
Asynchronous Circuit Design

Chris J. Myers

Lecture 8: Verification
Chapter 8

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 1 / 69



Protocol Verification

Specification for circuit usually trys to accomplish certain goals.

Examples:
Protocol never deadlocks.
Whenever there is a request, it is followed by an acknowledgement
possibly in a bounded amount of time.

Can check by simulating a number of important cases.

Simulation does not guarantee correctness of the design.

Big problem in asynchronous design where a problem only manifests
under a very particular set of delays.

Verification can also be used to check if a specification meets its goals
under all permissable delay behaviors.

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 2 / 69



Model Checking

Model checking is the process of verifying whether a protocol, circuit, or
other type of system has certain desired properties.

To specify desired behavior of a combinational circuit, one can use
propositional logic.

For sequential circuits, it is necessary to describe behavior of a circuit
over time, so one must use a propositional temporal logic.

Linear-time temporal logic (LTL) is presented here.

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 3 / 69



Linear-time Temporal Logic (LTL)

A temporal logic is a propositional logic which has been extended with
operators to reason about future states of a system.

The set of LTL formulas can be described recursively as follows:
1 Any signal u is a LTL formula.
2 If f and g are LTL formulas, so are:

1 ¬f (not)
2 f ∧g (and)
3 ©f (next state operator)
4 f U g (strong until operator)

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 4 / 69



LTL Semantics

Truth of formula f is defined with respect to a state si (si |= f ).

¬f is true in a state si when f is false in that state.

f ∧g is true when both f and g are true in si .

©f is true in state si when f is true in all next states sj reachable in one
transition.

f U g is true in a state si when in all allowed sequences starting with si , f
is true until g becomes true.

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 5 / 69



Formal LTL Semantics

si |= u iff λS(si)(u) = 1

si |= ¬f iff si 6|= f

si |= f ∧g iff si |= f and si |= g

si |= ©f iff for all states sj such that (si , t,sj) ∈ δ . sj |= f

si |= f U g iff for all allowed sequences (si ,si+1, . . .),

∃j . j ≥ i ∧ sj |= g∧ (∀k . i ≤ k < j ⇒ sk |= f )

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 6 / 69



LTL Abbreviations

♦f means f will eventually become true in all allowed sequences starting
in the current state.

♦f ≡ true U f

�f means f is always true in all allowed sequences.

�f ≡ ¬♦(¬f )

f W g means f is always true or until g.

f W g ≡ (f U g)∨�f

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 7 / 69



Desired Properties for a Passive/Active Wine Shop

Should not raise ack_wine until req_wine goes high:

�(¬ack_wine ⇒ (¬ack_wine U req_wine))

Once ack_wine is high, it must stay high until req_wine goes low:

�(ack_wine ⇒ (ack_wine U ¬req_wine))

Once the shop has set req_patron high, it must hold it high until
ack_patron goes high:

�(req_patron ⇒ (req_patron U ack_patron))

Once the shop sets req_patron low, it must hold it low until ack_patron
goes low:

�(¬req_patron ⇒ (¬req_patron U ¬ack_patron))

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 8 / 69



Desired Properties for a Passive/Active Wine Shop

Once the request and acknowledge wires on either side go high, they
must be reset again:

�((req_wine ∧ ack_wine) ⇒ ♦(¬req_wine ∧ ¬ack_wine))

�((req_patron ∧ ack_patron) ⇒ ♦(¬req_patron ∧ ¬ack_patron))

The wine should not stay on the shelf forever, so after each bottle arrives,
the patron should be called.

�(ack_wine ⇒ ♦req_patron)

The patron should not arrive expecting wine in the shop before the wine
has actually arrived.

�(¬ack_patron ⇒ (¬ack_patron U ack_wine))

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 9 / 69



�(¬ack_wine ⇒ (¬ack_wine U req_wine))

R000

10R0

req_wine+

001R

0R11

req_patron+

01F1

ack_patron+

RF00

ack_patron-

1F00

req_wine+

R10F

req_patron-

110F

req_wine+

ack_wine-

F01R

ack_wine+

req_wine-

FR11

req_patron+

req_wine-

F111

ack_patron+

ack_patron-

req_patron-

req_wine-

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 10 / 69



�(ack_wine ⇒ (ack_wine U ¬req_wine))

