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John A. Locke

That which is static and repetitive is
boring. That which is dynamic and
random is confusing. In between lies art.
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Richard Feynmann

A philosopher once said “It is
necessary for the very existence of
science that the same conditions always
produce the same results.” Well, they do
not. You set up the circumstances, with
the same conditions every time, and you
cannot predict behind which hole you will
see the electron.
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Problems with Reaction Rate Equations

Chemical reaction network model can be tranformed using law of mass
action into ODEs known as reaction rate equations.

Assume concentrations vary continuously and deterministically.

Chemical systems satisfy neither of these assumptions.

Number of molecules of a species is a discrete quantity.

Chemical reactions occur after two molecules collide.

Unless track exact position and velocity of every molecule, not possible to
know when a reaction may occur.

Should consider occurence of reactions to be stochastic.
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Stochastic Process Description

For systems which involve large molecular counts, ODE models give
accurate picture of their behavior.

If molecular counts are small, discrete and stochastic nature may have
significant influence on observed behavior.

Genetic circuits typically involve small molecule counts.

Often only one strand of DNA and a few 10s or 100s of molecules of each
transcription factor.

Accurate analysis requires a stochastic process description.

This lecture presents one such description, the chemical master
equation, and algorithms to analyze it.
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Overview

Stochastic chemical kinetics

The chemical master equation

Gillespie’s stochastic simulation algorithm

Gibson/Bruck’s next reaction method

Tau-leaping

Relationship to reaction rate equations

Stochastic Petri-nets

Phage λ decision circuit example

Spatial Gillespie
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A Stochastic Chemical Kinetic Model

Composed of n chemical species {S1, . . . ,Sn} and m chemical reaction
channels {R1, . . . ,Rm}.
Assume species contained within constant volume Ω.

Assume system is well-stirred to neglect spatial effects.

Assume system is in thermal equilibrium (i.e., at a constant temperature),
but not necessarily chemical equilibrium.
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State Updates

Xi(t) is the number of molecules of Si at time t .

X(t) = (X1(t), . . . ,Xn(t)) is the state of a system at time t .

X(t0) = x0 is initial number of molecules at initial time t0.

After Rµ, the new state is x′ = x + vµ where vµ = (v1µ, . . . ,vnµ) is the
state-change vector and viµ is the change in Si due to Rµ.

The 2-dimensional array {viµ} is known as the stoichiometric matrix.

Rµ is elemental if it can be considered a distinct physical event that
happens nearly instantaneously.

For elemental Rµ, values of viµ are constrained to 0,±1,±2.
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Specific Probability Rate Constant

Every Rµ has a specific probability rate constant, cµ, which is related to
the reaction rate constant, kµ.

cµdt is the probability that a randomly chosen combination of reactant
molecules react as defined by Rµ inside Ω in [t, t + dt).

Multiplying cµ by the number of possible combinations of reactant
molecules for Rµ in a state x yields the propensity function, aµ.

aµ(x)dt is the probability that Rµ occurs in the state x within Ω in the next
infinitesimal time interval [t, t + dt).
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A Bimolecular Reaction Channel

A typical bimolecular reaction channel Rµ has form:

S1 + S2
cµ→ S3 + . . .

cµ is probability that a S1 molecule and S2 molecule collide and react
within next dt time units.

Assume molecules hard spheres with masses mi and radii ri .

Thermal equilibrium means that a selected Si can be found uniformly
distributed within Ω.

Also means avg. relative speed in which S2 sees S1 moving is:

v12 =
√

8kBT/πm12

where kB is Boltzmann’s constant and m12 = m1m2/(m1 + m2).
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A Bimolecular Reaction Channel (cont)

In next dt , S2 molecule sweeps a collision cylinder relative to S1 which
has a height v12dt and base area π(r1 + r2)2.

Probability that S1 is within the collision cylinder is ratio of the cylinder’s
volume to Ω, so cµ is:

cµ = Ω−1
π(r1 + r2)2v21pµ

where pµ is probability that S1 and S2 react when they collide.

