
Engineering Genetic Circuits

Chris J. Myers

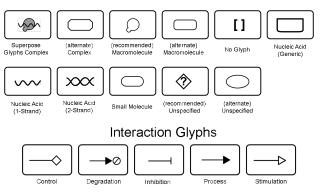
Lecture 2: Genetic Parts

Richard Feynman

Genetic Parts

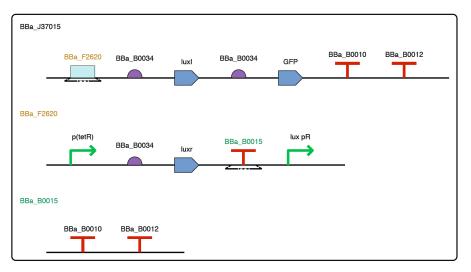
- Pieces of DNA that encode a biological function.
- Many correspond to well known sequence based genetic features.
 - Promoters
 - Ribosome binding sites
 - Protein coding sequences
 - Terminators
- The Sequence Ontology defines over 2800 types of sequence features. http://www.sequenceontology.org
- Parts can be combined to produce devices (see next lecture).

Synthetic Biology Open Language (SBOL) Visual


l _... ____ Assembly Blunt Restriction (recommended) (alternate) Engineered 3' Overhand Aptamer Composite Scar Site CDS CDS Region Sticky End \sim . . . 3' Stickv 5' Overhand 5' Sticky Non-Coding Insulator No Glyph Omitted Detail Operator Sticky End Restriction Site Restriction Site RNA \rightarrow 3 AAA \bigcirc $|X_{-}|$ \cap D Ribosome Entry Recombination Primer Bindina OBL ORI-T Poly-A Site Promoter Signature Site Site Site ð (alternate) (recommended) (recommended) (recommended) (recommended) (alternate) (alternate) Terminator Unspecified Unspecified DNA Location RNA Location Protein Location **DNA Location** RNA Location 3 П ð ¥ ¥ RNA DNA Protein DNA Protein (alternate) Cleavage Site Cleavage Site Stability Element Stability Element Stability Element Protein Location Cleavage Site

Nucleic Acid Glyphs

More information can be found at: http://sbolstandard.org/visual/


Synthetic Biology Open Language (SBOL) Visual

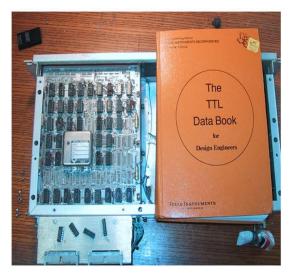
Molecular Species Glyphs

More information can be found at: http://sbolstandard.org/visual/

SBOL Visual Example

Rendered by VisBol (http://visbol.org)

Chris J. Myers (Lecture 2: Genetic Parts)

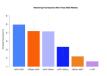

Standard Parts

Standard Parts

Standard Parts

http://ee.hawaii.edu/~sasaki/EE260/Labs/Datasheets/7400.pdf

iGEM Registry of Standard Biological Parts (BioBricks)


Featured Part

Cellulose Collection

Group: Team Imperial 2014, and others

The 2014 Imperial IGEM team created a bacterial colludes filter for their Aqualose project. They wanted to produce flexible, and pollution-specific filters to aid in water sanitation. They created a set of well-documented cellulose binding domains, paired with reporter genes (GFP) and metal binding domains.

Many other teams have also worked with cellulose, so check out the cellulose related parts collection.

Catalog

The iGEM Registry has over 20,000 documented parts. The Catalog organizes many of these parts by part type, chassis, function, and more. Browse for parts through the Registry Catalog or use the search menu.

