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Albert Einstein

Yes, we have to divide up our time
like that, between our politics and our
equations. But to me our equations are
far more important, for politics are only a
matter of present concern. A
mathematical equation stands forever.
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Introduction

Next step of the engineering approach is analysis.

Goal of analysis is to be able to both reproduce experimental results and
make predictions in silico.

Simulation provides unlimited controllability and observability.

Traditional classical chemical kinetics (CCK) utilizes ordinary differential
equations (ODE) to represent system dynamics.

Law of mass action can translate a chemical reaction model into ODEs
known as reaction rate equations.

ODEs typically analyzed using numerical simulation.

Qualitative analysis utilized to understand behavior as initial conditions
and parameter values vary.

Partial differential equations (PDE) utilized when spatial considerations
are important.
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Overview

Classical chemical kinetics

Differential equation simulation

Qualitative ODE analysis

Spatial methods
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A Classical Chemical Kinetic Model

A CCK model tracks concentrations of each chemical species (i.e.,
number of molecules divided by volume, Ω, of cell or compartment).

Assumes reactions occur in a well-stirred volume (i.e., molecules are
equally distributed within the cell) and spatial effects can be neglected.

Assumes reactions occur continuously and deterministically.

Requires that the number of molecules of each species are large.
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A Classical Chemical Kinetic Model (cont)

A CCK model is composed of n chemical species {S1, . . . , Sn} and m
chemical reaction channels {R1, . . . , Rm}.
Each reaction Rj has the following form:

v r
1jS1 + . . .+ v r

njSn
kf→←
kr

vp
1jS1 + . . .+ vp

njSn

where v r
ij is the stoichiometry for species Si as a reactant in reaction Rj

and vp
ij is the stoichiometry for species Si as a product in reaction Rj .

The values of v r
ij and/or vp

ij are 0 when species Si does not participate as
a reactant and/or product in reaction Rj .

Parameter kf is forward rate constant while kr is reverse rate constant.

If the reaction is irreversible, then kr is 0.
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A Classical Chemical Kinetic Model (cont)

Law of mass action states that the rate of an irreversible reaction is
proportional to the product of concentrations of reactant molecules.
The rate of a reversible reaction is also reduced by a value proportional to
the product of the concentrations of product molecules.
Formally, the reaction rate Vj for reaction Rj is defined as follows:

Vj = kf

n

∏
i=1

[Si ]
v r

ij − kr

n

∏
i=1

[Si ]
vp

ij

where [Si ] is the concentration of species Si .
An ODE model can be constructed as follows:

d [Si ]

dt
=

m

∑
j=1

vijVj , 1≤ i ≤ n

where vij = vp
ij − v r

ij (i.e., the net change in species Si due to reaction Rj ).
CCK model consists of one ODE for each species which is sum of the
rates of change of species due to each reaction that affects the species.
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ODE Model Example

CI
kd−→ ()

CII
kd−→ ()

PRE + RNAP
Ko1←→ S1

PR + RNAP
Ko2←→ S2

S1
kb−→ S1 + np CI

S2
ko−→ S2 + np CII

2CI
Kd←→ CI2

PR + nc CI2
Kr←→ S3

PRE + na CII + RNAP
Ka←→ S4

S4
ka−→ S4 + np CI

Constant Value
RNAP0 30 nM

Kd = kdf/kdr 0.1M−1

Ko1 = ko1f/ko1r 0.01 M−1

Ko2 = ko2f/ko2r 0.69422 M−1

Kr = krf/krr 0.2165 M−nc

Ka = kaf/kar 0.00161 M−(na+1)

ko 0.014 sec−1

kb 0.00004 sec−1

ka 0.015 sec−1

kd 0.0075 sec−1

nc 1
na 1
np 10
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ODE Model Example

d[CI]
dt = np kb[S1] + np ka[S4]−2(kdf [CI]2− kdr [CI2])− kd [CI]

d[CI2]
dt = kdf [CI]2− kdr [CI2]−nc(krf [PR][CI2]nc− krr [S3])

d[CII]
dt = np ko[S2]−na(kaf [PRE ][RNAP][CII]na− kar [S4])− kd [CII]

d[PR ]
dt = ko2r [S2]− ko2f [PR][RNAP] + krr [S3]− krf [PR][CI2]nc

d[PRE ]
dt = ko1r [S1]− ko1f [PRE ][RNAP] + kar [S4]− kaf [PRE ][RNAP][CII]na

d[RNAP]
dt = ko1r [S1]− ko1f [PRE ][RNAP] + ko2r [S2]− ko2f [PR][RNAP]+

kar [S4]− kaf [PRE ][RNAP][CII]na

d[S1]
dt = ko1f [PRE ][RNAP]− ko1r [S1]

d[S2]
dt = ko2f [PR][RNAP]− ko2r [S2]

d[S3]
dt = krf [PR][CI2]nc− krr [S3]

d[S4]
dt = kaf [PRE ][RNAP][CII]na− kar [S4]
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Differential Equation Simulation

