 〈t,x〉;
7 〈a,a0〉 := computePropensities(M,x);
8 τ := computeNextReactionTime(a0);
9 〈ν,µ〉 := selectNextReaction(a,a0);

10 〈t,x〉 := updateState(M, t,τ,x,ν,µ);
11 until t > timeLimit ;
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hSSA Algorithm

Algorithm 2: Hierarchical SSA

1 Input: Hierarchical reaction model, M = 〈M0, . . . ,Mp〉;
2 Output: Time series simulation, α;
3 α := 〈〉;
4 〈t,x〉 := initialize(M);
5 repeat
6 α := α · 〈t,x〉;
7 〈a,a0〉 := computePropensities(M,x);
8 τ := computeNextReactionTime(a0);
9 〈ν,µ〉 := selectNextReaction(a,a0);

10 〈t,x〉 := updateState(M, t,τ,x,ν,µ);
11 until t > timeLimit ;
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Example
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Example

Reaction R2 is deleted in C2
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α := 〈〉

Top 
t X Y Z 

𝜏 𝜐 𝜇 

Propensities 
C1 C2 Total 

𝑎1 𝑎2 𝑎1 𝑎2 𝑎0 

C2 
t A B C D 

C1 
t A B C D 
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〈t,x〉 := initialize(M)

Top 
t X Y Z 
0 5 10 10 

𝜏 𝜐 𝜇 

Propensities 
C1 C2 Total 

𝑎1 𝑎2 𝑎1 𝑎2 𝑎0 

C2 
t A B C D 
0 10 10 0 0 

C1 
t A B C D 
0 10 10 0 0 
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〈t,x〉 := initialize(M)

Top 
t X Y Z 
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𝜏 𝜐 𝜇 
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α := α · 〈t,x〉

Top 
t X Y Z 
0 5 0 0 

𝜏 𝜐 𝜇 

Propensities 
C1 C2 Total 

𝑎1 𝑎2 𝑎1 𝑎2 𝑎0 

C2 
t A B C D 
0 0 10 0 0 

C1 
t A B C D 
0 5 10 0 0 
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〈a,a0〉 := computePropensities(M,x)

Top 
t X Y Z 
0 5 0 0 

𝜏 𝜐 𝜇 

Propensities 
C1 C2 Total 

𝑎1 𝑎2 𝑎1 𝑎2 𝑎0 

5 0 0 0 5 

C2 
t A B C D 
0 0 10 0 0 

C1 
t A B C D 
0 5 10 0 0 
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τ := computeNextReactionTime(a0)

Top 
t X Y Z 
0 5 0 0 

𝜏 𝜐 𝜇 

0.1 

Propensities 
C1 C2 Total 

𝑎1 𝑎2 𝑎1 𝑎2 𝑎0 

5 0 0 0 5 

C2 
t A B C D 
0 0 10 0 0 

C1 
t A B C D 
0 5 10 0 0 
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〈ν,µ〉 := selectNextReaction(a,a0)

Top 
t X Y Z 
0 5 0 0 

𝜏 𝜐 𝜇 

0.1 C1 R1 

Propensities 
C1 C2 Total 

𝑎1 𝑎2 𝑎1 𝑎2 𝑎0 

5 0 0 0 5 

C2 
t A B C D 
0 0 10 0 0 

C1 
t A B C D 
0 5 10 0 0 
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〈t,x〉 := updateState(M, t,τ,x,ν,µ)

Top 
t X Y Z 
0 5 0 0 

0.1 5 0 0 

𝜏 𝜐 𝜇 

0.1 C1 R1 

Propensities 
C1 C2 Total 

𝑎1 𝑎2 𝑎1 𝑎2 𝑎0 

5 0 0 0 5 

C2 
t A B C D 
0 0 10 0 0 

0.1 0 10 0 0 

C1 
t A B C D 
0 5 10 0 0 

0.1 4 9 1 0 
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〈t,x〉 := updateState(M, t,τ,x,ν,µ)

