Asynchronous Circuit Design

Chris J. Myers

Lecture 8: Verification
Chapter 8

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design

Protocol Verification

@ Specification for circuit usually trys to accomplish certain goals.
@ Examples:

@ Protocol never deadlocks.
@ Whenever there is a request, it is followed by an acknowledgement
possibly in a bounded amount of time.

@ Can check by simulating a number of important cases.
@ Simulation does not guarantee correctness of the design.

@ Big problem in asynchronous design where a problem only manifests
under a very particular set of delays.

@ Verification can also be used to check if a specification meets its goals
under all permissable delay behaviors.

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design

Model Checking

@ Model checking is the process of verifying whether a protocol, circuit, or
other type of system has certain desired properties.

@ To specify desired behavior of a combinational circuit, one can use
propositional logic.

@ For sequential circuits, it is necessary to describe behavior of a circuit
over time, so one must use a propositional temporal logic.

@ Linear-time temporal logic (LTL) is presented here.

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design

Linear-time Temporal Logic (LTL)

@ A temporal logic is a propositional logic which has been extended with
operators to reason about future states of a system.

@ The set of LTL formulas can be described recursively as follows:

@ Any signal u is a LTL formula.
@ Iff and g are LTL formulas, so are:
@ —f (not)
Q fAg(and)
@ Of (next state operator)
Q@ f U g (strong until operator)

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design

LTL Semantics

Truth of formula f is defined with respect to a state s; (sj |= f).
—f is true in a state s; when f is false in that state.
f A g is true when both f and g are true in s;.

¢ &6 ¢ ¢

(Of is true in state s; when f is true in all next states s; reachable in one
transition.

[

f U g istrue in a state s; when in all allowed sequences starting with s;, f
is true until g becomes true.

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design

Formal LTL Semantics

siFu iff As(si)(u)=1
siEf iff s fEf
siEfAg iff siEfandsi =g
si = Of iff for all states s such that (sj,t,sj) €0.sj =f
siE=fUg iff forall allowed sequences (si,Sit1,--..),
J.j>insEgA(VK.i<k<j=s¢ =)

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design

LTL Abbreviations

@ Of means f will eventually become true in all allowed sequences starting
in the current state.

Of = trueUf

@ [If means f is always true in all allowed sequences.
Of = =0(-f)

@ f W g means f is always true or until g.

fwg = (fUug)vDf

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design

Desired Properties for a Passive/Active Wine Shop

@ Should not raise ack_wine until req_wine goes high:
O(—ack_wine = (—ack_wine U req_wine))

@ Once ack_wine is high, it must stay high until req_wine goes low:
O(ack_wine = (ack_wine U —req_wine))

@ Once the shop has set req_patron high, it must hold it high until
ack_patron goes high:

C(req_patron = (req_patron U ack_patron))

@ Once the shop sets req_patron low, it must hold it low until ack_patron
goes low:

O(—req_patron = (—req_patron U —ack_patron))

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design

Desired Properties for a Passive/Active Wine Shop

@ Once the request and acknowledge wires on either side go high, they
must be reset again:

O((req_wine A ack_wine) = {(—req_wine A —ack_wine))
O((req_patron A ack_patron) = {(—req_patron A —ack_patron))

@ The wine should not stay on the shelf forever, so after each bottle arrives,
the patron should be called.

O(ack_wine = {req_patron)

@ The patron should not arrive expecting wine in the shop before the wine
has actually arrived.

O(—ack_patron = (—ack_patron U ack_wine))

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design

Chris J. Myers (Lecture

ck_wine =- (—ack_wine U req_wine))

Verification)

ack_patron-

Asynchronous Circuit Design

Chris J. Myers (Lecture

Verification)

ack_patron-

Asynchronous Circuit Design

[J(req_patron =- (reg_patron U ack_patron))

ack_patron-

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design

[J(—req_patron =- (—req_patron U —ack_patron))

ack_patron-

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design

[I((req_wine A ack_wine) = {(—req_wine A —ack_wine))

ack_patron-

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design

O((req_patron A ack_patron) = {(—req_patron A —ack_patron))

ack_patron-

ack_patron-

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design

C(ack_wine = {req_patron)

e 8: Verification)

ack_patron-

[J(—ack_patron = (—ack_patron U ack_wine))

Chris J. Myers (Lecture 8: Verification)

ack_patron-

Asynchronous Circuit Design

[J(—ack_patron = (—ack_patron U ack_wine))

req_wine+

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design

[J(—ack_patron = (—ack_patron U ack_wine))

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design

Timed LTL

@ {f states that eventually f becomes true, but it puts no guarantee on how
long before f will become true.

@ To express bounded response time, it is necessary to extend the temporal
logic that we use to specify timing bounds.

@ Intimed LTL, each temporal operator is annotated with a timing constraint.
o {_sf states that f becomes true in less than 5 time units.