The differential equations for a set of reaction rate equations are:

dxi

dt
= fi(x), where 1≤ i ≤ n

where x = [x1, . . . ,xn]≥ 0 is vector of species concentrations.

Solving this ODE model analytically is very difficult, if not impossible.

Numerical simulation can approximate time evolution of X(t) assuming
X(t0) = x0 (initial value problem).
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Euler’s Method

Simplest approach to solve the initial value problem is Euler’s method.

Initial instantaneous rate of change for each Si at time t0:

dXi(t0)

dt
= fi(x0), where 1≤ i ≤ n.

If the rate of change, fi(X(t)), remains constant for all t ≥ t0, then
Xi(t) = x0i + fi(x0)(t− t0).

Not true in general, but may be reasonable to assume value remains
close to fi(x0) for some small time step ∆t (step size).
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Forward Euler Method

With this assumption,

Xi(t1) ≈ Xi(t0) + fi(X(t0))∆t

In general, for any tj = t0 + n∆t where j = 0,1,2,3, . . .:

Xi(tj+1) ≈ Xi(tj) + fi(X(tj))∆t

This algorithm is known as the forward Euler Method, and it is an
example of an explicit ODE simulation method.
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Forward Euler Method

Xi(t)

t0 t1 t2
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Backward Euler Method

Backward Euler method is an implicit ODE simulation method.

New rate of change cannot be determined directly from current state, but
it must be found implicitly by an equation that must be solved.

Backward Euler method is defined by follows:

Xi(tj+1) ≈ Xi(tj) + fi(X(tj+1))∆t.

New value of X(tj+1) is determined as the rate at the point that would
have taken you there in a ∆t step.

Since X(tj+1) is not yet known, this equation must be solved using a root
finding technique such as the Newton-Raphson method.

Implicit methods are more complicated, but often more stable for stiff
equations (i.e., those that require a very small time step).
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Backward Euler Method

Xi(t)

t0 t1 t2
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Drawback of Euler’s Method

Using the fundamental theorem of calculus, exact solution for each
species, Si , must satisfy:

Xi(tj+1) = Xi(tj) +
∫ tj+1

tj
fi(X(t))dt

Drawback of Euler methods is they approximate this integral by assuming
that fi(X(t)) is constant throughout the entire ∆t interval from tj to tj+1.
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Midpoint Method (Second-Order Runge-Kutta)

Approximates rate of change in ∆t interval using rate at the midpoint:

Xi(tj+1) ≈ Xi(tj) +

[
fi(X(tj) +

1
2

f (X(tj))∆t)

]
∆t

Xi(t)

t0 t1 t2
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Fourth-Order Runge-Kutta

More points can be combined to further improve accuracy:

α1 = f (X(tj))

α2 = f

(
X(tj) +

∆t
2

α1

)
α3 = f

(
X(tj) +

∆t
2

α2

)
α4 = f (X(tj) + ∆tα3)

X(tj+1) = X(tj) +
∆t
6

[α1 + 2α2 + 2α3 + α4]

Implicit Runge-Kutta methods can also be used for stiff equations.
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Adaptive Stepsize Control

To obtain good results, should modify ∆t during the simulation.

Simulation should slow down when rates are changing rapidly and speed
up when the rates are changing slowly.

With the step doubling approach, X(tj+1), is found in one ∆t step and
X
′
(tj+1) is found by taking two ∆t/2 steps.

Estimate of the error for each species:

Ei = |X ′i (tj+1)−Xi(tj+1)|

Goal of adaptive stepsize control is to achieve a desired error level:

Di = abs + rel · |Xi(tj+1)|

where abs is absolute error level and rel is relative error level.
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Adaptive Stepsize Control (cont)

If for any species, Ei , exceeds Di by more than 10%, simulation step
should be performed again using a new stepsize:

∆t = 0.9 ·∆t ·
(

D
E

)q

where D/E is the minimum of the ratios Di/Ei and q is the order of the
method (i.e., 4 for a fourth-order Runge-Kutta method).