2017 DNA Distribution

The iGEM 2017 DNA Distribution has started shipping! We've added some new material this year, so be sure to read through the 2017 Distribution Handbook for storage instructions and how to use your kit!

http://parts.igem.org

Chris J. Myers (Lecture 2: Genetic Parts)

Engineering Genetic Circuits

SynBioHub Data Repository

James McLaughlin Anil Wipat

UNIVERSITY OF UTAH[®] Zach Zundel Chris Myers

Version 1.0 released June 14, 2017

Reference Instance (https://synbiohub.org)

• SynBioHub

🚯 Submit 🚯 About 🗮 Submissions 👒 Admin 🕒

BacillOnd

Advanced Search I Create Collection I SPARQL

Bacillus subtilis Collection

version 1

This collection includes information about promoters, operators, CDSs and proteins from Bacillus subtilis. Functional interactions such as transcriptional activation and repression, protein production and various protein-protein interactions are also included.

iGEM Parts Registry

version 1

The IGEM Registry is a growing collection of genetic parts that can be mixed and matched to build synthetic biology devices and systems. As part of the synthetic biology community's efforts to make biology easier to engineer, it provides a source of genetic parts to IGEM teams and academic labs.

iGEM 2017 Distribution

version 1

Distribution of parts for the 2017 iGEM competition

SBOL Compliant Software

version 1

A collection of software that supports the Synthetic Biology Open Language (SBOL) standard

ACS Synthetic Biology version current

BU/MIT Living Computing Project (https://synbiohub.programmingbiology.org)

		🐴 Submit	6 About	E Submissions	o: Admin	۲
	Q Search SynBioHub	Search				
	Advanced Search I Create Collection I SPA	RQL				
Cello Parts version 1 A collection of parts used in the Cello Science	te Paper.			CELL		
Living Computing Project version 1 Designs created as part of the NSF Expedition	ins Living Computing Project				и <mark>р</mark> ст	
BU BDC Lab ICE version current BU Biological Design Center Lab's Inventory				₿₽₹		
MIT SBC Lab ICE version current MIT Synthetic Biology Center Lab's Inventory	,			SBC A	- B MET	
Cidar Lab Benchling version current Cidar Lab Benchling collection of parts				CIDAR	NP.	

SBOLme (http://www.cbrc.kaust.edu.sa/sbolme/)

Kuwahara et al., ACS Synthetic Biology (2017) Includes 28,437 chemical compounds, 6,883 enzyme classes, 9,909 metabolic reactions, and 3,173,238 proteins from 3,908 organisms.

Chris J. Myers (Lecture 2: Genetic Parts)

Engineering Genetic Circuits

ICE (https://acs-registry.jbei.org)

Sŷnthetic Biology		Q Search		SEARCH		myers@ece.utah.edu
ILLECTIONS		Create Entry				
Featured	287		Hillson et al.	2012 Public		
🗅 Linshiz et al. 2012	6	1/25/16 7:58 PN				
C Hillson et al. 2012	27	• TYPE	PART ID	NAME	STATUS 🔬	S CREATED
🗅 Hagen et al. 2015	34	PART	ACS_000032	DclpX_cassette Linear cassette for markerless genamic deletion of clpX gene from E	69 Complete	🖉 Aug 9, 2011
🗀 Sarria et al. 2014	54	STRAIN	ACS_000031	JBEI-3083 clpX markerless deletion in Keasiling-1484 background	5) Complete	🖉 Aug 9, 2011
Phelan et al. 2014 Shih et al. 2015	15	STRAIN	ACS_000030	JBEI-2948 Strain for linear arabinose response transformed with pREDL Interme	6) Complete	Aug 9, 2011
Linshiz et al. 2014	40		ACS_000029	JBEI-3140 clpX protesse markeness deletion in Kessling-1484 background, for L.,	6 Complete	Aug 9, 2011
Personal	35	STRAIN	ACS_000028	JBEI-3139 cipX protease markeness deletion in Kessling-1484 background, for L.,	6) Complete	Aug 9, 2011
Shared		STRAIN	ACS_000027	JBEI-3138 cipX protease markeness deletion in Kessiino-1484 background, for L.,	6) Complete	Aug 9, 2011
Drafts		STRAIN	ACS_000026	JBEI-3137 cipX protease markeness deletion in Kessing-1484 background, for L.,	6 Complete	Aug 9, 2011
OF REGISTRIES		STRAIN	ACS_000025	JBEI-3136 clpX protease markerless deletion in Kessing-1484 background, for L.,	🎒 Complete	Aug 9, 2011
JBEI Registry JBEI Public Registry		STRAIN	ACS_000024	JBEI-3135 cipX protease markerless deletion in Kessling-1484 background, for L.,	6 Complete	Aug 9, 2011
MIT Synthetic Biology		STRAIN	ACS_000023	JBEI-3134 clpX protease markeness deletion in Keasling-1484 background, for L	6) Complete	Aug 9, 2011
		STRAIN	ACS_000022	JBEI-3133 cipX protease markeness deletion in Kessling-1484 background, for L	6 Complete	Aug 9, 2011
		STRAIN	ACS_000021	JBEI-3144 cipX protease markeness deletion in Kessling-1484 background, for L	6 Complete	Aug 9, 2011
DOED Bioenergy Research Centers	Sandia Notional Labaratories		CARNEG			© JBEI ICE Registry All rights reserv Submit an Issue H

