Asynchronous Circuit Design

Chris J. Myers

Lecture 7: Timed Circuits Chapter 7

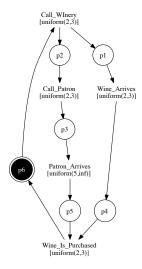
Timed Circuits

- Previous methods only use limited knowledge of delays.
- Very robust systems, but extremely conservative.
- Large functional units do not have zero delay.
- Gates and wires do not have an infinite delay.
- Timing analysis can identify additional unreachable states.
- These unreachable states are additional don't cares.
- *Timed circuits* use this information to optimize the design.

A Simple Example

- Shopkeeper actively calls winery and patron.
- Calls the patron immediately after calling the winery without waiting for the wine to arrive.
- The shopkeeper does the following:
 - Calls the winery,
 - Calls the patron,
 - Peers out the window until he sees both the wine delivery boy and the patron,
 - Lets them in, and
 - Completes the sale.

Timing Relationships



Timed States

- There is a timer t_i associated with each arc in the graph.
- A timed state is an untimed state and value of all active timers.

$$(\{p_6\}, t6=0)$$

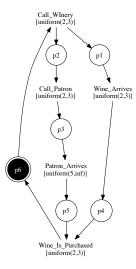
• A timer is allowed to advance by any amount less than its upper bound resulting in a new timed state.

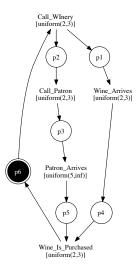
$$(\{p_6\}, t6 = 1.1)$$

 $(\{p_6\}, t6 = 2.22)$
 $(\{p_6\}, t6 = 2.71828182846)$

Timing Sequences

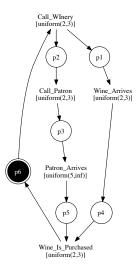
- When a timer reaches its lower bound, it becomes *satisfied*.
- When a timer reaches its upper bound, it becomes *expired*.
- An event enabled by a single rule must happen sometime after its timer becomes satisfied and before it becomes expired.
- When an event is enabled by multiple rules, it must happen after all of its rules are satisfied, but before all of its rules are expired.
- Extend the notion of allowed sequences to timed states paired with the time of the state transition.
- State transition can be either time advancement or a change in the untimed state.



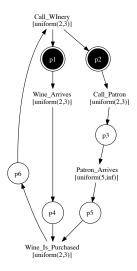


(([{ p_6 }, $t_6 = 0$], 0),

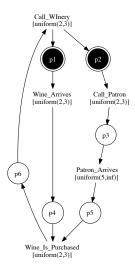
Chris J. Myers (Lecture 7:Timed Circuits)



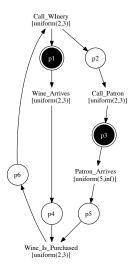
$$(([\{p_6\}, t_6 = 0], 0), ([\{p_6\}, t_6 = 2.22], 2.22),$$



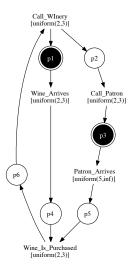
$$\begin{array}{l} (([\{p_6\}, t_6 = 0], 0), \\ ([\{p_6\}, t_6 = 2.22], 2.22), \\ ([\{p_1, p_2\}, t_1 = t_2 = 0], 2.22), \end{array}$$



$$\begin{array}{l} ([\{\rho_6\}, t_6=0], 0), \\ ([\{\rho_6\}, t_6=2.22], 2.22), \\ ([\{\rho_1, \rho_2\}, t_1=t_2=0], 2.22), \\ ([\{\rho_1, \rho_2\}, t_1=t_2=2.1], 4.32), \end{array}$$



$$\begin{array}{l} ([\{p_6\}, t_6 = 0], 0), \\ ([\{p_6\}, t_6 = 2.22], 2.22), \\ ([\{p_1, p_2\}, t_1 = t_2 = 0], 2.22), \\ ([\{p_1, p_2\}, t_1 = t_2 = 2.1], 4.32), \\ ([\{p_1, p_3\}, t_1 = 2.1, t_3 = 0], 4.32), \end{array}$$



$$\begin{array}{l} (([\{p_6\}, t_6=0], 0), \\ ([\{p_6\}, t_6=2.22], 2.22), \\ ([\{p_1, p_2\}, t_1=t_2=0], 2.22), \\ ([\{p_1, p_2\}, t_1=t_2=2.1], 4.32), \\ ([\{p_1, p_3\}, t_1=2.1, t_3=0], 4.32), \end{array}$$

. . .

- Since time can take on any real value, there is an uncountably infinite number of timed states and timed allowed sequences.
- Must either group timed states into finite number of equivalence classes or restrict the values of the timers.
- Several possible methods for timed state space exploration:
 - Region method
 - Discrete-time method
 - Zone method
 - POSET method

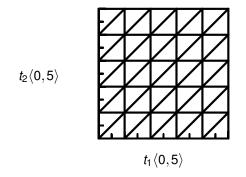
Regions

• A *region* is described by the integer component of each timer and the relationship between the fractional components.