If we assume that S1 and S2 react only when their kinetic energy exceeds
the activation energy, εµ, then cµ is:

cµ = Ω−1
π(r1 + r2)2

(8kBT
πm∗

)1/2
exp(−εµ/kBT ).
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A Bimolecular Reaction Channel (cont)

Number of combinations of S1 and S2 molecules is x1x2, so propensity
function for Rµ is aµ(x) = cµx1x2.

If S1 = S2 then number of combinations is x1(x1−1)/2, and
aµ(x) = cµx1(x1−1)/2.

Chris J. Myers (Lecture 7: Stochastic Analysis) Engineering Genetic Circuits 12 / 69



Monomolecular Reactions

Monomolecular reactions are of this form:

S1
cµ→ S2 + . . .

S1 makes a spontaneous change in its internal structure.

cµ must be found from quantum mechanical considerations.

Propensity function is simply aµ(x) = cµx1.

If it is actually an enzymatic reaction of the form:

E + S1
cµ→ E + S2 + . . .

where E is an enzyme, should be considered as a bimolecular reaction.
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Trimolecular Reactions

Trimolecular reactions are of this form:

S1 + S2 + S3
cµ→ S4 + . . .

Probability is very small, so typically used as approximation for:

S1 + S2
c1→←
c2

S∗ and S∗+ S3
c3→ S4 + . . .

This approximation is reasonable when the lifetime of S∗ is very short
(i.e., 1/c2 is very small).

The probability that a molecule of S∗ reacts with a randomly chosen
molecule of S3 is approximately c3(1/c2).
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Trimolecular Reactions (cont)

Consider a small but finite time interval ∆t which is still much larger than
the lifetime of S∗ (i.e., ∆t >> 1/c2).

If ∆t is sufficiently small, then the probability that S1 and S2 react in that
time interval to form S∗ is c1∆t .

Probability of both reactions occuring in ∆t is (c1c3/c2)∆t , so cµ for the
trimolecular reaction approximation is:

cµ = c1c3/c2

Approximation because ∆t is not a true infinitesimal.

Propensity function for this reaction is aµ(x) = cµx1x2x3.
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Relationship Between cµ and kµ

For bimolecular reactions, cµ is proportional to Ω−1.

For monomolecular reactions, it is independent of volume.

For trimolecular reactions, it is proportional to Ω−2.

In general, if m is the number of reactant molecules in Rµ:

cµ ∝ Ω−(m−1)

Key to understanding relationship between cµ and kµ.

For monomolecular reactions, cµ is equal to kµ.

For bimolecular reactions, cµ is equal to kµ/Ω if the reactants are different
species and 2kµ/Ω if the same species.
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Jump Markov Processes

Stochastic model is a jump Markov process.

A Markov process is one where the next state is only dependent on the
present state and not the past history.

A jump Markov process is one in which the state updates occur in
discrete amounts.
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Time Evolution of Probability

Not possible to know the exact state X(t).

Only can know probability of being in a given state at time t starting from
a state X(t0) = x0 (i.e., P (x, t|x0, t0)).

Probability using a time-evolution of step dt is shown below:

P (x, t + dt|x0, t0) = P (x, t|x0, t0)×

[
1−

m

∑
j=1

(aj(x)dt)

]

+
m

∑
j=1

P (x− vj , t|x0, t0)× (aj(x− vj)dt) .

dt is small enough that at most one reaction occurs during dt .
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Chemical Master Equation

Chemical master equation (CME) defines time evolution of state
probabilities, P (x, t|x0, t0):

∂P (x, t|x0, t0)

dt
= lim

dt→0

P (x, t + dt|x0, t0)−P (x, t|x0, t0)

dt

=
m

∑
j=1

[aj(x− vj)P (x− vj , t|x0, t0)

−aj(x)P (x, t|x0, t0)]

Typically cannot be solved analytically since it represents a set of
equations as large as the number of molecules in the system.
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Stochastic Simulation

Trajectories for X(t) can be generated using stochastic simulation.

Could pick a small time step dt and at each step update the system state
by selecting a reaction to occur or doing nothing.

