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Protocol Verification

Specification for circuit usually trys to accomplish certain goals.

Examples:
Protocol never deadlocks.
Whenever there is a request, it is followed by an acknowledgement
possibly in a bounded amount of time.

Can check by simulating a number of important cases.

Simulation does not guarantee correctness of the design.

Big problem in asynchronous design where a problem only manifests
under a very particular set of delays.

Verification can also be used to check if a specification meets its goals
under all permissable delay behaviors.
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Model Checking

Model checking is the process of verifying whether a protocol, circuit, or
other type of system has certain desired properties.

To specify desired behavior of a combinational circuit, one can use
propositional logic.

For sequential circuits, it is necessary to describe behavior of a circuit
over time, so one must use a propositional temporal logic.

Linear-time temporal logic (LTL) is presented here.
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Linear-time Temporal Logic (LTL)

A temporal logic is a propositional logic which has been extended with
operators to reason about future states of a system.

The set of LTL formulas can be described recursively as follows:
1 Any signal u is a LTL formula.
2 If f and g are LTL formulas, so are:

1 ¬f (not)
2 f ∧g (and)
3 ©f (next state operator)
4 f U g (strong until operator)
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LTL Semantics

Truth of formula f is defined with respect to a state si (si |= f ).

¬f is true in a state si when f is false in that state.

f ∧g is true when both f and g are true in si .

©f is true in state si when f is true in all next states sj reachable in one
transition.

f U g is true in a state si when in all allowed sequences starting with si , f
is true until g becomes true.
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Formal LTL Semantics

si |= u iff λS(si)(u) = 1

si |= ¬f iff si 6|= f

si |= f ∧g iff si |= f and si |= g

si |= ©f iff for all states sj such that (si , t,sj) ∈ δ . sj |= f

si |= f U g iff for all allowed sequences (si ,si+1, . . .),

∃j . j ≥ i ∧ sj |= g∧ (∀k . i ≤ k < j ⇒ sk |= f )
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LTL Abbreviations

♦f means f will eventually become true in all allowed sequences starting
in the current state.

♦f ≡ true U f

�f means f is always true in all allowed sequences.

�f ≡ ¬♦(¬f )

f W g means f is always true or until g.

f W g ≡ (f U g)∨�f
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Desired Properties for a Passive/Active Wine Shop

Should not raise ack_wine until req_wine goes high:

�(¬ack_wine ⇒ (¬ack_wine U req_wine))

Once ack_wine is high, it must stay high until req_wine goes low:

�(ack_wine ⇒ (ack_wine U ¬req_wine))

Once the shop has set req_patron high, it must hold it high until
ack_patron goes high:

�(req_patron ⇒ (req_patron U ack_patron))

Once the shop sets req_patron low, it must hold it low until ack_patron
goes low:

�(¬req_patron ⇒ (¬req_patron U ¬ack_patron))
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Desired Properties for a Passive/Active Wine Shop

Once the request and acknowledge wires on either side go high, they
must be reset again:

�((req_wine ∧ ack_wine) ⇒ ♦(¬req_wine ∧ ¬ack_wine))

�((req_patron ∧ ack_patron) ⇒ ♦(¬req_patron ∧ ¬ack_patron))

The wine should not stay on the shelf forever, so after each bottle arrives,
the patron should be called.

�(ack_wine ⇒ ♦req_patron)

The patron should not arrive expecting wine in the shop before the wine
has actually arrived.

�(¬ack_patron ⇒ (¬ack_patron U ack_wine))
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�(¬ack_wine ⇒ (¬ack_wine U req_wine))
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�(ack_wine ⇒ (ack_wine U ¬req_wine))
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�(req_patron ⇒ (req_patron U ack_patron))
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�(¬req_patron ⇒ (¬req_patron U ¬ack_patron))
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�((req_wine ∧ ack_wine) ⇒ ♦(¬req_wine ∧ ¬ack_wine))
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�((req_patron ∧ ack_patron) ⇒ ♦(¬req_patron ∧ ¬ack_patron))
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�(ack_wine ⇒ ♦req_patron)
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�(¬ack_patron ⇒ (¬ack_patron U ack_wine))
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�(¬ack_patron ⇒ (¬ack_patron U ack_wine))
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�(¬ack_patron ⇒ (¬ack_patron U ack_wine))
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Timed LTL

♦f states that eventually f becomes true, but it puts no guarantee on how
long before f will become true.

To express bounded response time, it is necessary to extend the temporal
logic that we use to specify timing bounds.

In timed LTL, each temporal operator is annotated with a timing constraint.