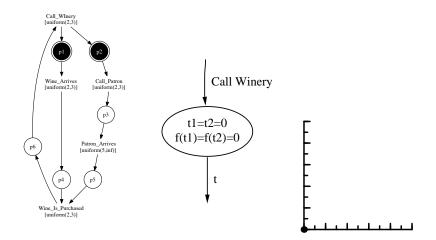
•
$$f(t_1) = f(t_2) = 0$$
: region is a point.

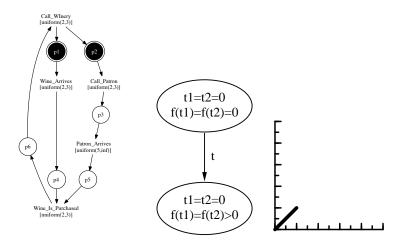
- $f(t_1) = 0$ and $f(t_2) > 0$: region is a vertical line segment.
- $f(t_1) > 0$ and $f(t_2) = 0$: region is a horizontal line segment.
- $f(t_1) = f(t_2) > 0$: region is a diagonal line segment.
- $f(t_1) > f(t_2) > 0$: region is an lower triangle.
- $f(t_2) > f(t_1) > 0$: region is an upper triangle.

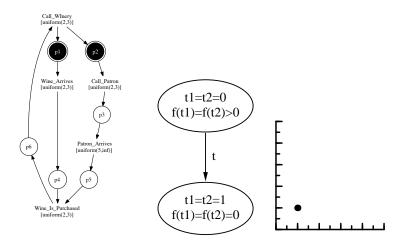
Possible Timed States Using Regions

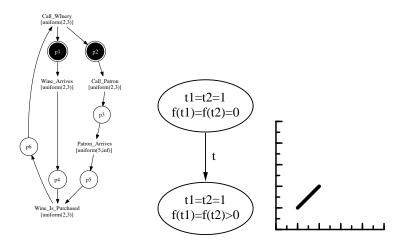


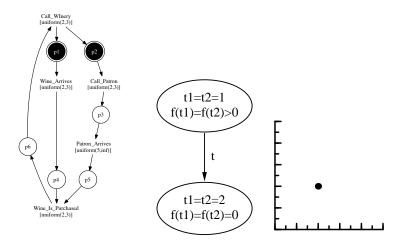
171 distinct timed states

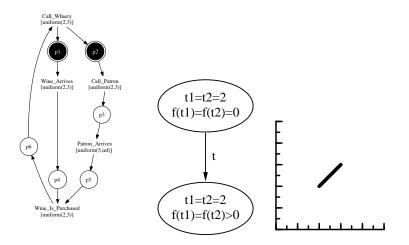


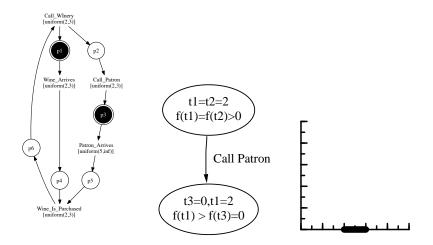


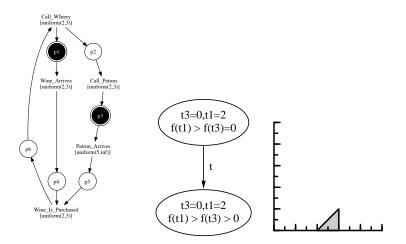


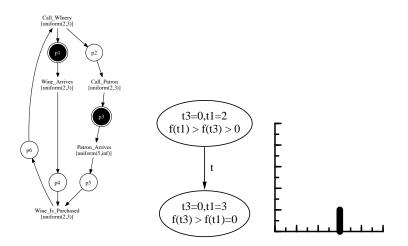


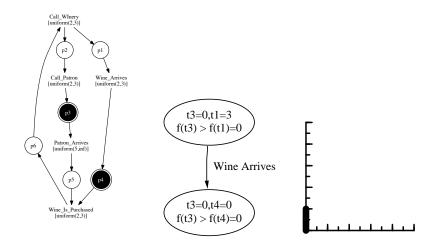




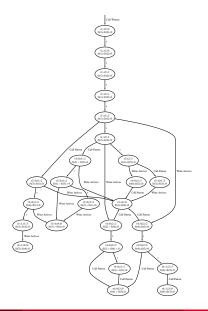








Timed State Space Using Regions



- Requires 26 timed states to represent all the timing relationships for only 4 untimed states.
- Worst-case complexity is:

$$S\left|\frac{n!}{\ln 2}\left(\frac{k}{\ln 2}\right)^n 4^{1/k}\right|$$

where *S* is number of untimed states, n is the number of rules enabled concurrently, and k is maximum timing constraint.

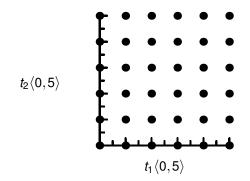
Discrete-Time

- For timed labeled Petri-nets, all timing requirements are of the form ≤ or ≥, since timing bounds are inclusive.
- In this case, fractional components are not necessary.
- Only need to track *discrete-time* states.
- Worst-case complexity is now:

 $|S|(k+1)^n$

• Reduction by a factor of more than *n*!.