R000

10R0

req_wine+

001R

0R11

req_patron+

01F1

ack_patron+

RF00

ack_patron-

1F00

req_wine+

R10F

req_patron-

110F

req_wine+

ack_wine-

F01R

ack_wine+

req_wine-

FR11

req_patron+

req_wine-

F111

ack_patron+

ack_patron-

req_patron-

req_wine-

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 11 / 69



�(req_patron ⇒ (req_patron U ack_patron))

R000

10R0

req_wine+

001R

0R11

req_patron+

01F1

ack_patron+

RF00

ack_patron-

1F00

req_wine+

R10F

req_patron-

110F

req_wine+

ack_wine-

F01R

ack_wine+

req_wine-

FR11

req_patron+

req_wine-

F111

ack_patron+

ack_patron-

req_patron-

req_wine-

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 12 / 69



�(¬req_patron ⇒ (¬req_patron U ¬ack_patron))

R000

10R0

req_wine+

001R

0R11

req_patron+

01F1

ack_patron+

RF00

ack_patron-

1F00

req_wine+

R10F

req_patron-

110F

req_wine+

ack_wine-

F01R

ack_wine+

req_wine-

FR11

req_patron+

req_wine-

F111

ack_patron+

ack_patron-

req_patron-

req_wine-

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 13 / 69



�((req_wine ∧ ack_wine) ⇒ ♦(¬req_wine ∧ ¬ack_wine))

R000

10R0

req_wine+

001R

0R11

req_patron+

01F1

ack_patron+

RF00

ack_patron-

1F00

req_wine+

R10F

req_patron-

110F

req_wine+

ack_wine-

F01R

ack_wine+

req_wine-

FR11

req_patron+

req_wine-

F111

ack_patron+

ack_patron-

req_patron-

req_wine-

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 14 / 69



�((req_patron ∧ ack_patron) ⇒ ♦(¬req_patron ∧ ¬ack_patron))

R000

10R0

req_wine+

001R

0R11

req_patron+

01F1

ack_patron+

RF00

ack_patron-

1F00

req_wine+

R10F

req_patron-

110F

req_wine+

ack_wine-

F01R

ack_wine+

req_wine-

FR11

req_patron+

req_wine-

F111

ack_patron+

ack_patron-

req_patron-

req_wine-

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 15 / 69



�(ack_wine ⇒ ♦req_patron)

R000

10R0

req_wine+

001R

0R11

req_patron+

01F1

ack_patron+

RF00

ack_patron-

1F00

req_wine+

R10F

req_patron-

110F

req_wine+

ack_wine-

F01R

ack_wine+

req_wine-

FR11

req_patron+

req_wine-

F111

ack_patron+

ack_patron-

req_patron-

req_wine-

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 16 / 69



�(¬ack_patron ⇒ (¬ack_patron U ack_wine))

R000

10R0

req_wine+

001R

0R11

req_patron+

01F1

ack_patron+

RF00

ack_patron-

1F00

req_wine+

R10F

req_patron-

110F

req_wine+

ack_wine-

F01R

ack_wine+

req_wine-

FR11

req_patron+

req_wine-

F111

ack_patron+

ack_patron-

req_patron-

req_wine-

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 17 / 69



�(¬ack_patron ⇒ (¬ack_patron U ack_wine))

R000

100R

req_wine+

00F0

ack_wine-

0R11

011F

ack_patron+

RF00

ack_patron-

1F00

req_wine+

0FF0

ack_patron- ack_wine-

req_patron-

1RR1

req_patron+

FR11

ack_wine+

11R1

ack_patron+

req_wine-

F111

ack_patron+

ack_patron-

ack_wine+

req_wine-

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 18 / 69



�(¬ack_patron ⇒ (¬ack_patron U ack_wine))

R00R

RR01

req_patron+

100R

req_wine+

R000

10R0

req_wine+

00F0

ack_wine-

R10F

ack_patron+

1R01

req_wine+

RF00

ack_patron-

1F00

req_wine+

req_patron-

110F

req_wine+

req_patron+

F010

ack_wine+

req_wine-

ack_patron+

ack_patron-

req_patron-

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 19 / 69



Timed LTL

♦f states that eventually f becomes true, but it puts no guarantee on how
long before f will become true.

To express bounded response time, it is necessary to extend the temporal
logic that we use to specify timing bounds.

In timed LTL, each temporal operator is annotated with a timing constraint.

♦<5f states that f becomes true in less than 5 time units.