Ham et al., Nucleic Acid Research (2012)

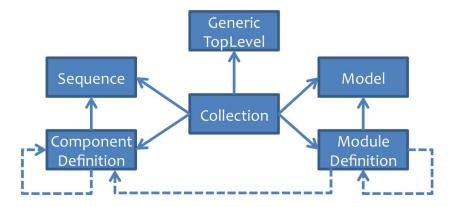
Other Useful Repositories

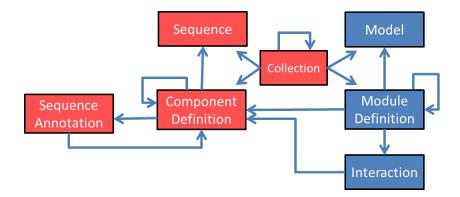
• NCBI-https://www.ncbi.nlm.nih.gov

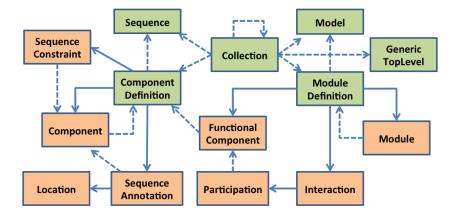
- PubMed https://www.ncbi.nlm.nih.gov/pubmed
- GeneBank https://www.ncbi.nlm.nih.gov/genbank
- Protein https://www.ncbi.nlm.nih.gov/protein
- Many others https://www.ncbi.nlm.nih.gov/guide/all/
- EMBL-EBI http://www.ebi.ac.uk
 - BioModels http://www.ebi.ac.uk/biomodels-main/
 - ChEBI-http://www.ebi.ac.uk/chebi/
 - Reactome http://reactome.org
 - UniProt http://www.uniprot.org
 - Many others http://www.ebi.ac.uk/services/all
- addgene https://www.addgene.org
- Pathway Commons http://www.pathwaycommons.org

Data Standards: FASTA

>BBa_B0015 sequence 1 (129 bp) ccaggcatcaaataaaacgaaaggctcagtcgaaagactgggcctttcgttttatctgt tgtttgtcggtgaacgctctctactagagtcacactggctcaccttcgggtggggccttt ctgcgtttata

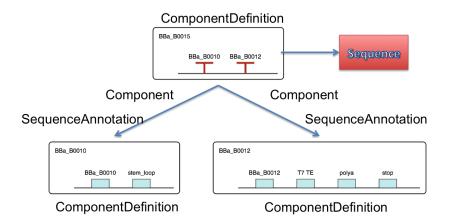

Data Standards: GenBank

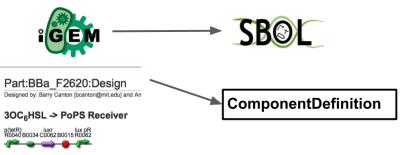

LOCUS	BBa_B001	5	129 br	DNA	linear 1	UNK 23-Aug-20
DEFINITION	N double to	erminator (I	В0010-В0012))		
ACCESSION	ACCESSION BBa_B0015					
VERSION	BBa_B001	5.1				
FEATURES		Location/Qu	ualifiers			
misc_	feature	1255				
misc_	feature	180				
termi	Inator	180				
misc_	feature	96115				
misc_	feature	122122				
polyA	A_site	116129				
misc_	feature	89129				
termi	Inator	89129				
ORIGIN						
1	ccaggcatca	aataaaacga	aaggctcagt	cgaaagactg	ggcctttcgt	tttatctgtt
61	gtttgtcggt	gaacgctctc	tactagagtc	acactggctc	accttcgggt	gggcctttct
121	gcgtttata					