For a sufficiently small dt , however, the vast majority of time steps result
in no reaction.
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Gillespie’s Stochastic Simulation Algorithm

Gillespie’s stochastic simulation algorithm (SSA) improves the efficiency
of simulation by stepping over useless time steps.

Not based directly on CME, but equivalent form that uses p(τ,µ|x, t).

Defined such that p(τ,µ|x, t)dτ is probability that the next reaction is Rµ

which occurs in [t + τ, t + τ + dτ] assuming current state is X(t) = x.

This is a joint PDF for two random variables, τ and µ given that the
system is in state x at time t .

Simulation advances from one reaction to the next skipping over time
points in which no reaction occurs.
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Derivation of Gillespie’s SSA

Introduce P0(τ|x, t) that represents probability that there is no reaction in
the time interval [t, t + τ].

p(τ,µ|x, t) defined as follows:

p(τ,µ|x, t)dτ = P0(τ|x, t)× (aµ(x)dτ) . (1)

No reactions occur in the interval [t, t + τ) and the Rµ reaction occurs in
the interval [t + τ, t + τ + dτ].
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Derivation of Gillespie’s SSA (cont)

The function P0(τ|x, t) must satisfy the following:

P0(τ + dτ|x, t) = P0(τ|x, t)×

[
1−

m

∑
j=1

(aj(x)dτ)

]
.

Using this formula, get following differential equation:

dP0(τ,x, t)
dτ

=−a0(x)P0(τ|x, t) where a0(x) =
m

∑
j=1

aj(x).

With P0(τ = 0|x, t) = 1, has following solution:

P0(τ|x, t) = exp(−a0(x)τ). (2)
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Derivation of Gillespie’s SSA (cont)

Inserting Equation 2 into Equation 1 and canceling dτ yields:

p(τ,µ|x, t) = exp(−a0(x)τ)×aµ(x),

which can be rewritten as:

p(τ,µ|x, t) = a0(x)exp(−a0(x)τ)×
aµ(x)

a0(x)
.

p(τ,µ|x, t) can be divided into PDFs for τ and µ.

τ is exponential random variable with mean and std dev of 1
a0(x)

.

µ is integer random variable with point probabilities aµ(x)
a0(x)

.
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Gillespie’s SSA (Direct Method)

1 Initialize: t = t0 and x = x0.
2 Evaluate aj(x) and a0(x) = ∑

m
j=1 aj(x).

3 Draw two unit uniform random numbers, r1 and r2.
4 Determine the time, τ, until the next reaction:

τ =
1

a0(x)
ln

(
1
r1

)
.

5 Determine the next reaction, Rµ:

µ = the smallest integer satisfying
µ

∑
j=1

aj(x) > r2a0(x).

6 Determine the new state: t = t + τ and x = x + vµ.
7 If t is greater than the desired simulation time then halt.
8 Record (x, t) and goto step 2.
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Simulation of PRE and OR Promoters
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Discussion

Using SSA to compute a single trajectory is no more complex than
numerical simulation of reaction rate equations.

Provides a closer approximation of molecular reality for systems with
small molecule counts such as genetic circuits.
Unfortunately, SSA has a substantial computational cost:

Must be run many times (1000s) to produce reasonable statistics while
simulations of reaction rate equations only run once.
Very slow since τ is equal to 1/a0(x) and can be very large when any
molecule counts become large.

When molecule counts increase, relative difference between deterministic
and stochastic trajectories decrease.
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Simulation of PRE and OR Promoters

Comparison of SSA to ODE (PR=PRE=10, RNAP=300)
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SSA Simulation of the Genetic Toggle Switch
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SSA Simulation of the Genetic Toggle Switch
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Assignment #6

Perform SSA simulation on your genetic toggle switch model.
Set the initial value of LacI (in all models) to 60 molecules.
Add events that set IPTG to 60 at 2000s, IPTG to 0 at 4000s, aTc to 60 at
6000s, and aTc to 0 at 8000s.
Perform 100 SSA simulation runs for 10000s and compare with the
expected toggle simulation results.
Graph the inputs IPTG and aTc, and for a single run and the average of all
runs the output GFP.
Upload an archive of your project to https://synbiohub.utah.edu and
provide a share link.