♦<5f states that f becomes true in less than 5 time units.
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Timed LTL Formulas

Timed LTL formulas can be described recursively as follows:
1 Any signal u is a timed LTL formula.
2 If f and g are timed LTL formulas then so are:

1 ¬f (not)
2 f ∧g (and)
3 f U∼c g

where ∼ is <, ≤, =, ≥, >.

There is no next time operator, since when time is dense, there can be no
unique next time.
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Timed LTL Abbreviations

♦∼c f ≡ true U∼c f

�∼c f ≡ ¬♦∼c(¬f )

Using the basic timed LTL primitives, we can also define temporal
operators subscripted with time intervals.

♦(a,b)f ≡ ♦=a♦<(b−a)f
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Some Bounded Response Time Properties

Once the request and acknowledge wires on either side go high, they
must be reset again within 10 minutes:

�((req_wine ∧ ack_wine) ⇒

♦≤10 (¬req_wine ∧ ¬ack_wine))

�((req_patron ∧ ack_patron) ⇒

♦≤10 (¬req_patron ∧ ¬ack_patron))

We also don’t want the wine to age too long on the shelf, so after each
bottle arrives, the patron should be called within 5 minutes:

�(ack_wine ⇒ ♦≤5 req_patron)
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Circuit Verification

Can check circuit by simulating a number of important cases.

Simulation does not guarantee correctness of the design.

Big problem in asynchronous design where a hazard may only manifest
as a failure under a very particular set of delays.

Verification checks if a circuit operates correctly under all the allowed
combinations of delay.

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 24 / 69



Traces

To verify a circuit conforms to a specification, it is necessary to check that
all its behaviors are allowed by the specification.

Define using traces of events on signals.

A trace is similar to an allowed sequence, but tracks signal changes
rather than states.
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State Graph for a C-element
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Traces Structures

Set of all possible traces is represented using a trace structure.

To verify hazard-freedom, use prefix-closed trace structures.

Described using a four-tuple 〈I,O,S,F〉:
I is the set of input signals.
O is the set of output signals.
S is all traces which are considered successful.
F is all traces which are considered a failure.

A = I ∪O and P = S∪F .
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Receptive

A trace structure must be receptive.

It is receptive when the state of a circuit cannot prevent an input from
happening (i.e., PI ⊆ P).
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Receptive State Graph for a C-element
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Inverse Delete

Before composition of circuits must make their signal sets match.

T1 = 〈I1,O1,S1,F1〉 and T2 = 〈I2,O2,S2,F2〉.

If N is signals in A2 and not in A1, then add N to I1 and extend S1 and F1

to allow events on signals in N at any time.

Must also extend T2 with those signals in A1 but not in A2.

This is done by inverse delete function, denoted del(N)−1(x) where N is
a set of signals and x is a set of traces.

Function inserts elements of N∗ between consecutive signals in x .

This function can be extended to a trace structure as follows:

del(N)−1(T ) = 〈I ∪N,O,del(N)−1(S),del(N)−1(F)〉
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Example
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Inverter After Renaming and Inverse Deletion
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Composition

Given two trace structures with consistent signal sets (i.e., A1 = A2 and
O1 ∩O2 = /0):

T1 ∩T2 = 〈I1 ∩ I2,O1 ∪O2,S1 ∩S2,(F1 ∩P2)∪ (F2 ∩P1)〉

Trace is success in composite when a success in both circuits.

Trace is a failure when it is a failure in either circuit.

Set of possible traces may be reduced (P1 ∩P2).

Composition is defined as follows:

T1||T2 = del(A2 −A1)
−1(T1)∩del(A1 −A2)

−1(T2)
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Example
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Composition of One Inverter and C-element
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Composition of One Inverter and C-element
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Complete Circuit
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Composition Example2
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Receptive SG for an OR Gate
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Inverter SG
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SG After Composing One Inverter with OR Gate
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SG After Composing Both Inverters with OR Gate

s0

s2

b

s4

a

s1

c

s6

a

F

c

s3

b

bc

s5

a

s7

c

ab

a,b,c

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 42 / 69



Conformance

To verify that a circuit correctly implements a specification, we must show
that TI conforms to TS (denoted TI � TS).

Must show that in any environment, TE , where the specification is
failure-free, the circuit is also failure-free.

TE is any trace structure with complementary inputs and outputs (i.e.,
IE = OI = OS and OE = II = IS).

To check conformance, must show that for every possible TE that if
TE ∩TS is failure-free then so is TE ∩TI .
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Conformation Equivalence

Two trace structures T1 and T2 are conformation equivalent (denoted
T1 ∼C T2) when T1 � T2 and T2 � T1.

If T1 ∼C T2, it does not imply that T1 = T2.