Possible Timed States Using Discrete-Time



36 distinct timed states

Timed State Space Using Discrete-Time

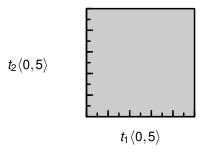


Chris J. Myers (Lecture 7:Timed Circuits)

- Unfortunately, the discrete-time technique is still exponential in the number of concurrent timers and size of the timing bounds.
- Changing each timing bound of [2,3] to [19,31] and [5, *inf*] to [53, *inf*], number of timed states goes from 69 to more than 3000.
- Changing each timing bound of [2,3] to [191,311] and [5, *inf*] to [531, *inf*], number of timed states goes to over 300,000!

Zones

- Another approach is to use convex polygons, called *zones*, to represent equivalence classes of timed states.
- One zone is representing 171 regions or 36 discrete-time states.



Representing Zones using Linear Inequalities

- Convex polygons can be represented using linear inequalities.
- Introduce a dummy timer *t*₀ which always takes the value 0.
- For each pair of timers, introduce inequality of the form:

$$t_j - t_i \leq m_{ij}$$

• Example:

$$\begin{array}{ll} t_0 - t_0 \leq 0 & t_2 - t_1 \leq 5 \\ t_1 - t_0 \leq 5 & t_0 - t_2 \leq 0 \\ t_2 - t_0 \leq 5 & t_1 - t_2 \leq 5 \\ t_0 - t_1 \leq 0 & t_2 - t_2 \leq 0 \\ t_1 - t_1 \leq 0 & t_2 - t_2 \leq 0 \end{array}$$

- Set of inequalites can be collected into a data structure called a *difference bound matrix* (DBM).
- The difference bound matrix for this example is shown below:

$$\begin{array}{c|ccccc} t_0 & t_1 & t_2 \\ t_0 & 0 & 5 & 5 \\ t_1 & 0 & 0 & 5 \\ t_2 & 0 & 5 & 0 \end{array}$$

- Many DBMs represent the same zone.
- Need unique DBM representation to determine when a zone has been seen before during the depth first search.
- Each zone has a canonical DBM representation when all entries are minimal.

Recanonicalization Example

Add last two equations to get:

Chris J. Myers (Lecture 7:Timed Circuits)

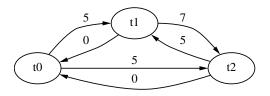
DBM as Digraph

- Recanonicalization equivalent to all pairs shortest path problem.
- Create a labeled digraph where:
 - There is a vertex for each timer *t_i*,
 - An arc from t_i to t_j for each linear inequality of the form $t_j t_i \le m_{ij}$ when $i \ne j$.
 - Each arc is labeled by m_{ij}.

Floyd's Algorithm

recanonicalization (*M*)
for
$$k = 1$$
 to n
for $i = 1$ to n
for $j = 1$ to n
if $(m_{ij} > m_{ik} + m_{kj})$ then
 $m_{ij} = m_{ik} + m_{kj}$;

Floyd's Algorithm Example



Zone Creation

After a rule fires:

- Restrict to reflect minimum firing time.
- Recononicalize
- Project out information on rule that fired.
- Extend matrix with new rows and columns for new rules.
- Advance time
- Recononicalize

Restrict

- Example: firing of a rule $r_k = \langle e_k, f_k, l_k, u_k \rangle$ where
 - e_k is the enabling transition,
 - f_k is the enabled transition,
 - I_k is the lower bound of the cooresponding timer t_k , and
 - u_k is the upper bound on the timer.
- Constrain DBM to indicate rule has reached its lower bound.
- $t_0 t_k \le -l_k$, so set m_{k0} to $-l_k$.
- DBM may no longer be maximally tight.
- Recanonicalize DBM using Floyd's algorithm.

Project

- Remove the row and column cooresponding to *t_k*.
- If rule firing causes an transition, new rules may be enabled.
- For newly enabled rules, introduce a new timer *t_l* with a row and column in the DBM.
- Initialize m_{l0} and m_{0l} to 0.
- Initialize each m_{ij} to m_{0j} .
- Initialize each m_{il} to m_{i0}.

Advance Time

- Set all timers to their upper bound (i.e., $m_{0j} = u_j$).
- Recanonicalize the DBM using Floyd's algorithm.