Perform SSA simulation on your paper’s genetic circuit model
Set initial conditions/parameters and add events to test your genetic circuit
model and update your model as needed to get the results you expect.
Create a graph that demonstrates your model’s behavior.
Upload an archive of your project to https://synbiohub.utah.edu and
provide a share link.
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Assignment #6 (cont)

Simulate the reactions shown below using SSA. Create three trajectories
with five reaction firings each.

You may either do this simulation by hand, using a spreadsheet, or writing
a simple program.

Submit all your work.

LacI
kd−→ ()

TetR
kd−→ ()

pLac
ko−→ np TetR + pLac

pTet
ko−→ np LacI + pTet

pLac + nc LacI
krf−→ pLacLacI

pLacLacI
krr−→ pLac + nc LacI

pTet + nc TetR
krf−→ pTetTetR

pTetTetR
krr−→ pTet + nc TetR

Constant Value
Kr = krf/krr (0.1/1.0) M−nc

ko 0.1 sec−1

kd 0.1 sec−1

nc 2
np 10

pLac 1
pTet 1
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Gillespie’s First Reaction Method

1 Initialize: t = t0 and x = x0.
2 Evaluate propensity functions aj(x) at state x.
3 For each j , determine the time, τj , until the next Rj reaction:

τj =
1

aj(x)
ln

(
1
rj

)
.

where each rj is a unit uniform random number.
4 Let µ be the reaction whose τµ is the smallest.
5 Let τ equal τµ.
6 Determine the new state: t = t + τ and x = x + vµ.
7 If t is greater than the desired simulation time then halt.
8 Record (x, t) and goto step 2.
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Observations

First reaction method requires m random variables per simulation!

OBSERVATION: not all propensities change after a reaction.
Following three steps are taken during every iteration and take a time
proportional to the number of reactions, m.

1 Update all m propensity functions, aj (x).
2 Generate m random numbers and next reaction times.
3 Find the smallest reaction time, τµ.

Must eliminate each of these performance bottlenecks.
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Gibson/Bruck’s Improvements

τj and aj(x) stored for use in future iterations.

τj uses absolute time to make it useful for multiple iterations.
Dependency graph used to indicate relations between reactions.

Has vertex for each Rj and edge from Rj to other reaction that has as a
reactant either a reactant or a product of Rj .

Reuse every τj except the one for τµ, renormalizing τj when its propensity
has changed as indicated by the dependency graph.
Indexed priority queue used to organize aj(x) and τj data to make easy to
update and to find smallest entry.

An indexed priority queue is a tree structure in which the parent always has
a lower τj value than both its children.
This means the top node always has the smallest τj value.
Can be updated in O(log(m)) time.
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Gibson/Bruck’s Next Reaction Method

1 Initialize:
1 t = t0 and x = x0.
2 Generate a dependency graph, G.
3 Evaluate propensity functions aj (x) at state x.
4 For each j , determine time, τj , until next Rj reaction:

τj = t +
1

aj (x)
ln

(
1
rj

)
.

where each rj is a unit uniform random number.
5 Store the τj values in an indexed priority queue Q.
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Gibson/Bruck’s Next Reaction Method (cont)

2 Let Rµ be the reaction whose τµ is the smallest stored in Q.
3 Let τ equal τµ.
4 Determine the new state: t = τ and x = x + vµ.
5 For each edge (µ,α) in the dependency graph G,

1 Set aα,old = aα and update aα.
2 If α 6= µ, set τα = (aα,old/aα)(τα− t) + t
3 If α = µ, generate a random number, rµ, and

τµ = t +
1

aµ(x)
ln

(
1
rµ

)
.

6 If t is greater than the desired simulation time then halt.
7 Record (x, t) and goto step 2.
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Dependency Graph
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Indexed Priority Queue
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Composition and Rejection

Using composition and rejection, can construct a constant-time algorithm.
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Composition and Rejection Algorithm (SSA-CR)

1 Initialize: t = t0 and x = x0.
2 Evaluate propensities aj(x) and assign to G groups.
3 Compute group propensities, ai(x), and total a0(x) = ∑

G
i=1 ai(x).