Top 
t X Y Z 
0 5 0 0 

0.1 4 0 0 

𝜏 𝜐 𝜇 

0.1 C1 R1 

Propensities 
C1 C2 Total 

𝑎1 𝑎2 𝑎1 𝑎2 𝑎0 

5 0 0 0 5 

C2 
t A B C D 
0 0 10 0 0 

0.1 0 10 0 0 

C1 
t A B C D 
0 5 10 0 0 

0.1 4 9 1 0 

Chris J. Myers (Lecture 8: SSA Variations) Engineering Genetic Circuits 29 / 101



α := α · 〈t,x〉

Top 
t X Y Z 
0 5 0 0 

0.1 4 0 0 

𝜏 𝜐 𝜇 

0.1 C1 R1 

Propensities 
C1 C2 Total 

𝑎1 𝑎2 𝑎1 𝑎2 𝑎0 

5 0 0 0 5 

C2 
t A B C D 
0 0 10 0 0 

0.1 0 10 0 0 

C1 
t A B C D 
0 5 10 0 0 

0.1 4 9 1 0 
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〈a,a0〉 := computePropensities(M,x)

Top 
t X Y Z 
0 5 0 0 

0.1 4 0 0 

𝜏 𝜐 𝜇 

0.1 C1 R1 

Propensities 
C1 C2 Total 

𝑎1 𝑎2 𝑎1 𝑎2 𝑎0 

3.6 1 0 0 4.6 

C2 
t A B C D 
0 0 10 0 0 

0.1 0 10 0 0 

C1 
t A B C D 
0 5 10 0 0 

0.1 4 9 1 0 
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τ := computeNextReactionTime(a0)

Top 
t X Y Z 
0 5 0 0 

0.1 4 0 0 

𝜏 𝜐 𝜇 

0.2 C1 R1 

Propensities 
C1 C2 Total 

𝑎1 𝑎2 𝑎1 𝑎2 𝑎0 

3.6 1 0 0 4.6 

C2 
t A B C D 
0 0 10 0 0 

0.1 0 10 0 0 

C1 
t A B C D 
0 5 10 0 0 

0.1 4 9 1 0 
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〈ν,µ〉 := selectNextReaction(a,a0)

Top 
t X Y Z 
0 5 0 0 

0.1 4 0 0 

𝜏 𝜐 𝜇 

0.2 C1 R2 

Propensities 
C1 C2 Total 

𝑎1 𝑎2 𝑎1 𝑎2 𝑎0 

3.6 1 0 0 4.6 

C2 
t A B C D 
0 0 10 0 0 

0.1 0 10 0 0 

C1 
t A B C D 
0 5 10 0 0 

0.1 4 9 1 0 
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〈t,x〉 := updateState(M, t,τ,x,ν,µ)

Top 
t X Y Z 
0 5 0 0 

0.1 4 0 0 
0.3 4 0 0 

𝜏 𝜐 𝜇 

0.2 C1 R2 

Propensities 
C1 C2 Total 

𝑎1 𝑎2 𝑎1 𝑎2 𝑎0 

3.6 1 0 0 4.6 

C2 
t A B C D 
0 0 10 0 0 

0.1 0 10 0 0 
0.3 0 10 0 0 

C1 
t A B C D 
0 5 10 0 0 

0.1 4 9 1 0 
0.3 4 9 0 1 
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〈t,x〉 := updateState(M, t,τ,x,ν,µ)

Top 
t X Y Z 
0 5 0 0 

0.1 4 0 0 
0.3 4 1 0 

𝜏 𝜐 𝜇 

0.2 C1 R2 

Propensities 
C1 C2 Total 

𝑎1 𝑎2 𝑎1 𝑎2 𝑎0 

3.6 1 0 0 4.6 

C2 
t A B C D 
0 0 10 0 0 

0.1 0 10 0 0 
0.3 0 10 0 0 

C1 
t A B C D 
0 5 10 0 0 

0.1 4 9 1 0 
0.3 4 9 0 1 
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〈t,x〉 := updateState(M, t,τ,x,ν,µ)