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design

Timed LTL Formulas

@ Timed LTL formulas can be described recursively as follows:

@ Any signal u is a timed LTL formula.
@ Iff and g are timed LTL formulas then so are:

@ —f (not)
Q fAg(and)
O fU.cg

where ~ is <, <, =, >, >.

@ There is no next time operator, since when time is dense, there can be no
unigue next time.

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design

Timed LTL Abbreviations

Qucf = trueUf
DNCf = —|<>Nc(—|f)

@ Using the basic timed LTL primitives, we can also define temporal
operators subscripted with time intervals.

Capf = 0=a0<p-af

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design

Some Bounded Response Time Properties

@ Once the request and acknowledge wires on either side go high, they
must be reset again within 10 minutes:

O((req_wine A ack_wine) =
Q<10 (—req_wine A —ack_wine))
O((req_patron A ack_patron) =

Q<10 (—req_patron A —ack_patron))

@ We also don’t want the wine to age too long on the shelf, so after each
bottle arrives, the patron should be called within 5 minutes:

O(ack_wine = {<s req_patron)

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design

Circuit Verification

@ Can check circuit by simulating a number of important cases.
@ Simulation does not guarantee correctness of the design.

@ Big problem in asynchronous design where a hazard may only manifest
as a failure under a very particular set of delays.

@ \Verification checks if a circuit operates correctly under all the allowed
combinations of delay.

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design

Traces

@ To verify a circuit conforms to a specification, it is necessary to check that
all its behaviors are allowed by the specification.

@ Define using traces of events on signals.

@ A trace is similar to an allowed sequence, but tracks signal changes
rather than states.

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design

State Graph for a C-element

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design

Traces Structures

@ Set of all possible traces is represented using a trace structure.

@ To verify hazard-freedom, use prefix-closed trace structures.
@ Described using a four-tuple (I,0,S,F):

| is the set of input signals.

O is the set of output signals.

]
@ S is all traces which are considered successful.
@ F is all traces which are considered a failure.

©

@ A=lUOand P =SUF.

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design

Receptive

@ A trace structure must be receptive.

@ Itis receptive when the state of a circuit cannot prevent an input from
happening (i.e., Pl C P).

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design

Receptive State Graph for a C-element

Chris J. Myers (Lecture 8: Verification)

Inverse Delete

@ Before composition of circuits must make their signal sets match.

0T = <|17Olasla F1> and T, = <|27027827 F2>

@ If N is signals in A, and not in A1, then add N to I; and extend S; and F;
to allow events on signals in N at any time.

@ Must also extend T, with those signals in A; but not in A,.

@ This is done by inverse delete function, denoted del(N)~(x) where N is
a set of signals and x is a set of traces.

@ Function inserts elements of N* between consecutive signals in x.

@ This function can be extended to a trace structure as follows:

del(N) 1(T) = (IUN,O,del(N)"%(S),del(N)"*(F))

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design

Example

Chris J. Myers (Lecture 8: Verification) ronous Circuit Design

Inverter After Renaming and Inverse Deletion

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design

@ Given two trace structures with consistent signal sets (i.e., A; = A, and
0:1N0, = @)

TiNT2 = (11N13,00U02,S1N Sy, (F1NP2)U(F2NPy))

@ Trace is success in composite when a success in both circuits.
@ Trace is a failure when it is a failure in either circuit.
@ Set of possible traces may be reduced (P1 N P3).

@ Composition is defined as follows:

T1|[T2 = del(Az—Ap) 2(T1) Ndel(Ay — Ay) 1(T2)

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design

Example

Chris J. Myers (Lecture 8: Verification) ronous Circuit Design

Composition of One Inverter and C-element

Chris J. Myers (Lecture 8: Verification)

Composition of One Inverter and C-element

Chris J. Myers (Lecture 8: Verification)

Complete Circuit

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design

Composition Example2

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design

Receptive SG for an OR Gate

Chris J. Myers (Lecture 8: Verification)

Inverter SG

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design

SG After Composing One Inverter with OR Gate

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design

SG After Composing Both Inverters with OR Gate

Chris J. Myers (Lecture 8: Verification)

Conformance

@ To verify that a circuit correctly implements a specification, we must show
that T, conforms to Tg (denoted T, <X Tg).

@ Must show that in any environment, Tg, where the specification is
failure-free, the circuit is also failure-free.

@ Tg is any trace structure with complementary inputs and outputs (i.e.,
le =0, =0¢g and Og=I|= IS)-

@ To check conformance, must show that for every possible Tg that if
Te NTg is failure-free then so is Te NT,.

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design

Conformation Equivalence

@ Two trace structures T, and T, are conformation equivalent (denoted
T]_ ~c T2) when Tl j T2 and T2 j Tl.

@ If Ty ~c Ty, it does not imply that T; = T».
@ To make this true, use canonical prefix-closed trace structures.