If for all species, Ei is less than 50% of Di , stepsize can be increased:

∆t = 0.9 ·∆t ·
(

D
E

)(q+1)

Previous simulation step can be accepted and the state found by taking
half steps, X

′
(tj+1), can be used.
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ODE Simulation Results
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Assignment #5

Perform ODE simulation on your genetic toggle switch model.
Set the initial value of LacI (in all models) to 60 molecules.
Add events that set IPTG to 60 at 2000s, IPTG to 0 at 4000s, aTc to 60 at
6000s, and aTc to 0 at 8000s.
Perform ODE simulation for 10000s and compare with the expected toggle
simulation results. If it does not match, correct your model until they do.
Upload an archive of your project to https://synbiohub.utah.edu, and
provide a share link.

Perform ODE simulation on your paper’s genetic circuit model
Set initial conditions/parameters and add events to test your genetic circuit
model and update your model as needed to get the results you expect.
Upload an archive of your project to https://synbiohub.utah.edu, and
provide a share link.
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Assignment #5 (cont)

Use the law of mass action to create an ODE model for the reactions
given below.
Simulate this ODE model using the Forward Euler method and Fourth
Order Runge-kutta for 1 second with a 0.2 second time step.
Comment on any differences in results using these two ODE simulation
methods.
You may either do this simulation by hand, using a spreadsheet, or writing
a simple program.
Submit all your work.

LacI
kd−→ ()

TetR
kd−→ ()

pLac
ko−→ np TetR

pTet
ko−→ np LacI

pLac + nc LacI
Kr←→ pLacLacI

pTet + nc TetR
Kr←→ pTetTetR

Constant Value
Kr = krf/krr (0.1/1.0) M−nc

ko 0.1 sec−1

kd 0.1 sec−1

nc 2
np 10

pLac 1
pTet 1
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Qualitative ODE Analysis

Goal of ODE analysis is to determine properties of the phase space.

Phase space is the set of all possible states of the system.

States are values and current rates of change of each variable.

Numerical simulation only shows one trajectory in the phase space
starting in a given initial condition with specific parameter values.

Goal of qualitative ODE analysis is to determine the complete phase
space based upon any initial condition.

Can also discover how parameter variation affects the phase space.
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One-Dimensional ODE Models

A one-dimensional ODE model with a single parameter, r :

dx
dt

= f (x , r)

A state for such a model includes only the value of x and its current rate
of change (or flow) of x , dx

dt .

Can visualize phase space with a graph of x versus dx
dt .
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Saddle-Node Example

dx
dt

=−r + x2
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Saddle-Node Example (r < 0)

dx
dt

=−r + x2
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Saddle-Node Example (r = 0)

dx
dt

=−r + x2
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Saddle-Node Example (r > 0)

dx
dt

=−r + x2
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Saddle-Node Example (Bifurcation Diagram)

dx
dt

=−r + x2
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Transcritical Bifurcation Example

dx
dt

=−rx + x2

Chris J. Myers (Lecture 6: ODE Analysis) Engineering Genetic Circuits 31 / 54



Transcritical Bifurcation Example (r < 0)

dx
dt

=−rx + x2
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Transcritical Bifurcation Example (r = 0)

dx
dt

=−rx + x2
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Transcritical Bifurcation Example (r > 0)

dx
dt

=−rx + x2
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Transcritical Bifurcation Example (Bifurcation Diagram)

dx
dt

=−rx + x2
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Pitchfork Bifurcation Example

dx
dt

= rx− x3
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Pitchfork Bifurcation Example (r < 0)

dx
dt

= rx− x3
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Pitchfork Bifurcation Example (r = 0)

dx
dt

= rx− x3
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Pitchfork Bifurcation Example (r > 0)

dx
dt

= rx− x3
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Pitchfork Bifurcation Example (Bifurcation Diagram)

dx
dt

= rx− x3
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Two-Dimensional ODE Model

A two-dimensional ODE model has the following form:

dx
dt

= f (x ,y)

dy
dt

= g(x ,y)

Now four state variables (i.e., values of x , y , and their flows).

Graphical technique uses vector fields in which values of x and y are the
axes and a vector assigned to each point to indicate direction of flow.

Graph is constructed by first determining the nullclines (i.e., lines in which
the flow of a variable is zero):

0 = f (x ,y)

0 = g(x ,y)

Vectors drawn at various points to indicate the direction of flow.
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Two-Dimensional ODE Model (cont)

Points in which two nullclines intersect are equilibrium points.

Stability can be determined by looking at the flows in the vicinity of the
equilibrium point.