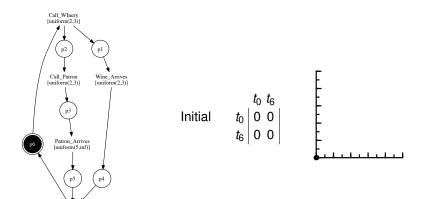
Update Zone

```
update_zone(M, r<sub>i</sub>, event_fired, R<sub>en</sub>, R<sub>new</sub>)
if m_{i0} > -l_i then m_{i0} = -l_i
recanonicalize (M)
project (M, r<sub>i</sub>)
if (event fired) then
   foreach r_i \in R_{new}
      m_{i0} = m_{0i} = 0
      foreach r_k \in R_{new}
         m_{ik} = m_{ki} = 0
      foreach r_k \in (R_{en} - R_{new})
         m_{ik} = m_{0k}
         m_{ki} = m_{k0}
foreach r_i \in R_{en}
   m_{0i} = u_i
recanonicalize (M)
normalize (M, R<sub>en</sub>)
```

Normalize

normalize (M, R_{en}) foreach $r_i \in R_{en}$ if $(m_{i0} < -premax(r_i))$ then foreach $r_j \in R_{en}$ $m_{ij} = m_{ij} - (m_{i0} + premax(r_i))$ $m_{ji} = m_{ji} + (m_{i0} + premax(r_i))$ foreach $r_i \in R_{en}$ if $(m_{0i} > premax(r_i))$ then $m_{0i} = \max_j(\min(m_{0j}, premax(r_j)) - m_{ij})$ recanonicalize (M)

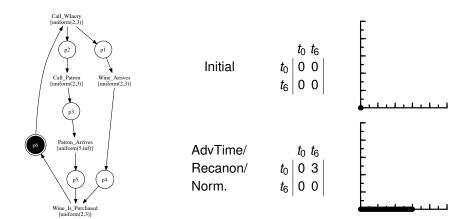
Initial Zone

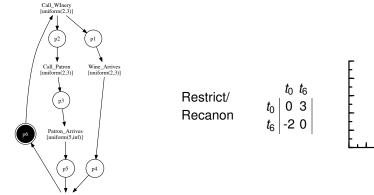


Chris J. Myers (Lecture 7:Timed Circuits)

Wine_Is_Purchased [uniform(2,3)]

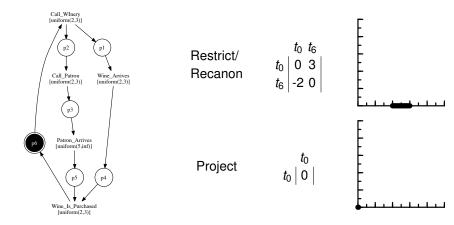
Initial Zone

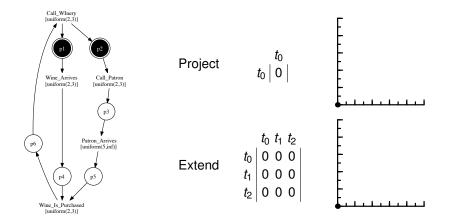


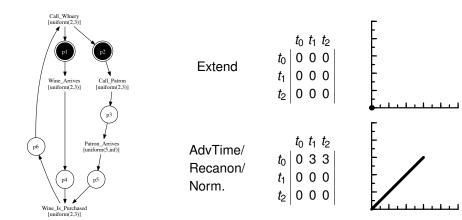


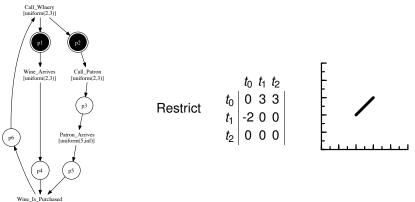
Wine_Is_Purchased [uniform(2,3)]

Chris J. Myers (Lecture 7:Timed Circuits)



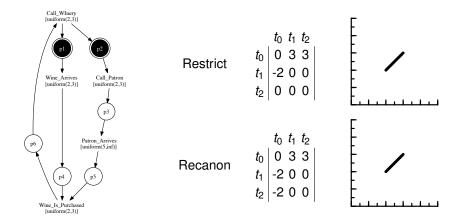


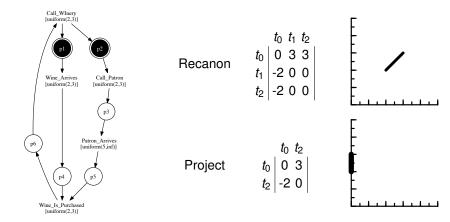


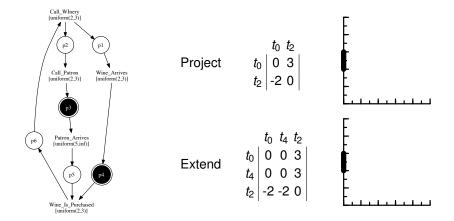


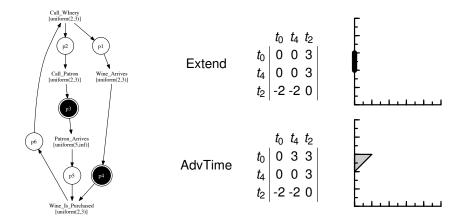
[uniform(2,3)]

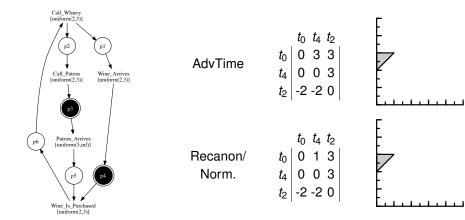
Chris J. Myers (Lecture 7:Timed Circuits)