4 Draw four unit uniform random numbers, r1, r2, r3, and r4.
5 Determine the time, τ, until the next reaction:

τ =
1

a0(x)
ln

(
1
r1

)
.

6 Use r2 to select a group of reactions (composition).
7 Use r3 and r4 to select reaction Rµ within the group (rejection).
8 Determine the new state: t = t + τ and x = x + vµ.
9 Compute aj(x) of affected reactions.
10 Assign affected reactions to groups, yielding new ai(x), and compute new

total a0(x) = ∑
G
i=1 ai(x).

11 If t is greater than the desired simulation time then halt.
12 Record (x, t) and goto step 3.
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Tau Leaping

Next reaction method still simulates every reaction event one at a time
which is not practical for many interesting systems.

Tau-leaping gives up exactness to improve simulation speed.

Many reactions are fired at once in the time interval [t, t + τ].

Introduce m random functions, Kj(τ;x, t), where each returns the number
of times that Rj fires in [t, t + τ] in state X(t) = x.

New state after τ-leap is:

X(t + τ) = x +
m

∑
j=1

Kj(τ,x, t)vj .
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Tau Leaping (cont)

Unfortunately, these functions are dependent on each other.

Number of Rj reactions depends on aj(x) which depends on x which
depends on number of all other reactions.

Even if joint PDF can be computed, likely as expensive as full simulation.

Chris J. Myers (Lecture 7: Stochastic Analysis) Engineering Genetic Circuits 42 / 69



Leap Condition

States that τ be chosen to be small enough such that no propensity
function changes by a significant amount.

If satisfied, Kj(τ,x, t) can be approximated to be a statistically
independent Poisson random variable:

Kj(τ,x, t) ≈ Pj(aj(x),τ) (j = 1, . . . ,m)

where Pj(aj(x),τ) returns the number of events k in the interval [t, t + τ]
such that:

P [k events] =
e−aj(x)τ(aj(x)τ)k

k!

τ must be small enough to satisfy leap condition, but large enough to fire
enough events to speedup simulation.

How to find τ small enough to satisfy leap condition, but large enough to
fire enough events to speedup simulation?
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Determining Tau

One method for selecting τ uses the following equation:

τ = min
i∈Irs

{
max{εixi ,1}
|∑j∈Jncr

vijaj(x)|
,

max{εixi ,1}2

∑j∈Jncr
v2

ij aj(x)

}
(3)

where Irs are the species that appear as reactants in reactions and Jncr

are the non-critical reactions.

A reaction is non-critical if it can be fired nc times (between 5 and 30)
without causing a reactant to become negative.

The goal is that no propensity function changes by more than εaj(x),
where ε is an accuracy control parameter satisfying 0 < ε << 1.

The value of εi is ε for species that only appear in unimolecular reactions,
ε/2 if it only appears in bimolecular reactions with different species, and
ε/(2 + (xi −1)−1) if it appears in bimolecular reactions with two
molecules of the same species.

Chris J. Myers (Lecture 7: Stochastic Analysis) Engineering Genetic Circuits 44 / 69



Explicit Tau-Leaping Simulation Algorithm

1 Initialize: t = t0 and x = x0.
2 Evaluate propensity functions aj(x) at state x.
3 Determine Jncr .
4 If Jncr = /0 then τ′ = ∞ else determine value for τ′ using Equation 3.
5 If Jncr includes all reactions then τ′′ = ∞ else use SSA to compute τ′′ and

jc , the next critical reaction.
6 τ = min(τ′,τ′′) and t = t + τ.
7 x = x + ∑j∈Jncr

Pj (aj(x)τ)vj .
8 If τ′′ ≤ τ′ then x = x + vjc .
9 If t is greater than the desired simulation time then halt.
10 Record (x, t) and go to step 2.
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Discussion

ε provides means of trading off accuracy for runtime.