Qualitative ODE analysis for systems of more than 2 dimensions is
difficult, so one often reduces dimensionality to 2.
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Two Dimensional Model for CI/CII Portion of Phage λ

d [CI]
dt

=
np PRERNAP(kbKo1 + kaKa[CII])

1 + Ko1RNAP + KaRNAP[CII]
− kd [CI]

d [CII]
dt

=
np koPRKo2RNAP

1 + Ko2RNAP + Kr Kd [CI]2 − kd [CII]
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Nullcline for the CI/CII Portion of Phage λ
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Genetic Muller C-Element

A Muller C-element is a state holding gate common in many
asynchronous design methods that is used to synchronize multiple
independent processes.

A genetic Muller C-element would allow for the design of any
asynchronous FSM.

C
C

A

B

A B C
0 0 0
0 1 C
1 0 C
1 1 1
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Genetic Toggle Switch Muller C-Element
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Nguyen et al., 13th Symposium on Async. Ckts. & Sys., 2007 (best paper)

Nguyen et al., Journal of Theoretical Biology, 2010.
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Nullcline Analysis for the Genetic Toggle C-element
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Nullcline Analysis for the Genetic Toggle C-element
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Nullcline Analysis for the Genetic Toggle C-element
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Nullcline Analysis for the Genetic Toggle C-element
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Nullcline Analysis for the Genetic Toggle C-element
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Failure Rate for Single-Rail and Dual-Rail

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 500 1000 1500 2000

F
ai

lu
re

 R
at

e 

Time (s) 

Failure Rate for Single-Rail and Dual-Rail (Toggle Switch) 

Single-Rail (High to Low) 
Dual-Rail (High to Low) 

Chris J. Myers (Lecture 6: ODE Analysis) Engineering Genetic Circuits 48 / 54



Spatial Methods

ODE models assume spatial homogeneity.

Delays due to diffusion may be important.
Examples:

Diffusion between the nucleus and cytoplasm or other compartments.
Cell differentiation and embryonic development in multicellular organisms
appears to be controlled by gradients of protein concentrations.
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One-Dimensional Spatial Configuration

Consider p cells (or regions of a single cell) are arranged in a row in which
each cell l has an amount of each species denoted by the vector Xl(t).

Assuming that diffusion between cells is at a rate proportional to their
differences in concentration (i.e., x(l+1)

i − x(l)
i and x(l−1)

i − x(l)
i ), the

following reaction-diffusion equations can be obtained:

dx(l)
i

dt
= fi(x(l)) + δi(x(l+1)

i −2x(l)
i + x(l−1)

i ),1≤ i ≤ n,1 < l < p

where δi is a diffusion constant.

These equations are still ODEs, so they can be numerically solved using
the simulation methods described earlier.
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Two-Dimensional Spatial Configuration
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Partial Differential Equations

As the number of cells becomes large, l can be taken to be a continuous
variable resulting in a partial differential equation (PDE) model:

dxi

dt
= fi(x) + δi

∂2xi

∂l2
,1≤ i ≤ n,0≤ l ≤ γ

where the system size is assumed to be γ and diffusion does not occur
beyond the boundaries at l = 0 and l = γ.

Analysis and numerical solutions for PDE models is more involved.
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More on Spatial Modeling

Reaction-diffusion equations for modeling cell differentiation were
originally proposed by Turing (1951).
Goal of his work is a mathematical model of a growing embryo.
Turing suggested that systems consist of masses of tissues within which
certain substances called morphogens react chemically and diffuse.
Diffusing into a tissue persuades the tissue to develop differently.
The embryo in the spherical blastula stage has spherical symmetry.
Systems with spherical symmetry whose state is changed by chemical
reactions and diffusion remains spherically symmetric.
This cannot result in a non-spherically symmetric organism like a horse.
There are some asymmetries which cause instability and lead to a new
and stable equilibrium without symmetry.
This behavior is very similar to how electrical oscillators get started.
Successfully applied to modeling pattern formation in the Drosophila
embryo (see Kauffman et al. (1978), Bunow et al. (1980), Goodwin and
Kauffman (1990), Lacalli (1990), and Myasnikova et al. (2001)).
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Sources

Law of mass action - Waage and Guldberg (1864).

Classical chemical kinetics - Wright (2004).

Models of genetic circuits - Goodwin (1963, 1965).

Numerical simulation - Press et al. (1992).

Qualitative ODE analysis - Strogatz (1994).

Chapter 3 of Engineering Genetic Circuits - Myers (2009).
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