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 20 / 69



Timed LTL Formulas

Timed LTL formulas can be described recursively as follows:
1 Any signal u is a timed LTL formula.
2 If f and g are timed LTL formulas then so are:

1 ¬f (not)
2 f ∧g (and)
3 f U∼c g

where ∼ is <, ≤, =, ≥, >.

There is no next time operator, since when time is dense, there can be no
unique next time.

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 21 / 69



Timed LTL Abbreviations

♦∼c f ≡ true U∼c f

�∼c f ≡ ¬♦∼c(¬f )

Using the basic timed LTL primitives, we can also define temporal
operators subscripted with time intervals.

♦(a,b)f ≡ ♦=a♦<(b−a)f

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 22 / 69



Some Bounded Response Time Properties

Once the request and acknowledge wires on either side go high, they
must be reset again within 10 minutes:

�((req_wine ∧ ack_wine) ⇒

♦≤10 (¬req_wine ∧ ¬ack_wine))

�((req_patron ∧ ack_patron) ⇒

♦≤10 (¬req_patron ∧ ¬ack_patron))

We also don’t want the wine to age too long on the shelf, so after each
bottle arrives, the patron should be called within 5 minutes:

�(ack_wine ⇒ ♦≤5 req_patron)

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 23 / 69



Circuit Verification

Can check circuit by simulating a number of important cases.

Simulation does not guarantee correctness of the design.

Big problem in asynchronous design where a hazard may only manifest
as a failure under a very particular set of delays.

Verification checks if a circuit operates correctly under all the allowed
combinations of delay.

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 24 / 69



Traces

To verify a circuit conforms to a specification, it is necessary to check that
all its behaviors are allowed by the specification.

Define using traces of events on signals.

A trace is similar to an allowed sequence, but tracks signal changes
rather than states.

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 25 / 69



State Graph for a C-element

s0

s2

b

s4

a

s1

c

s6

a

s3

b

b

s5

a

s7

c

a b

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 26 / 69



Traces Structures

Set of all possible traces is represented using a trace structure.

To verify hazard-freedom, use prefix-closed trace structures.

Described using a four-tuple 〈I,O,S,F〉:
I is the set of input signals.
O is the set of output signals.
S is all traces which are considered successful.
F is all traces which are considered a failure.

A = I ∪O and P = S∪F .

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 27 / 69



Receptive

A trace structure must be receptive.

It is receptive when the state of a circuit cannot prevent an input from
happening (i.e., PI ⊆ P).

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 28 / 69



Receptive State Graph for a C-element

s0

s2

b b

s4

a a

s1

c

s6

a

s3

b

b

s5

a

s7

c

F

a,b

a a b b

a,b

a,b,c

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 29 / 69



Inverse Delete

Before composition of circuits must make their signal sets match.

T1 = 〈I1,O1,S1,F1〉 and T2 = 〈I2,O2,S2,F2〉.

If N is signals in A2 and not in A1, then add N to I1 and extend S1 and F1

to allow events on signals in N at any time.

Must also extend T2 with those signals in A1 but not in A2.

This is done by inverse delete function, denoted del(N)−1(x) where N is
a set of signals and x is a set of traces.

Function inserts elements of N∗ between consecutive signals in x .

This function can be extended to a trace structure as follows:

del(N)−1(T ) = 〈I ∪N,O,del(N)−1(S),del(N)−1(F)〉

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 30 / 69



Example

C

b
c

a

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 31 / 69



Inverter After Renaming and Inverse Deletion

s0

s1

y

s2

x

F

x

s3

x y x

s0 b

s1

a

s2

c

F

c

b

s3

c

b

a

b

c

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 32 / 69



Composition

Given two trace structures with consistent signal sets (i.e., A1 = A2 and
O1 ∩O2 = /0):

T1 ∩T2 = 〈I1 ∩ I2,O1 ∪O2,S1 ∩S2,(F1 ∩P2)∪ (F2 ∩P1)〉

Trace is success in composite when a success in both circuits.

Trace is a failure when it is a failure in either circuit.

Set of possible traces may be reduced (P1 ∩P2).