For large ε, a significant runtime improvement can be achieved at the cost
of some accuracy.

Care has be taken though as large jumps can cause bad things such as
species counts being made negative.

As ε is made smaller, tau-leaping gradually reduces to the SSA.

For a very small ε, not as efficient as SSA as it takes many τ leaps that
produce no events.

If τ much less than a few multiples of 1/a0(x), revert to SSA.
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The Chemical Langevin Equation

If ∆t = τ is small enough that no aj(x) changes significantly,

X(t + ∆t) ≈ x +
m

∑
j=1

Pj(aj(x),∆t)vj .

If ∆t is large enough that there are many firings of each Rj , Poisson can
be approximated with a Normal random variable:

X(t + ∆t) ≈ x +
m

∑
j=1

Nj(aj(x)∆t,aj(x)∆t)vj

= x +
m

∑
j=1

vjaj(x)∆t +
m

∑
j=1

vj

√
aj(x)Nj(0,1)

√
∆t

using N (m,σ2) = m + σN (0,1).
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The Chemical Langevin Equation (cont)

If ∆t is a macroscopically infinitesimal time increment dt ,

X(t + dt) ≈ X(t) +
m

∑
j=1

vjaj(X(t))dt +
m

∑
j=1

vj

√
aj(X(t))Nj(t)

√
dt

where Nj(t) are m statistically independent and temporally uncorrelated
Normal random variables with mean 0 and variance 1.

This equation is the chemical Langevin equation.
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The Chemical Langevin Equation (cont)

X(t + dt) ≈ X(t) +
m

∑
j=1

vjaj(X(t))dt +
m

∑
j=1

vj

√
aj(X(t))Nj(t)

√
dt

Chemical Langevin Equation has two parts:
A deterministic part that grows linearly with aj (x).
A stochastic part that grows proportional to

√
aj (x).

aj(x) grow in direct proportion system size.

Stochastic part scales relative to deterministic part as the inverse square
root of the system size.
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The Reaction Rate Equation

As size increases, magnitude of fluctuations diminish until chemical
Langevin equation can be reduced to:

X(t + dt) ≈ X(t) +
m

∑
j=1

vjaj(X(t))dt

Rearranging this equation results in the following:

X(t + dt)−X(t)
dt

=
dX(t)

dt
=

m

∑
j=1

vjaj(X(t)) (4)

This is simply the reaction rate equation, but it has been derived from
stochastic chemical kinetics.

Reaction rate equations valid when system large enough that no
propensity changes significantly in dt and every Rj fires many times in dt .
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Stochastic Petri Nets

One interesting model that has been applied to biological systems is
stochastic Petri nets (SPNs).

SPNs are a graphical representation which is quite similar to
representations used in biochemistry.

SPNs are also isomorphic to jump Markov processes.

Several analysis tools have been developed for SPNs.
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Stochastic Petri Net Model

Composed of:
A set of places P (molecular species),
A set of transitions T (reactions),
An input function I (stoichiometry of reactants),
An output function O (stoichiometry of products),
A weight function W (rate of reaction), and
An initial marking M0 (initial molecule counts).

For elementary reactions, transition labeled with rate constant and
assumed that rate function includes product of reactants.

The state of an SPN is its marking which is an assignment of a number of
tokens to each place in the net.

Corresponds to current molecule counts.
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Simple Stochastic Petri Net
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SPN for Part of the Phage λ Model
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Phage λ Model

Phage λ has two developmental pathways to replicate its DNA.

The decision appears to be stochastic.

Controled by two independently produced proteins competing for a switch.

Resulting switch behavior is nondeterministic.

Initially homogeneous population can follow different pathways.

Two E. Coli in same environment and infected with the same number of
phages, one may lyse while other is lysogenized.

A deterministic model always results in exactly one possible outcome
unless the parameters or initial conditions are changed.

Therefore, stochastic analysis necessary to predict the probability that a
cell heads down the lysis or lysogeny pathway after infection.
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Lysis versus Lysogeny

Goal of analysis is to predict probability of lysogeny.