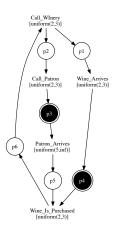






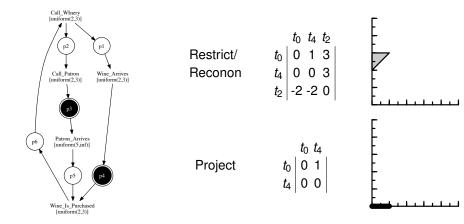


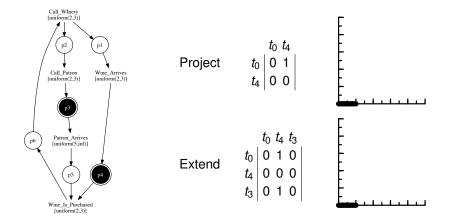


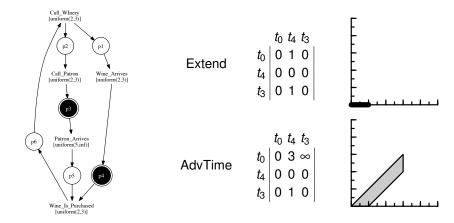


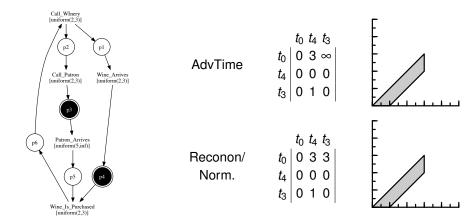
Restrict/ Reconon

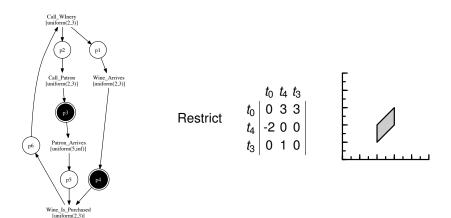
. . . .

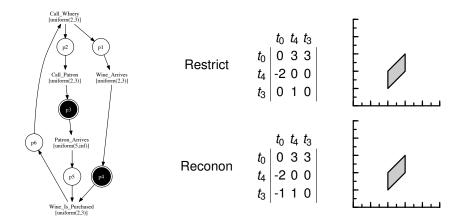


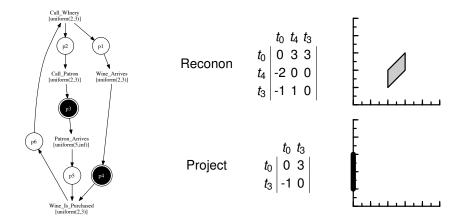


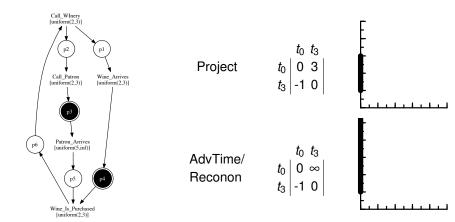


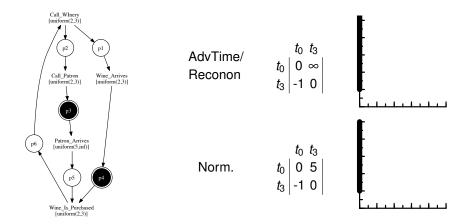


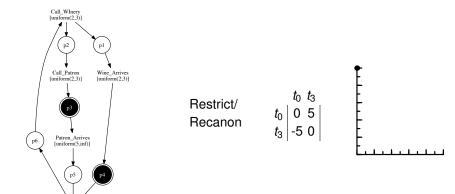




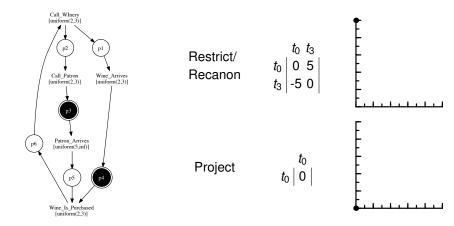


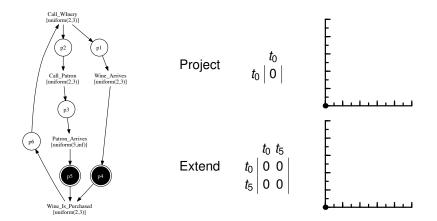


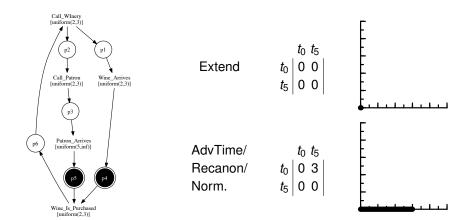


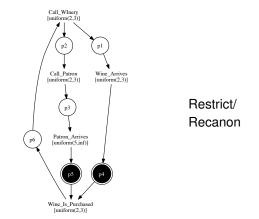


Wine_Is_Purchased [uniform(2,3)]