Top 
t X Y Z 
0 5 0 0 

0.1 4 0 0 
0.3 4 1 0 

𝜏 𝜐 𝜇 

0.2 C1 R2 

Propensities 
C1 C2 Total 

𝑎1 𝑎2 𝑎1 𝑎2 𝑎0 

3.6 1 0 0 4.6 

C2 
t A B C D 
0 0 10 0 0 

0.1 0 10 0 0 
0.3 1 10 0 0 

C1 
t A B C D 
0 5 10 0 0 

0.1 4 9 1 0 
0.3 4 9 0 1 
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α := α · 〈t,x〉

Top 
t X Y Z 
0 5 0 0 

0.1 4 0 0 
0.3 4 1 0 

𝜏 𝜐 𝜇 

0.2 C1 R2 

Propensities 
C1 C2 Total 

𝑎1 𝑎2 𝑎1 𝑎2 𝑎0 

3.6 1 0 0 4.6 

C2 
t A B C D 
0 0 10 0 0 

0.1 0 10 0 0 
0.3 1 10 0 0 

C1 
t A B C D 
0 5 10 0 0 

0.1 4 9 1 0 
0.3 4 9 0 1 
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〈a,a0〉 := computePropensities(M,x)

Top 
t X Y Z 
0 5 0 0 

0.1 4 0 0 
0.3 4 1 0 

𝜏 𝜐 𝜇 

0.2 C1 R2 

Propensities 
C1 C2 Total 

𝑎1 𝑎2 𝑎1 𝑎2 𝑎0 

3.6 0 1 0 4.6 

C2 
t A B C D 
0 0 10 0 0 

0.1 0 10 0 0 
0.3 1 10 0 0 

C1 
t A B C D 
0 5 10 0 0 

0.1 4 9 1 0 
0.3 4 9 0 1 
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τ := computeNextReactionTime(a0)

Top 
t X Y Z 
0 5 0 0 

0.1 4 0 0 
0.3 4 1 0 

𝜏 𝜐 𝜇 

0.2 C1 R2 

Propensities 
C1 C2 Total 

𝑎1 𝑎2 𝑎1 𝑎2 𝑎0 

3.6 0 1 0 4.6 

C2 
t A B C D 
0 0 10 0 0 

0.1 0 10 0 0 
0.3 1 10 0 0 

C1 
t A B C D 
0 5 10 0 0 

0.1 4 9 1 0 
0.3 4 9 0 1 
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〈ν,µ〉 := selectNextReaction(a,a0)

Top 
t X Y Z 
0 5 0 0 

0.1 4 0 0 
0.3 4 1 0 

𝜏 𝜐 𝜇 

0.2 C2 R1 

Propensities 
C1 C2 Total 

𝑎1 𝑎2 𝑎1 𝑎2 𝑎0 

3.6 0 1 0 4.6 

C2 
t A B C D 
0 0 10 0 0 

0.1 0 10 0 0 
0.3 1 10 0 0 

C1 
t A B C D 
0 5 10 0 0 

0.1 4 9 1 0 
0.3 4 9 0 1 
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〈t,x〉 := updateState(M, t,τ,x,ν,µ)

Top 
t X Y Z 
0 5 0 0 

0.1 4 0 0 
0.3 4 1 0 
0.5 4 1 0 

𝜏 𝜐 𝜇 

0.2 C2 R1 

Propensities 
C1 C2 Total 

𝑎1 𝑎2 𝑎1 𝑎2 𝑎0 

3.6 0 1 0 4.6 

C2 
t A B C D 
0 0 10 0 0 

0.1 0 10 0 0 
0.3 1 10 0 0 
0.5 0 9 1 0 

C1 
t A B C D 
0 5 10 0 0 

0.1 4 9 1 0 
0.3 4 9 0 1 
0.5 4 9 0 1 
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〈t,x〉 := updateState(M, t,τ,x,ν,µ)