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design

Autofailures

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design

Autofailure Manifestation

@ An autofailure is a trace x which if extended by a signaly € O then
xy € F.

@ Also denoted F /O C F where F /O is defined to be
{x|dye€O.xyeF}.

@ If S # 0 then any failure trace has a prefix that is a success, and an input
causes it to become a failure.

@ If the environment sends a signal change which the circuit is not prepared
for, we say that the circuit chokes.

@ We must also add to the failure set any trace that has a failure as a prefix
(i.e., FACF).

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design

Failure Exclusion

@ Failure exclusion makes the success and failure sets disjoint.
@ When trace occurs in both, circuit may or may not fail.

@ Remove from success set any trace which is also a failure (S =S —F).

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design

Two Inverters after Simplification

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design

Canonical Prefix-Closed Trace Structures

@ In a canonical prefix-closed trace structure:

© Autofailures are failures (i.e., F /O C F).
@ Once a trace fails, it remains a failure (i,e., FACF).
© No trace is both a success and failure (i.e., SNF = 0).

@ Failure set is not necessary (i.e., T = (I,0,S)).
@ Determine the failure set as follows:

F = [(SIu{e})—S]A"

@ Any successful trace when extended with an input signal transition and is
no longer found in the success set is a failure.

@ Any such failure trace can be extended indefinitely and will always be a
failure.

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design

Mirrors

@ To check T, < Tg, must check that in all environments that Tg is
failure-free that T, is also failure-free.

@ Construct a unique worst-case environment called a mirror of T (denoted
™).

@ Mirror can be constructed by simply swapping the inputs and outputs (i.e.,
IM=0,0M =1, and SM = S).

o If T)||Td is failure-free, then T) < Ts.

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design

Receptive State Graph for a C-element

Chris J. Myers (Lecture 8: Verification)

Mirror for a C-Element

Chris J. Myers (Lecture 8: Verification)

Example: Merge Element

merge

— C ab c

C

Chris J. Myers (Lecture 8: Verification)

Asynchronous Circuit Design

Can we replace alternating with general merge?

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design

Can we replace alternating with general merge?

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design

Can we replace alternating with general merge?

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design

Can we replace alternating with general merge?

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design

Can we replace alternating with general merge?

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design

Can we replace general with alternating merge?

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design

Can we replace general with alternating merge?

ab c

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design

Can we replace general with alternating merge?

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design

Can we replace general with alternating merge?

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design

Only checks safety properties.
If a circuit verifies, it means it does nothing bad.

It does not mean, however, it does anything good.

¢ & ¢ ¢

A “block of wood” accepts any input, but it never produces any output
(e, T =(1,0,1%)).

Assuming inputs and outputs are made to match, a block of wood would
comform to any specification.

©

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design

Block of Wood Example

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design

Strong Conformance

@ Strong conformance removes this problem.
@ T, conforms strongly to T, (denoted T C T,) if Ty < T, and S; O S».
@ All successful traces of T, must be successful traces of T;.

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design

Timed Trace Theory

@ Atimed trace is a sequence of x = (Xq,Xz, .. .) where each x;j is an
event/time pair of the form (e;,T;) such that:
@ e € A, the set of signals.
@ T; € Q, the set of nonnegative rational numbers.
@ Atimed trace must satisfy the following two properties:
@ Monotonicity: for all i, T; < Tj41.
@ Progress: if x is infinite, then for every T € Q there exists an index i such
that T; > T.

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design

@ Module M allows time to advance to time T if for each w’ € 1 UO and
T < T such that x(w’,T') € S implies that x(w’,T”) € S for some T/ > 1.

@ This means that after trace x, module M can allow time to advance to T
without needing an input or producing an output.
@ We denote this by the predicate advance_time(M,x,T).

Asynchronous Circuit Design

Chris J. Myers (Lecture 8: Verification)

Safety Failures

In timed case, must check that output is produced at an acceptable time.
Consider M = (1,0, S) composed of {My,...,M,}, where

Mk = <Ik,Ok,Sk>.

Consider X = (Xg,...,Xm), Where x,m = (w,T) and w € O for some k < n.

@

x causes a failure if advance_time(M, (X1, ...,Xm—_1),T), X € Sk, butx & S.

©

This means that some module produces a transition on one of its outputs
before some module is prepared to receive it.

@

These types of failures are called safety failures.

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design

Timing Failures

@ A timing failure occurs when some module does not receive an input in
time.

@ Either some input fails to occur or occurs later than required.

@ There are several ways to characterize timing failures formally, with each
choice having different effects on the difficulty of verification.

@ For the most general definition, it is no longer possible to use mirrors
without some extra complexity.

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design

Summary

@ Protocol verification:
@ Linear temporal logic (LTL)
o Timed LTL
@ Circuit verification:
@ Trace structures
@ Conformance checking
o Timed trace theory

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design