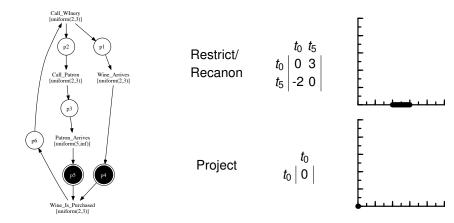


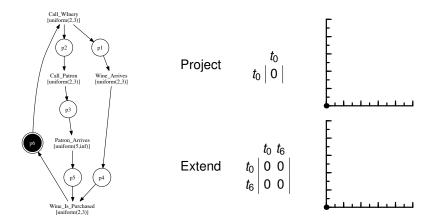


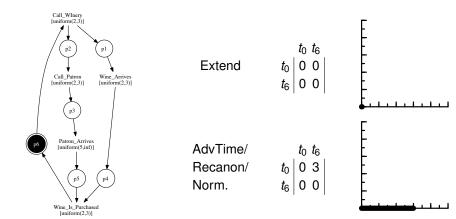
t₀ t₅

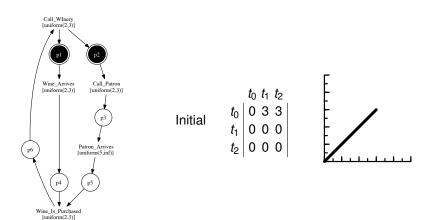
-20

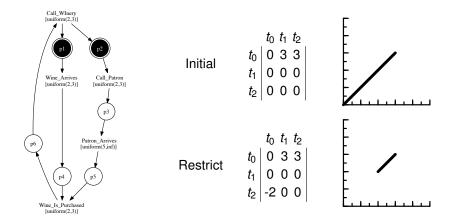
t₀ t₅ 03

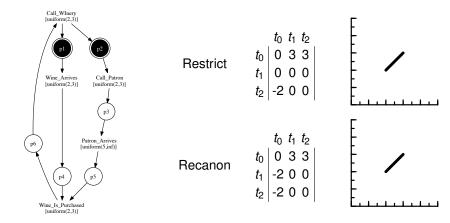


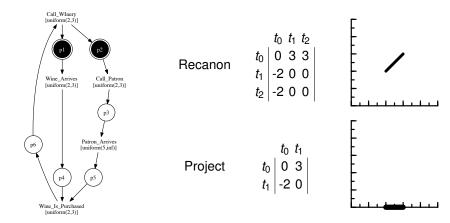


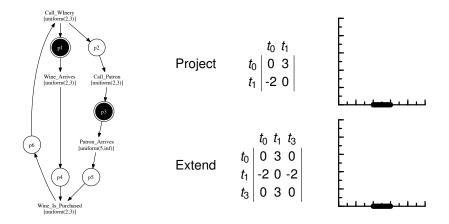


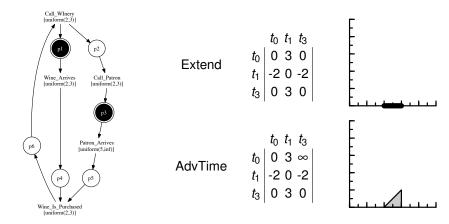


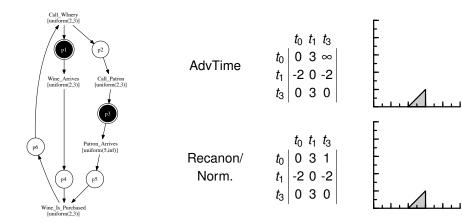


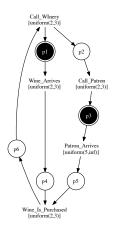






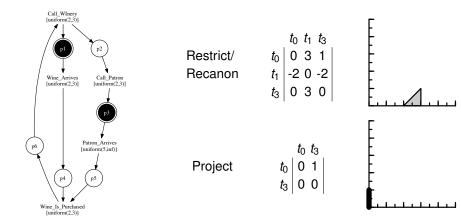


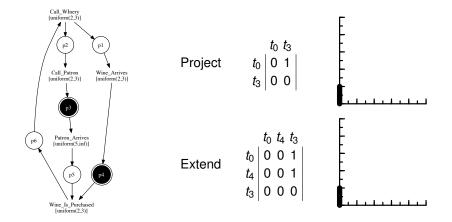


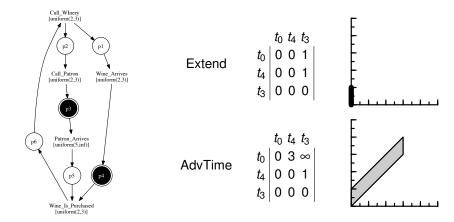


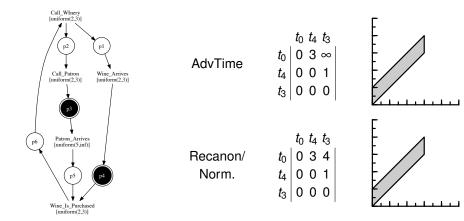
Restrict/ Recanon

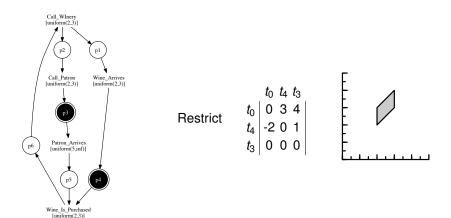
. . .