Top 
t X Y Z 
0 5 0 0 

0.1 4 0 0 
0.3 4 1 0 
0.5 4 0 0 

𝜏 𝜐 𝜇 

0.2 C2 R1 

Propensities 
C1 C2 Total 

𝑎1 𝑎2 𝑎1 𝑎2 𝑎0 

3.6 0 1 0 4.6 

C2 
t A B C D 
0 0 10 0 0 

0.1 0 10 0 0 
0.3 1 10 0 0 
0.5 0 9 1 0 

C1 
t A B C D 
0 5 10 0 0 

0.1 4 9 1 0 
0.3 4 9 0 1 
0.5 4 9 0 1 
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〈t,x〉 := updateState(M, t,τ,x,ν,µ)

Top 
t X Y Z 
0 5 0 0 

0.1 4 0 0 
0.3 4 1 0 
0.5 4 0 0 

𝜏 𝜐 𝜇 

0.2 C2 R1 

Propensities 
C1 C2 Total 

𝑎1 𝑎2 𝑎1 𝑎2 𝑎0 

3.6 0 1 0 4.6 

C2 
t A B C D 
0 0 10 0 0 

0.1 0 10 0 0 
0.3 1 10 0 0 
0.5 0 9 1 0 

C1 
t A B C D 
0 5 10 0 0 

0.1 4 9 1 0 
0.3 4 9 0 1 
0.5 4 9 0 0 
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α := α · 〈t,x〉

Top 
t X Y Z 
0 5 0 0 

0.1 4 0 0 
0.3 4 1 0 
0.5 4 0 0 

𝜏 𝜐 𝜇 

0.2 C2 R1 

Propensities 
C1 C2 Total 

𝑎1 𝑎2 𝑎1 𝑎2 𝑎0 

3.6 0 1 0 4.6 

C2 
t A B C D 
0 0 10 0 0 

0.1 0 10 0 0 
0.3 1 10 0 0 
0.5 0 9 1 0 

C1 
t A B C D 
0 5 10 0 0 

0.1 4 9 1 0 
0.3 4 9 0 1 
0.5 4 9 0 0 
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〈a,a0〉 := computePropensities(M,x)

Top 
t X Y Z 
0 5 0 0 

0.1 4 0 0 
0.3 4 1 0 
0.5 4 0 0 

𝜏 𝜐 𝜇 

0.2 C2 R1 

Propensities 
C1 C2 Total 

𝑎1 𝑎2 𝑎1 𝑎2 𝑎0 

3.6 0 0 0 3.6 

C2 
t A B C D 
0 0 10 0 0 

0.1 0 10 0 0 
0.3 1 10 0 0 
0.5 0 9 1 0 

C1 
t A B C D 
0 5 10 0 0 

0.1 4 9 1 0 
0.3 4 9 0 1 
0.5 4 9 0 0 
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〈a,a0〉 := computePropensities(M,x)

Top 
t X Y Z 
0 5 0 0 

0.1 4 0 0 
0.3 4 1 0 
0.5 4 0 0 

𝜏 𝜐 𝜇 

0.2 C2 R1 

Propensities 
C1 C2 Total 

𝑎1 𝑎2 𝑎1 𝑎2 𝑎0 

3.6 0 0 0 3.6 

C2 
t A B C D 
0 0 10 0 0 

0.1 0 10 0 0 
0.3 1 10 0 0 
0.5 0 9 1 0 

C1 
t A B C D 
0 5 10 0 0 

0.1 4 9 1 0 
0.3 4 9 0 1 
0.5 4 9 0 0 

Always 0 
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Results

The first test
Top-level grid model populated with repressilator sub-models without
replacements or deletions.
Size of 4, 16, 36, 64, and 100 sub-models.

The second test
Top-level grid model populated with repressilator sub-models with
replacements and deletions.
GFP protein is replaced by a top-level GFP protein that tracks the total
amount across all sub-models.
Degradation reaction of the GFP reporter protein is deleted from all
sub-models.
Size of 1, 4, 9, 15, 25, and 50 sub-models.
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Performance Without Replacements/Deletions
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Simulation Time Without Replacements/Deletions
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Performance With Replacements/Deletions
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Simulation Time With Replacements/Deletions
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SBML Arrays Package

Mathematical operations in SBML L3V1 core are restricted to operations
on scalar values.

Regular structures such as cellular populations cannot be represented
efficiently.