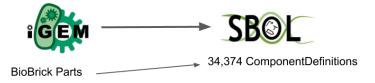

//

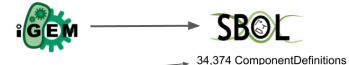
Provides support for:

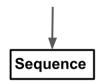
- Incomplete sequences.
- Hierarchical designs.
- Non-DNA components.
- Functional interactions.
- External models.
- Arbitrary annotations.
- Serialized in XML/RDF format.
- Leverages semantic web database technology.
- There are several library implementations of the SBOL data structure, which provide an *application programmers interface* (API) for tool developers to interact with SBOL data objects.

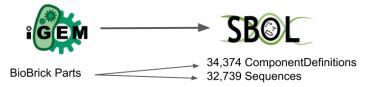


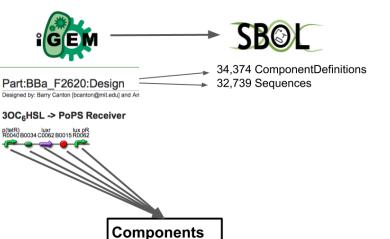

SBOL 2.2 Updates

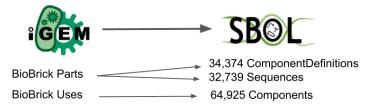

- Attachment class serves as a general container for data files.
- Implementation class represents a physical instance of a synthetic biological construct.
- CombinatorialDerivation class specifies combinatorial genetic designs without having to specify every possible design variant.
- Provenance ontology (Prov-O):
 - Activity class something that occurs over a period of time and acts upon or with entities.
 - Agent class something that bears some form of responsibility for an activity taking place.
 - Plan class an entity that represents a set of actions or steps intended by one or more agents to achieve some goals.


SBOL Example

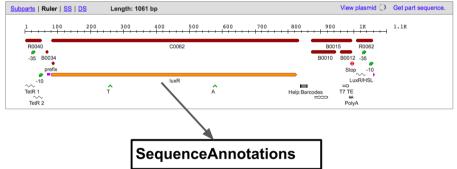


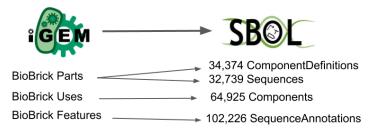


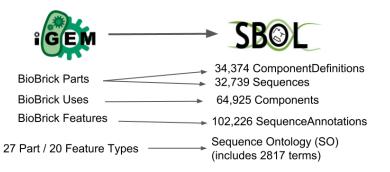


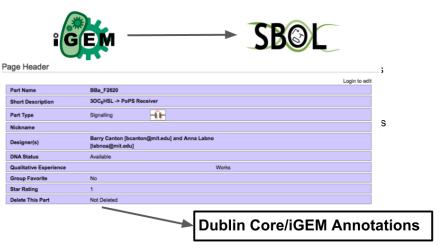


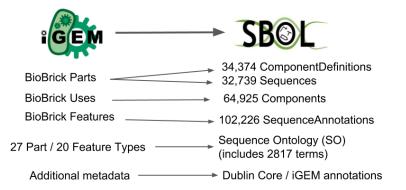

>BBa_F2620 Part-only sequence (1061 bp)