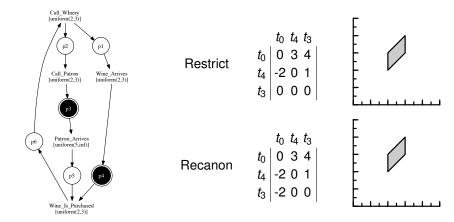


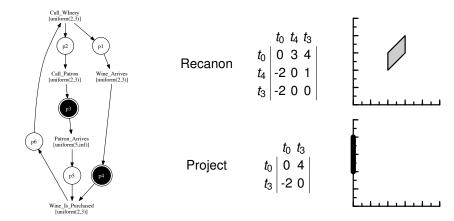


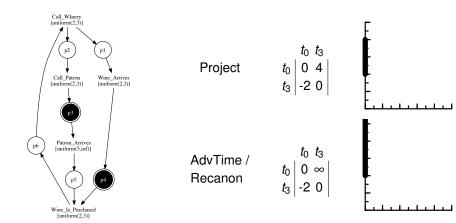


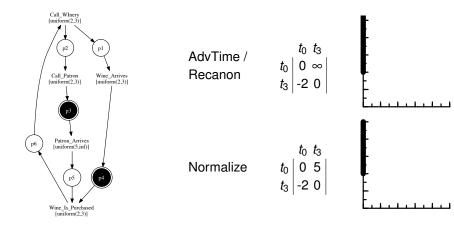




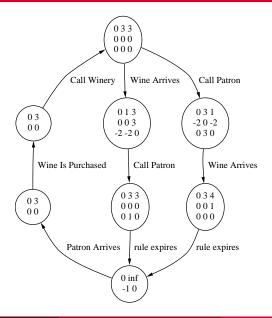




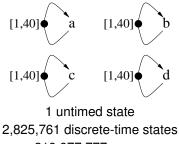




Timed State Space using Zones

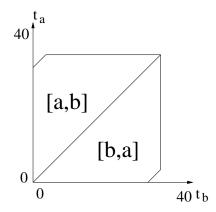


Adverse Example



219,977,777 zones

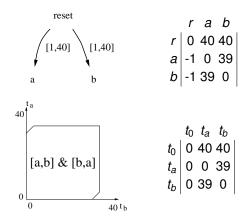
Order versus Causality



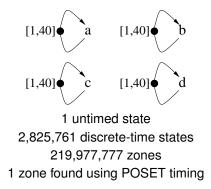
POSET Timing

- Using linear traces introduces fake orderings.
- Need to separate concurrency from casuality.
- Find zones on POSETs rather than linear traces.
- Represent POSETs using graph/matrix.

POSET Graph/Matrix/Zone



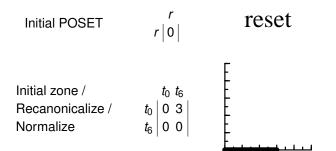
POSET Timing



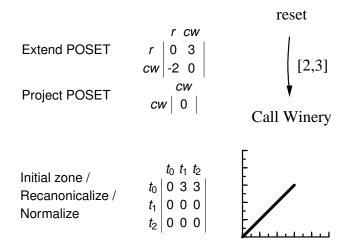
Creating New Zones

- If event occurs, update POSET matrix and create zone:
 - Set minimums to 0 (i.e., $m_{i0} = 0$).
 - Set maximums to the upper bound (i.e., $m_{0j} = u_j$).
 - Copy relavent time separations from POSET matrix to zone (i.e., $m_{ij} = p_{ij}$).
 - Recanonicalize.
- Otherwise, project out timer cooresponding to rule that fired.

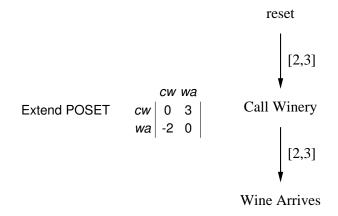
Initial Zone using POSETs



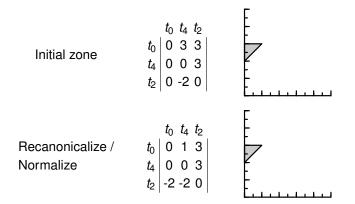
Zone after the Winery is Called using POSETs



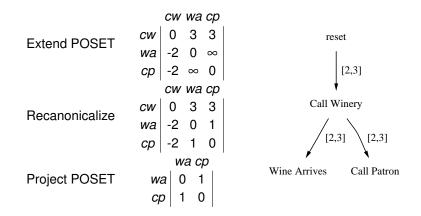
POSET after the Wine Arrives



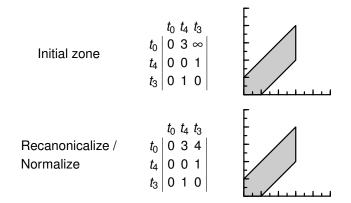
Zone after the Wine Arrives using POSETs