This motivated the development of the arrays package.
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iBioSim and Arrays package (Creating Constant Parameter)
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iBioSim and Arrays package (Creating Array X)
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iBioSim and Arrays package (Creating Array Y)
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iBioSim and Arrays package (Creating Array of Rule)
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iBioSim and Arrays package (Full Model)
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iBioSim Simulation Results
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iBioSim Simulation Results (cont.)
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Flattened Model
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Population of Repressilator Circuits Using Arrays
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Runtime Comparison for Repressilator

Arrays size
0 500 1000 1500 2000 2500

S
im

ul
at

io
n 

T
im

e 
(s

)

0

100

200

300

400

500

600

700

800

900

1000
Runtime Comparison of Repressilator

Flattened
Arrayed

Chris J. Myers (Lecture 8: SSA Variations) Engineering Genetic Circuits 62 / 101



Memory Comparison for Repressilator
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Population of Genetic Toggle Circuits Using Arrays
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Simulation of Population of Genetic Toggle Circuits

Toggle Switch (No Diffusion)

LacI[0][0] (25) LacI[0][1] (25) LacI[0][2] (25) LacI[0][3] (25) LacI[1][0] (25) LacI[1][1] (25)

LacI[1][2] (25) LacI[1][3] (25) LacI[2][0] (25) LacI[2][1] (25) LacI[2][2] (25) LacI[2][3] (25)

LacI[3][0] (25) LacI[3][1] (25) LacI[3][2] (25) LacI[3][3] (25) TetR[0][0] (25) TetR[0][1] (25)

TetR[0][2] (25) TetR[0][3] (25) TetR[1][0] (25) TetR[1][1] (25) TetR[1][2] (25)

TetR[1][3] (25) TetR[2][0] (25) TetR[2][1] (25) TetR[2][2] (25) TetR[2][3] (25)

TetR[3][0] (25) TetR[3][1] (25) TetR[3][2] (25) TetR[3][3] (25)
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Population of Genetic Toggle Circuits with Diffusion
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Simulation of Population of Genetic Toggle Circuits with
Diffusion

Toggle Switch (With Diffusion)

LacI[0][0] (30) LacI[0][1] (30) LacI[0][2] (30) LacI[0][3] (30) LacI[1][0] (30) LacI[1][1] (30)

LacI[1][2] (30) LacI[1][3] (30) LacI[2][0] (30) LacI[2][1] (30) LacI[2][2] (30) LacI[2][3] (30)

LacI[3][0] (30) LacI[3][1] (30) LacI[3][2] (30) LacI[3][3] (30) TetR[0][0] (30) TetR[0][1] (30)

TetR[0][2] (30) TetR[0][3] (30) TetR[1][0] (30) TetR[1][1] (30) TetR[1][2] (30)

TetR[1][3] (30) TetR[2][0] (30) TetR[2][1] (30) TetR[2][2] (30) TetR[2][3] (30)

TetR[3][0] (30) TetR[3][1] (30) TetR[3][2] (30) TetR[3][3] (30)
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Probability of a Cell Entering a Bad State

Model Number of Cells Number of Failures Probability
Without Diffusion 18,750 219 ∼ 1.2 %

With Diffusion 18,750 90 ∼ 0.5 %
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Runtime Comparison for Genetic Toggle with Diffusion
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Memory Comparison for Genetic Toggle with Diffusion
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Discussion

Results have shown that the hierarchical simulator scales better than the
simulator with the SSA with flattening.

While simulation time is equivalent, the flattening cost is avoided.
Future Work

Support dynamic events.
Explore dynamic model abstraction.
Enable parallel processing.

‘
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Motivation

In biological systems, wide deviations from normal behavior may occur
with extremely small probability.

Rare events can have significant consequences in biological systems.

Analysis of rare events can have significant computational costs.

The weighted SSA (wSSA) targets this problem.
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Background

Consider Pt≤tmax (X→ E | x0), the probability that X moves to a state in E
within time limit tmax , given X(0) = x0 where x0 6∈ E .