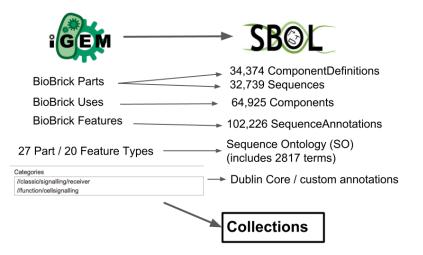


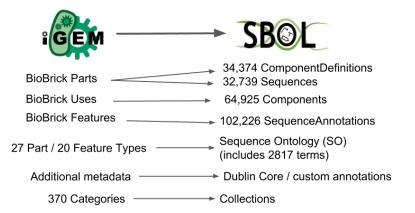


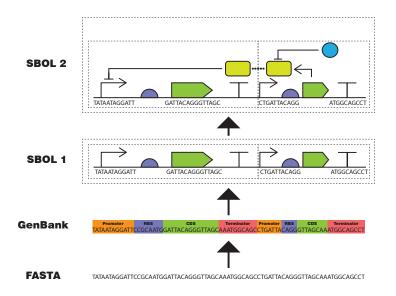

21 271 Component Definitions



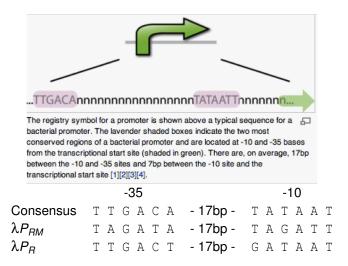
	iGEM Part/Feature Type	SequenceOntology (SO) Term
	Coding	CDS (SO:0000316)
E	Device	Engineered Region (SO:0000804)
E	Primer	Primer (SO:0000112)
E	Protein Domain	Polypeptide Domain (SO:0000417)
	RBS	Ribosome Entry Site (SO:0000139)
	Regulatory	Promoter (SO:0000167)
	Тад	Tag (SO:0000324)
	Terminator	Terminator (SO:0000141)
	etc.	etc.




Conversion of the iGEM Registry to SBOL

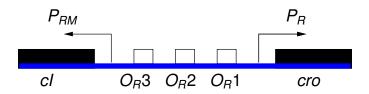

Conversion of the iGEM Registry to SBOL

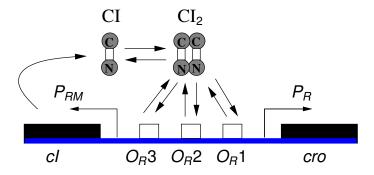
Conversion of the iGEM Registry to SBOL


Comparison of Standard Data Formats

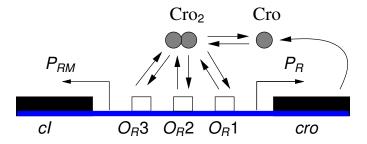
Promoters

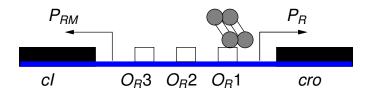
- Recruit transcriptional machinery.
 - RNA polymerase
 - Other accessory proteins
- Lead to transcription of the downstream DNA sequence producing RNA.
- Can be thought of as a part that produces a certain number of RNA molecules per unit time.
- Constitutive
 - Not regulated
 - Always on
- Regulated
 - Activity is modulated by the presence of other protein factors.
 - Positive regulation
 - Negative regulation
- Strength of promoters varies sequence and spacing of -10/-35 matters
- See http://parts.igem.org/Promoters

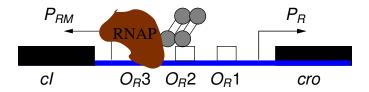

λ Promoters


Operators

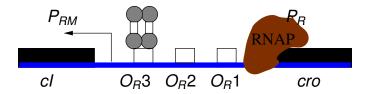
- Sequences that recruit the binding of *transcription factors* that regulate promoter activity.
- Classically operators recruit repressors to negatively regulate promoters.
- Also some operators bind activators (positive regulators).
- Often not considered as separate parts included within the promoter.
- Strength of regulation mediated by the sequence of the operator.
- Can be manipulated to tune the level of repression or activation.


The O_R Operator

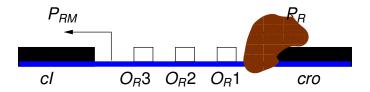

CI, the λ Repressor


λ 's Cro Molecule

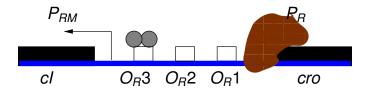
Cl_2 Bound to O_R1 Turns Off P_R

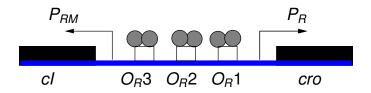


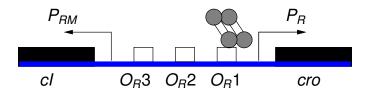
Cl₂ Bound to O_R2 Turns On P_{RM}

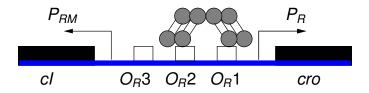


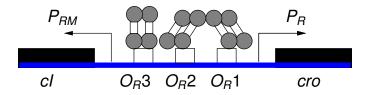
- Nothing in biology is clear-cut.
- Without Cl₂ bound to O_R2, RNAP can still bind to P_{RM} and initiate transcription of Cl at a reduced *basal rate*.
- With Cl₂ bound to O_R2, transcription occurs at enhanced activated rate.