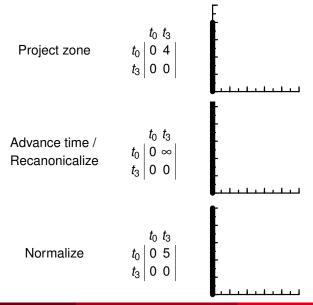
POSET after the Patron is Called



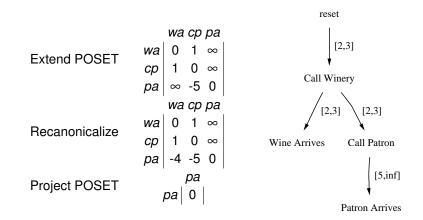
Zone after the Patron is Called using POSETs



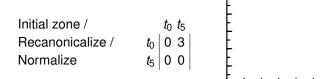
Zone after the Rule Expires using POSETs



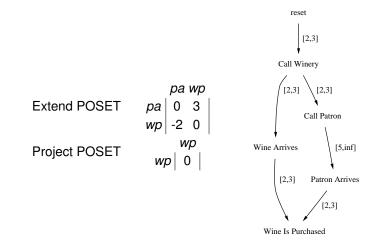
POSET after the Patron Arrives



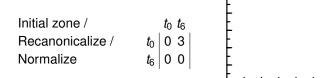
Zone after the Patron Arrives using POSETs



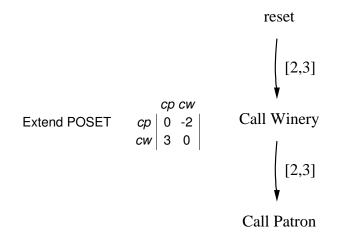
POSET after the Wine is Purchased



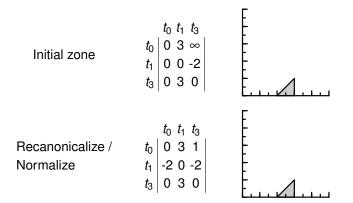
Zone after the Wine is Purchased using POSETs



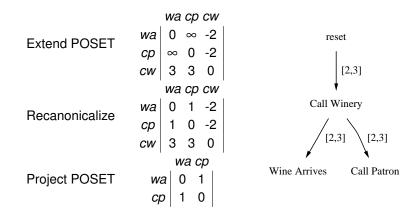
POSET after the Patron is Called



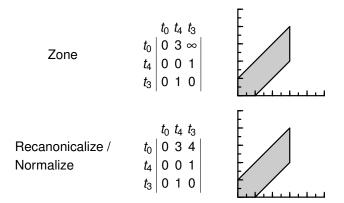
Zone after the Patron is Called using POSETs



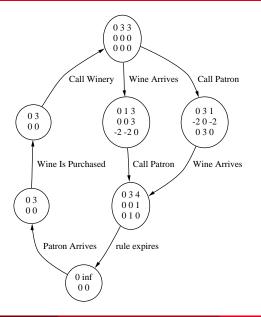
POSET after the Wine Arrives



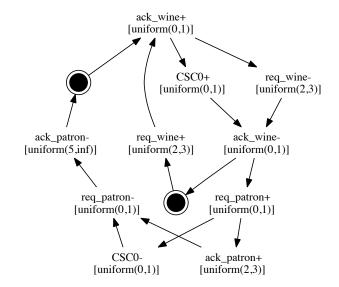
Zone after the Wine Arrives using POSETs



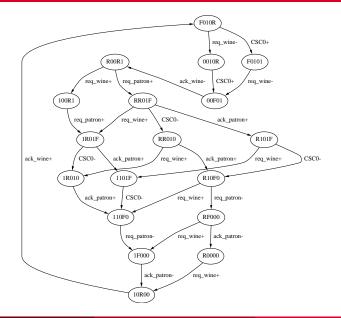
Timed State Space using POSETs



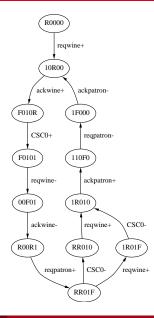
Wine Shop Example: Timed STG



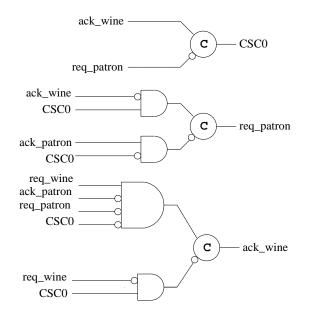
Wine Shop Example: Untimed State Graph



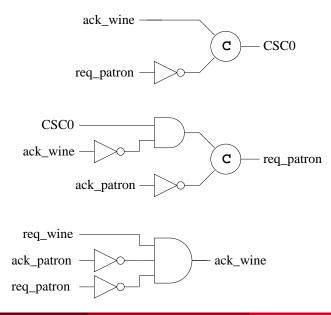
Wine Shop Example: Reduced State Graph



Wine Shop Example: Speed-Independent Circuit



Wine Shop Example: Timed Circuit



Summary

- Regions
- Discrete-time states
- Zones
- Zones + POSETs
- Timed circuits