With SSA, generate n runs and report the sample average: 1/n ∑
n
i=1 Yi

where Yi = 1 if X(t) moves to a state in E before tmax , otherwise Yi = 0.

Finding probability of rare event requires a large number of runs.
Example:

Switching rate from the lysogenic state to the lytic state in phage λ is
experimentally estimated to be in the order of 10−7 per cell per generation.
Using SSA, this rare event occurs only once every 107 runs.
Therefore, more than 1011 simulation runs are needed to estimate the
probability with a 95 percent confidence interval.
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Importance Sampling

The wSSA increases the chance of observing the rare events of interest
by utilizing the importance sampling technique.

Importance sampling manipulates the probability distribution to observe
events of interest more often than when using conventional sampling.

The outcome of each biased sampling is weighted by a likelihood factor to
yield statistically correct and unbiased results.
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Simple Example
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Predilection Functions

To observe rare events more often, the wSSA uses predilection functions,
bj(x), rather than propensity functions, aj(x).

The index of the next reaction is selected with the following probability:

Prob{the next reaction index is j given X = x}= bj(x)
b0(x)

,

where b0(x)≡ ∑
m
j=1 bj(x).

To correct the sampling bias, each reaction is weighted as follows:

w(j,x) =
aj(x)b0(x)
a0(x)bj(x)

.
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Probability of a Reaction Sequence

Pk(σ | x0) is the probability of reaction sequence σ = (Rj1 ,Rj2 , . . . ,Rjk )
given that the initial state is x0.

Since X(t) is Markovian, the joint conditional probability is as follows:

Pk(σ | x0) =
k

∏
h=1

ajh(xh−1)

a0(xh−1)

=
k

∏
h=1

[
ajh(xh−1)b0(xh−1)

bjh(xh−1)a0(xh−1)

]
bjh(xh−1)

b0(xh−1)

=
k

∏
h=1

w(jh,xh−1)
k

∏
h=1

bjh(xh−1)

b0(xh−1)
.

where xh = x0 +∑
h−1
h′=1 vjh′ .
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Weighted Sample Average

The estimate of Pt≤tmax (X→ E | x0) is calculated by first defining the
statistical weight of the i-th sample trajectory wi such that:

wi =

{
∏

ki
h=1 w(jh,xh−1) if X(t) moves to a state in E within the time limit,

0 otherwise,

where ki is the number of jumps in the i-th sample trajectory.

Then, Pt≤tmax (X→ E | x0) is estimated by taking a sample average of wi :

1
n

n

∑
i=1

wi .
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Choice of Predilection Functions

With adequate choice of predilection functions, wSSA increases the
fraction of sample trajectories that result in the rare events.

For each reaction Rj , bj(x) is defined as:

bj(x) = αj ×aj(x),

where each αj > 0 is a constant.
Example:

Determine probability that S transitions from θ1 to θ2 where θ1 < θ2.
Increase predilection functions for the production reactions of S and/or
decrease the predilection functions for the degradation reactions of S.
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wSSA Algorithm

1 Initialize q = 0 and k = 1.
2 Initialize: w = 1, t = t0, and x = x0.

1 Evaluate aj(x), a0(x) = ∑
m
j=1 aj(x), bj(x), and b0(x) = ∑

m
j=1 bj(x).

2 Draw two unit uniform random numbers, r1 and r2.
3 Determine the time, τ, until the next reaction:

τ =
1

a0(x)
ln

(
1
r1

)
.

4 Determine the next reaction, Rµ:

µ = the smallest integer satisfying
µ

∑
j=1

bj(x)> r2b0(x).

5 Determine the sequence weight: w = w× (aµ(x)/bµ(x))× (b0(x)/a0(x)).
6 Determine the new state: t = t + τ and x = x+ vµ.
7 If x ∈ E then q = q+w else if t ≤ tmax then goto step 1.

3 k = k +1, if k ≤ n then goto step 2 else report q/n as the probability.
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Discussion

Key to success is the choice of predilections functions.

A procedure to choose optimized αj by running several test runs to
compute the variance of the statistical weights has been proposed.

More research is likely needed here.
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Incremental Stochastic Simulation Algorithm (iSSA)

Built off of Gillespie’s SSA.