Shown experimentally to depend on multiplicity of infection (MOI), and on
nutritional state of the cell.
Well-fed cells tend to go into lysis.

Higher Hfl-related proteolytic activity shortens lifetimes of CII and CIII.

Cells with higher MOI tend to lysogeny.
Hfl concentration is constant in MOI.
cII and cIII genes are proportional to MOI.

Decision between lysis and lysogeny is essentially determined by a race
between the buildup of the proteins Cro2 and CI2.

If Cro2 reaches critical level first, result is lysis.
If CI2 reaches critical level first, result is lysogeny.
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Time Courses (Average)
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Time Courses (Lysogeny)
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Time Courses (Lysis)
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Kourilsky’s Measurements

Measured lysogenic fraction vs. API.

Included measurements of O− and P− strains incapable of phage
chromosome replication.

Experiments performed on both starved and well-fed cells.

Stochastic analysis is only practical for the starved data as the number of
simulation runs goes like 1/f where f is fraction of lysogens.

Determined probability of lysogeny, F(M), using 10,000 runs of the SSA.

Use Poisson distribution to map F(M) to API data:

P (M,A) =
AM

M!
e−A

Flysogen(A) = ∑
M

P (M,A) ·F(M)
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Probability of Lysogeny
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Lysogenic Fraction
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Mutants
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Spatial Gillespie

As the volume increases, well-stirred assumption is less valid.

Several methods proposed to add spatial considerations.

Stundzia and Lumsden proposed spatial Gillespie method.

System divided into several discrete subvolumes.

Size of subvolumes selected such that within them well-stirred
assumption is reasonable.

Diffusion within subvolume faster than rate of reactions.
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Discrete Subvolumes used by Spatial Gillespie
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Spatial Gillespie (cont)

State is now number of each species within each subvolume.

During simulation cycle, molecule either reacts with others within the
subvolume or diffuses to adjacent subvolume.

Beginning with (S1, . . . ,Sn), spatial considerations added as follows
assuming volume divided into p×q× r subvolumes:

(S(i,j,k)
1 , . . . ,S(i,j,k)

n )

where i = 1, . . . ,p, j = 1, . . . ,q, and k = 1, . . . , r .

S(i,j,k)
µ

K↔ S(i+1,j,k)
µ

S(i,j,k)
µ

K↔ S(i,j+1,k)
µ

S(i,j,k)
µ

K↔ S(i,j,k+1)
µ .

Now any stochastic simulation algorithm can be used.
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Sources

Stochastic simulation:
SSA - Gillespie (1977), Gillespie (1992), and Gillespie (2005).
Next reaction method - Gibson and Bruck (2000).
SSA-CR - Slepoy et al. (2008).
Tau-leaping - Gillespie and Petzold (2003), Cao et al. (2006), and
Rathinam et al. (2003).

Stochastic Petri nets:
SPNs - Molloy (1982) and Marsan et al. (1984).
Applied to modeling biological systems - Goss and Peccoud (1998).

Stochastic analysis of phage λ:
Arkin et al. (1998).

Spatial methods:
Survey of various methods - Takahashi et al. (2005).
Spatial Gillepsie method - Stundzia and Lumsden (1996).

Chapter 4 of Engineering Genetic Circuits - Myers (2009).
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Project Proposal

Email your project idea to me ASAP.
Project will be a mini-iGEM project.

Experimental track - design a genetic circuit in silico.
Software track - design a software tool for genetic design.

Submit a one page project proposal by Friday October 19th.

Figures and references do not count towards the page limit, and they
should DEFINITELY be included.
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Project Requirements

Project updates due November 2rd and November 16th.
One page project update describing your progress.
Must show concrete evidence of your work to date on the project.
Experimental track: links to SynBioHub collections.
Software track: links to github (or similar) source code repositories.

Project presentations on December 6th (approximately 10 minutes each).
Project final report due on December 14th.

4 pages including figures and references (appendices excluded) in IEEE
Transactions format.
Experimental track: all design files submitted in a well-organized,
documented SynBioHub collection.
Software track: all code files submitted on github (or similar), including
documentation for running the software and example files to test with.
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