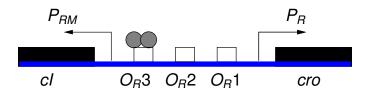

Cl₂ Bound to O_R3 Turns Off P_{RM}

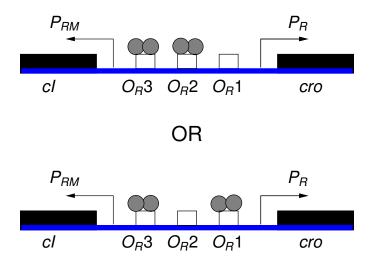

P_R Active When *O_R* Sites Are Empty

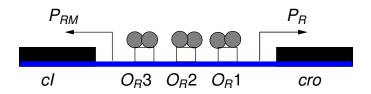

Cro₂ Bound to O_R3 Turns off P_{RM}

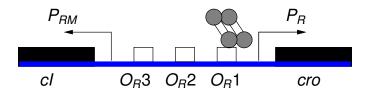

Cro_2 Bound to O_R1 or O_R2 Turns off P_R

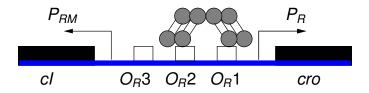

Low Concentrations of Cl₂

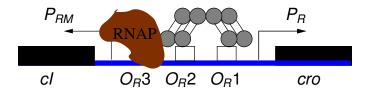

Cooperativity Aids Cl₂ Binding to O_R2

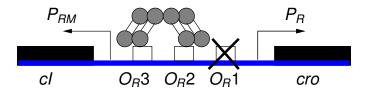

High Concentrations of Cl₂

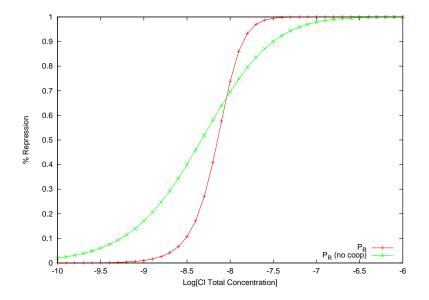

Low Concentrations of Cro2




Moderate Concentrations of Cro₂




High Concentrations of Cro2



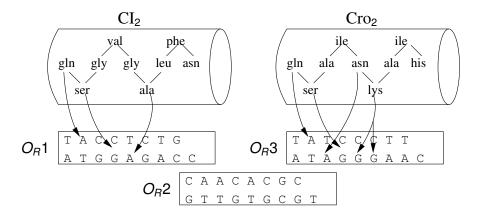
Effect of Cooperativity

Configurations of OR

- At low to moderate concentrations of CI and Cro, there are three common configurations:
 - No molecules bound to *O_R*, Cro produced at full rate and CI produced at low basal rate.
 - Cl_2 bound to O_R1 and O_R2 , Cro production repressed, and CI activated.
 - Cro₂ bound to O_R 3, CI cannot be produced, Cro is produced.
- Feedback of the products as transcription factors coupled with affinities makes *O_R* behave as a bistable switch.
- In *lysis* state, Cro produced locking out production of CI.
- In *lysogeny* state, CI produced locking out production of Cro.

- Cl₂ and Cro₂ bind to operator sites that are 17 base pairs long.
- How do these proteins locate these sequences from amongst the millions within the bacteria?
- Observing from midpoint, a strand on one side is nearly symmetric with complimentary strand on other side.