To make this true, use canonical prefix-closed trace structures.
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Autofailures
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Autofailure Manifestation

An autofailure is a trace x which if extended by a signal y ∈ O then
xy ∈ F .

Also denoted F/O ⊆ F where F/O is defined to be
{x | ∃y ∈ O . xy ∈ F}.

If S 6= /0 then any failure trace has a prefix that is a success, and an input
causes it to become a failure.

If the environment sends a signal change which the circuit is not prepared
for, we say that the circuit chokes.

We must also add to the failure set any trace that has a failure as a prefix
(i.e., FA ⊆ F ).
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Failure Exclusion

Failure exclusion makes the success and failure sets disjoint.

When trace occurs in both, circuit may or may not fail.

Remove from success set any trace which is also a failure (S = S−F ).
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Two Inverters after Simplification
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Canonical Prefix-Closed Trace Structures

In a canonical prefix-closed trace structure:
1 Autofailures are failures (i.e., F/O ⊆ F ).
2 Once a trace fails, it remains a failure (i.e., FA ⊆ F ).
3 No trace is both a success and failure (i.e., S∩F = /0).

Failure set is not necessary (i.e., T = 〈I,O,S〉).

Determine the failure set as follows:

F = [(SI ∪{ε})−S]A∗

Any successful trace when extended with an input signal transition and is
no longer found in the success set is a failure.

Any such failure trace can be extended indefinitely and will always be a
failure.
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Mirrors

To check TI � TS , must check that in all environments that TS is
failure-free that TI is also failure-free.

Construct a unique worst-case environment called a mirror of T (denoted
T M ).

Mirror can be constructed by simply swapping the inputs and outputs (i.e.,
IM = O, OM = I, and SM = S).

If TI ||T M
S is failure-free, then TI � TS .
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Receptive State Graph for a C-element
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Mirror for a C-Element
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Example: Merge Element
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Can we replace alternating with general merge?
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Can we replace alternating with general merge?
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Can we replace alternating with general merge?
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Can we replace alternating with general merge?
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Can we replace alternating with general merge?
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Can we replace general with alternating merge?
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Can we replace general with alternating merge?
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Can we replace general with alternating merge?
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Can we replace general with alternating merge?
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Limitations

Only checks safety properties.

If a circuit verifies, it means it does nothing bad.

It does not mean, however, it does anything good.

A “block of wood” accepts any input, but it never produces any output
(i.e., T = 〈I,O, I∗〉).

Assuming inputs and outputs are made to match, a block of wood would
comform to any specification.
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Block of Wood Example

s0

s0

s2

b b

s4

a a

s6

a b
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Strong Conformance

Strong conformance removes this problem.

T1 conforms strongly to T2 (denoted T1 ⊑ T2) if T1 � T2 and S1 ⊇ S2.

All successful traces of T2 must be successful traces of T1.
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Timed Trace Theory

A timed trace is a sequence of x = (x1,x2, . . .) where each xi is an
event/time pair of the form (ei ,τi ) such that:

ei ∈ A, the set of signals.
τi ∈ Q, the set of nonnegative rational numbers.

A timed trace must satisfy the following two properties:
Monotonicity: for all i , τi ≤ τi+1.
Progress: if x is infinite, then for every τ ∈ Q there exists an index i such
that τi > τ.
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Advance Time

Module M allows time to advance to time τ if for each w ′ ∈ I ∪O and
τ′ < τ such that x(w ′,τ′) ∈ S implies that x(w ′,τ′′) ∈ S for some τ′′ ≥ τ.

This means that after trace x , module M can allow time to advance to τ
without needing an input or producing an output.

We denote this by the predicate advance_time(M,x ,τ).
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Safety Failures

In timed case, must check that output is produced at an acceptable time.

Consider M = 〈I,O,S〉 composed of {M1, . . . ,Mn}, where
Mk = 〈Ik ,Ok ,Sk〉.

Consider x = (x1, . . . ,xm), where xm = (w ,τ) and w ∈ Ok for some k ≤ n.

x causes a failure if advance_time(M,(x1, . . . ,xm−1),τ), x ∈ Sk , but x 6∈ S.

This means that some module produces a transition on one of its outputs
before some module is prepared to receive it.

These types of failures are called safety failures.
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Timing Failures

A timing failure occurs when some module does not receive an input in
time.

Either some input fails to occur or occurs later than required.

There are several ways to characterize timing failures formally, with each
choice having different effects on the difficulty of verification.

For the most general definition, it is no longer possible to use mirrors
without some extra complexity.
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Summary

Protocol verification:
Linear temporal logic (LTL)
Timed LTL

Circuit verification:
Trace structures
Conformance checking
Timed trace theory
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