Performs simulation runs in small time-increments.

Statistics are computed at the end of each increment.

Computed statistics are then used to constrain the initial condition for the
subsequent increment.

Ensures that the generated sample paths are functionally coherent and
yield meaningful statistics.
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Repressilator: ODE Simulation
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Repressilator: SSA Simulation
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Incremental Stochastic Simulation Algorithm (iSSA)
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Incremental Stochastic Simulation Algorithm (iSSA)
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Incremental Stochastic Simulation Algorithm (iSSA)
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Incremental Stochastic Simulation Algorithm (iSSA)
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iSSA

1 Initialize: k = 1 and X(0) = 〈t0,x0〉.
2 Set i = 1.
3 Set 〈t,x〉= select(X(k−1)) and start= t .
4 Set limit= findLimit(start, t,x).
5 Execute a Gillespie SSA step.
6 If t < limit then go to step 4.
7 record(X(k), t,x, i).
8 If i < maxRuns then i = i +1, go to step 3.
9 If t < timeLimit then k = k +1, go to step 2.
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Variations

Variants of iSSA are derived by altering:

How each time increment is calculated.
How starting states are selected in each increment.
What information is stored during each increment.
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Marginal Probability Density Evolution (MPDE)

Generates a probability distribution for each species.
Defined as follows:

Stores the average and variance over all the species.
When all runs reach the end of an increment, a probability density
function (pdf) is approximated for each species.
Uses the pdf to randomly generate a new starting state.

MPDE can be used if known correlations are stated explicitly as
constraints in the reaction model.

Must reject any state that violates this constraint.
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Marginal Probability Density Evolution (MPDE)
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Marginal Probability Density Evolution (MPDE)
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Marginal Probability Density Evolution (MPDE)
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Mean Path

MPDE relies on a statistical approximation that limits the conditions under
which it can be trusted.
An alternative method is mean path, which is defined as follows:

Stores the SSA states in the state table.
The average state is computed at the end of each increment.
Selects the state that has the smallest Euclidean distance from the
average state as the starting state for the next increment.

Produces an actual simulation trace of the mean path representing
statistics on typical behavior.

Eliminates the need for added constraints and allows reaction-based
abstraction to be applied to improve simulation efficiency.
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Mean Path
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Mean Path
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Mean Path
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Mean Path
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Mean Path
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Mean Path

Chris J. Myers (Lecture 8: SSA Variations) Engineering Genetic Circuits 91 / 101



Median Path

One or more simulation traces may diverge so much that the ending
states become outliers in the average state calculation.

The mean path method may end up selecting a state that does not
represent the “typical" behavior of the system.

Instead, find the state with the smallest Euclidean distance from the
median state and use this state as the starting state in the subsequent
time increment.
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Median Path
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Median Path
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Repressilator: iSSA Simulation
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Adaptive Time Step

For small increments, too few reactions are observed each increment.

For large increments, too many reactions are observed each increment.

Instead of specifying the size of the time increment, a user can specify a
desired number of slow reaction events per increment.

No matter how fast or slow the system evolves, the algorithm adjusts the
time increment to capture approximately the same number of slow
reaction events.
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Adaptive Time Step
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Adaptive Time Step
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Adaptive Time Step
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Repressilator: Adaptive iSSA Simulation
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Multiple Paths

Many systems have more than one typical behavior.

Modify the selection process to use the k -means clustering algorithm to
select starting states that are closest to the average of each grouping.

The likelihood of each path is determined by how many states end up in
each cluster.
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Multiple Paths
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Multiple Paths
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Multiple Paths
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Summary

hSSA is useful for hierarchical models, such as, cellular populations.

wSSA is useful for analysis of rare events.

iSSA is useful for extracting typical behavior.

Chris J. Myers (Lecture 8: SSA Variations) Engineering Genetic Circuits 100 / 101



Sources

hSSA - Watanabe and Myers (2014).

Arrays - Watanabe and Myers (2016).

wSSA - Kuwahara and Mura (2008).

iSSA - Winstead, Madsen et al. (2010).
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