Near Symmetry in the Operator Sequences


Ор	Operator sequences	Operator half sequences								
$O_R 1$	TATCACCGcCAGAGGTA	Τ	Α	Т	С	Α	С	С	G	С
	ATAGTGGCgGTCTCCAT	T	Α	С	С	Т	С	Т	G	
$O_R 2$	TAACACCGtGCGTGTTG	Τ	Α	Α	С	Α	С	С	G	t
	ATTGTGGCaCGCACAAC	C	Α	Α	С	Α	С	G	С	
O _R 3	TATCACCGcAAGGGATA	Т	Α	Т	С	Α	С	С	G	С
	ATAGTGGCgTTCCCTAT	T	Α	Т	С	С	С	Т	Т	
<i>O</i> _L 1	TATCACCGcCAGTGGTA	Т	Α	Т	С	Α	С	С	G	С
	ATAGTGGCgGTCACCAT	T	Α	С	С	Α	С	Т	G	
<i>O</i> _L 2	ТАТСТСТ G g C G G T G T T G	Τ	Α	Т	С	Т	С	Т	G	
	ATAGAGACcGCCACAAC	C	Α	Α	С	Α	С	С	G	c
<i>O</i> _L 3	TATCACCGcAGATGGTT	Τ	Α	Т	С	Α	С	С	G	С
	ATAGTGGCgTCTACCAA	A	Α	С	С	Α	Т	С	Т	
Con.		<i>T</i> 9	A ₁₂	T_6	<i>C</i> ₁₂	<i>A</i> ₉	<i>C</i> ₁₁	C_7	G ₉	C_5
		C_2		C_3		T_2	T_1	T_4	T_2	T_1
		A_1		A_3		C_1		G_1	C_1	

• The *consensus sequence* is as follows:

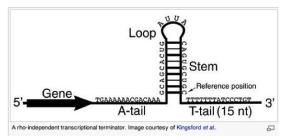
TATCACCGcCGGTGATA ATAGTGGCgGCCACTAT

- Many entries are highly preserved.
- Differences exist that cause the differences in affinity for Cl₂ and Cro₂ for the different operators.
- Notice that the first half of the operator sites *O_R*1 and *O_R*3 agree perfectly with the consensus sequence while second half has several differences.

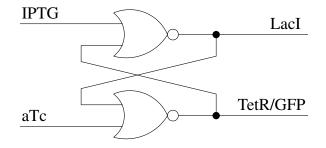
Amino Acid-Base Pair Interactions

Ribosome Binding Sites

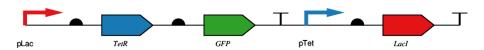
- A sequence in mRNA to which ribosomes bind and initiate translation.
- Bacteria usually require RBS and start codon.
- Also called Shine-Dalgarno sequence.
- See http://parts.igem.org/Ribosome_Binding_Sites


...AUAAAGGAGGUAAAUAAUG RBS start codon A typical RBS sequence is located about 6 nucleotides upstream of a start codon in an mRNA. The ribosomal holoenzyme binds to both the RBS and the start codon. The start codon and everything downstream are translated by the ribosome.

Protein Coding Regions


- Specify an amino acid sequence for a protein using the genetic code.
- Begin with a start codon, typically ATG to initiate translation.
- End with a stop codon, TAA, TAG, TGA to end translation.
- See http://parts.igem.org/Protein_coding_sequences

Terminators


- Sequence of DNA that signals the end of transcription.
- Placed past 3' end of the protein coding sequence.
- Often palindromic in sequence in prokaryotes.
- Weakens interaction between RNAP and the DNA strand being copied.
- Two categories in prokaryotes:
 - Rho dependent
 - Rho independent
- Rho independent most commonly used.
- See http://parts.igem.org/Terminators

Genetic Toggle Switch (SR Latch) Logic Diagram

Genetic Toggle Switch (Gardner et al. 2000)

Assignment #1

- Ensure that you understand genetic circuits to the level of detail presented in lecture 1.
- Read the genetic toggle switch paper: http://www.nature.com/nature/journal/v403/n6767/full/ 403339a0.html
- Is a second the paper that you selected for this course.
- Oownload and examine the supplemental material for your paper.
- Oreate an account on https://synbiohub.utah.edu.
- Locate parts needed to construct a genetic toggle switch.
 - Submit the parts into a collection in your private repository.
 - 2 Explain your choices in the details fields.
 - O Provide a share link to your private repository.
- Output: Construct your paper's genetic circuit.
 - Submit the parts into a collection in your private repository.
 - 2 Explain your choices in the details fields.
 - OPRIVATE PROVIDE A SHARE LINK TO YOUR PRIVATE REPOSITORY.