Composition is defined as follows:

T1||T2 = del(A2 −A1)
−1(T1)∩del(A1 −A2)

−1(T2)

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 33 / 69



Example

C

b
c

a

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 34 / 69



Composition of One Inverter and C-element

s0

s2

b b

s4

a a

s1

c

s6

a

s3

b

b

s5

a

s7

c

F

a,b

a a b b

a,b

a,b,c

s0 b

s1

a

s2

c

F

c

b

s3

c

b

a

b

c

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 35 / 69



Composition of One Inverter and C-element

s0

s2

b b

s4

a

s1

c

s6

a

s3

b

b

s5

a

s7

c

F

b

a b b

b

a,b,c

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 36 / 69



Complete Circuit

s0

s2

b

s4

a

s1

c

s6

a

s3

b

b

s5

a

s7

c

a b

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 37 / 69



Composition Example2

ca

b

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 38 / 69



Receptive SG for an OR Gate

s0

s2

b

s4

a

s1

c

s3

c

s6

a a

b

s5

c

bb

a

s7

c

aa bb

F

a,b

b a

a,b,c

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 39 / 69



Inverter SG

s0 b

s1

a

s2

c

F

c

b

s3

c

b

a

b

c

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 40 / 69



SG After Composing One Inverter with OR Gate

s0

s2

b

s4

a

s1

c

F

b

s6

a

b,c

s3

b

s5

c

b b

a

s7

c

a b b

a,b,c

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 41 / 69



SG After Composing Both Inverters with OR Gate

s0

s2

b

s4

a

s1

c

s6

a

F

c

s3

b

bc

s5

a

s7

c

ab

a,b,c

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 42 / 69



Conformance

To verify that a circuit correctly implements a specification, we must show
that TI conforms to TS (denoted TI � TS).

Must show that in any environment, TE , where the specification is
failure-free, the circuit is also failure-free.

TE is any trace structure with complementary inputs and outputs (i.e.,
IE = OI = OS and OE = II = IS).

To check conformance, must show that for every possible TE that if
TE ∩TS is failure-free then so is TE ∩TI .

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 43 / 69



Conformation Equivalence

Two trace structures T1 and T2 are conformation equivalent (denoted
T1 ∼C T2) when T1 � T2 and T2 � T1.

If T1 ∼C T2, it does not imply that T1 = T2.

To make this true, use canonical prefix-closed trace structures.

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 44 / 69



Autofailures

ba c u v
a

b
F

a

u0u1

v0u1

a u0v1

c

v0v1
a

u0F1

c

v0F1

a

b

F0u1

a

b

c

F0v1
a

b

c

F0F1

a

a

b

c

a b

a,b,c

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 45 / 69



Autofailure Manifestation

An autofailure is a trace x which if extended by a signal y ∈ O then
xy ∈ F .

Also denoted F/O ⊆ F where F/O is defined to be
{x | ∃y ∈ O . xy ∈ F}.

If S 6= /0 then any failure trace has a prefix that is a success, and an input
causes it to become a failure.

If the environment sends a signal change which the circuit is not prepared
for, we say that the circuit chokes.

We must also add to the failure set any trace that has a failure as a prefix
(i.e., FA ⊆ F ).

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 46 / 69



Failure Exclusion

Failure exclusion makes the success and failure sets disjoint.

When trace occurs in both, circuit may or may not fail.

Remove from success set any trace which is also a failure (S = S−F ).

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 47 / 69



Two Inverters after Simplification

u0u1

v0u1a u0v1

c

b

F
a a

a,b,c

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 48 / 69



Canonical Prefix-Closed Trace Structures

In a canonical prefix-closed trace structure:
1 Autofailures are failures (i.e., F/O ⊆ F ).
2 Once a trace fails, it remains a failure (i.e., FA ⊆ F ).
3 No trace is both a success and failure (i.e., S∩F = /0).

Failure set is not necessary (i.e., T = 〈I,O,S〉).

Determine the failure set as follows:

F = [(SI ∪{ε})−S]A∗

Any successful trace when extended with an input signal transition and is
no longer found in the success set is a failure.

Any such failure trace can be extended indefinitely and will always be a
failure.

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 49 / 69



Mirrors

To check TI � TS , must check that in all environments that TS is
failure-free that TI is also failure-free.

Construct a unique worst-case environment called a mirror of T (denoted
T M ).

Mirror can be constructed by simply swapping the inputs and outputs (i.e.,
IM = O, OM = I, and SM = S).

If TI ||T M
S is failure-free, then TI � TS .

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 50 / 69



Receptive State Graph for a C-element

s0

s2

b b

s4

a a

s1

c

s6

a

s3

b

b

s5

a

s7

c

F

a,b

a a b b

a,b

a,b,c

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 51 / 69



Mirror for a C-Element

s0

s2

b b

s4

a a

F

c

s1

c

s6

a c

s3

b

b c

s5

a

s7

c

aabb

cc

c

a,b,c

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 52 / 69



Example: Merge Element

a

merge

b

c

F a,b,c

s1

a,b

s0

a,b c

q0 q1
a

q3

c

F

b

q2
c

a,b

b

b

a,b

a,b,c

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 53 / 69



Can we replace alternating with general merge?

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 54 / 69



Can we replace alternating with general merge?

q0 q1
a

q3

c

F

b

q2
c

a,b

b

b

a,b

a,b,c

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 55 / 69



Can we replace alternating with general merge?

q0 q1
a

q3

c

F

b

q2
c

a,b

b

b

a,b

a,b,c

q0

q1
a

q3
c

F

c
q2

c

b

c

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 56 / 69



Can we replace alternating with general merge?

q0

q1
a

q3
c

F

c
q2

c

b

c

F a,b,c

s1

a,b

s0

a,b c

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 57 / 69



Can we replace alternating with general merge?

q0s0

q1s1a

q2s1

c q2s0

c

b

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 58 / 69



Can we replace general with alternating merge?

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 59 / 69



Can we replace general with alternating merge?

F a,b,c

s1

a,b

s0

a,b c

s0

s1a,b

F

c

c
a,b,c

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 60 / 69



Can we replace general with alternating merge?

s0

s1a,b

F

c

c
a,b,c

q0 q1
a

q3

c

F

b

q2
c

a,b

b

b

a,b

a,b,c

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 61 / 69



Can we replace general with alternating merge?

q0s0 q1s1
a

q2s1c

F
b

q2s0
c

b

a
a,b,c

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 62 / 69



Limitations

Only checks safety properties.

If a circuit verifies, it means it does nothing bad.

It does not mean, however, it does anything good.

A “block of wood” accepts any input, but it never produces any output
(i.e., T = 〈I,O, I∗〉).

Assuming inputs and outputs are made to match, a block of wood would
comform to any specification.

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 63 / 69



Block of Wood Example

s0

s0

s2

b b

s4

a a

s6

a b

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 64 / 69



Strong Conformance

Strong conformance removes this problem.

T1 conforms strongly to T2 (denoted T1 ⊑ T2) if T1 � T2 and S1 ⊇ S2.

All successful traces of T2 must be successful traces of T1.

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 65 / 69



Timed Trace Theory

A timed trace is a sequence of x = (x1,x2, . . .) where each xi is an
event/time pair of the form (ei ,τi ) such that:

ei ∈ A, the set of signals.
τi ∈ Q, the set of nonnegative rational numbers.

A timed trace must satisfy the following two properties:
Monotonicity: for all i , τi ≤ τi+1.
Progress: if x is infinite, then for every τ ∈ Q there exists an index i such
that τi > τ.

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 66 / 69



Advance Time

Module M allows time to advance to time τ if for each w ′ ∈ I ∪O and
τ′ < τ such that x(w ′,τ′) ∈ S implies that x(w ′,τ′′) ∈ S for some τ′′ ≥ τ.

This means that after trace x , module M can allow time to advance to τ
without needing an input or producing an output.

We denote this by the predicate advance_time(M,x ,τ).

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 67 / 69



Safety Failures

In timed case, must check that output is produced at an acceptable time.

Consider M = 〈I,O,S〉 composed of {M1, . . . ,Mn}, where
Mk = 〈Ik ,Ok ,Sk〉.

Consider x = (x1, . . . ,xm), where xm = (w ,τ) and w ∈ Ok for some k ≤ n.

x causes a failure if advance_time(M,(x1, . . . ,xm−1),τ), x ∈ Sk , but x 6∈ S.

This means that some module produces a transition on one of its outputs
before some module is prepared to receive it.

These types of failures are called safety failures.

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 68 / 69



Timing Failures

A timing failure occurs when some module does not receive an input in
time.

Either some input fails to occur or occurs later than required.

There are several ways to characterize timing failures formally, with each
choice having different effects on the difficulty of verification.

For the most general definition, it is no longer possible to use mirrors
without some extra complexity.

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 69 / 69



Summary

Protocol verification:
Linear temporal logic (LTL)
Timed LTL

Circuit verification:
Trace structures
Conformance checking
Timed trace theory

Chris J. Myers (Lecture 8: Verification) Asynchronous Circuit Design 70 / 69


