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Muller Circuits

@ Uses the unbounded gate delay model.

@ Circuits are guaranteed to work regardless of gate delays assuming that
wire delays are negligible.

@ Requires knowledge of the allowed behaviors of the environment.
@ There are no restrictions on the speed of the environment.
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Muller Circuit Design

@ Translate higher level specification into a state graph.

@ If not complete state coded, change the protocol or add new internal state
signal(s).

@ Derive logic using modified logic minimization procedure.
@ Map design to gates in a given gate library.
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Overview

@ Formal definition of speed independence.
@ State assignment of Muller circuits.
@ Logic minimization of Muller circuits.

@ Technology mapping of Muller circuits.
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Complete Circuits

@ To design a speed independent circuit, must have complete information
about both the circuit and its environment.

@ We restrict our attention to complete circuits.
@ A complete circuit C is defined by a finite set of states, S.
@ At any time, C is said to be in one of these states.
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Allowed Sequences

@ Behavior of a complete circuit is defined by set of allowed sequences of
states.

@ Each allowed sequence can be either finite or infinite, and the set of
allowed sequences can also be finite or infinite.

@ The sequence ( s1, So, S3, ... ) says that state sy is followed by state s,,
but it does not state at what time.
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Properties of Allowed Sequences

@ For a sequence ( sy, S, ... ), consecutive states must be different (i.e.,
Si # Sjt1).

@ Each state s € S is the initial state of some allowed sequence.

@ If ( 51, So, S3,...) is allowed sequence then so is ( s, S3, ...).

@ If (s1,80,...)and (4, , ...) are allowed sequences and s, = f;, then (
Si, 4y, to, ...) is also an allowed sequence.
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Simple Example Complete Circuit

@ Consider a complete circuit composed of four states, S = {a, b, ¢, d},
which has the following two allowed sequences:
Q ab,a,b,...
Q acd
@ The sequences above imply the following allowed sequences:
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Simple Example Complete Circuit

@ Consider a complete circuit composed of four states, S = {a, b, ¢, d},
which has the following two allowed sequences:
Q ab,a,b,...
Q acd
@ The sequences above imply the following allowed sequences:
Q b.a,b,a,...
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Simple Example Complete Circuit

@ Consider a complete circuit composed of four states, S = {a, b, ¢, d},
which has the following two allowed sequences:
Q ab,a,b,...
Q acd
@ The sequences above imply the following allowed sequences:
Q b.a,b,a,...
Q cd
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Simple Example Complete Circuit

@ Consider a complete circuit composed of four states, S = {a, b, ¢, d},
which has the following two allowed sequences:
Q ab,a,b,...
Q acd
@ The sequences above imply the following allowed sequences:
Q b.a,b,a,...
Q cd
Qd
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Simple Example Complete Circuit

@ Consider a complete circuit composed of four states, S = {a, b, ¢, d},
which has the following two allowed sequences:
Q ab,a,b,...
Q acd
@ The sequences above imply the following allowed sequences:
Q b.a,b,a,...
Q cd
Qd
Q ab,acd
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Simple Example Complete Circuit

@ Consider a complete circuit composed of four states, S = {a, b, ¢, d},
which has the following two allowed sequences:
Q ab,a,b,...
Q acd
@ The sequences above imply the following allowed sequences:
Q b.a,b,a,...
Q cd
Qd
Q ab,acd
@ ab,ab,acd
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Simple Example Complete Circuit

@ Consider a complete circuit composed of four states, S = {a, b, ¢, d},
which has the following two allowed sequences:
Q ab,a,b,...
Q acd
@ The sequences above imply the following allowed sequences:
Q b.a,b,a,...
Q cd
Qd
Q ab,acd
@ ab,ab,acd
Q b.a,c,d
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Simple Example Complete Circuit

@ Consider a complete circuit composed of four states, S = {a, b, ¢, d},
which has the following two allowed sequences:
Q ab,a,b,...
Q acd
@ The sequences above imply the following allowed sequences:
Q b.a,b,a,...
Q cd
Qd
Q ab,acd
@ ab,ab,acd
Q b.a,c,d
@ etc.
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State Diagram For Simple Example
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R -related and R -sequences

e Two states s;,s; € S are R -related, (denoted s;R s;) when:
Q@ si=s;or
@ s;,s; appear consecutively in some allowed sequence.
@ A sequence ( Si, S2, -.-, Sm ) is an R -sequence if s;R s;+1 for each
1<i<m—1.
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The Followed and Equivalence Relations

@ A state s; is followed by a state s; (denoted s; ¥ s)) if there exists an
R -sequence (' Sj, ..., Sj ).

@ The F-relation is reflexive and transitive, but not necessarily symmetric.

@ If two states s; and s; are symmetric under the  -relation (i.e., s;¥ s; and
s; F si), they are said to be equivalent (denoted s;Es;).
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Equivalence Classes

@ The equivalence relation E partitions the finite set of states S of any
circuit into equivalence classes of states.

@ The F-relation can be extended to these equivalence classes.

o If Aand B are two equivalence classes, then A B if there exists states
ac Aand b € Bsuch that a¥ b.

@ Ifac Aand be Band A¥F B, then af b.
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Speed Independence

@ For any allowed sequence, there is a definite last class which is called the
terminal class.

@ Acircuit C is speed independent with respect to a state s if all allowed
sequences starting with s have the same terminal class.

13/144
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Equivalence Classes for Simple Example

o
00
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Allowed Sequences on State Graphs

@ An allowed sequence of states ( sy, Sp, . ..) is any sequence of states
satisfying the following three conditions:
@ No two consecutive states s; and s;. 1 are equal.
@ For any state s;;1 and signal u; one of the following is true:

sip1() = s(i)
si1(i) = sj(i)

© |If there exists a signal u; and a state s; such that s;(i) = s,(/) and

si(i) = s, (i) for all s, in the sequence following s;, then

)
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Simple Speed-Independent Circuit
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Totally Sequential

@ A circuit is totally sequential with respect to a state s if there is only one
allowed sequence starting with s.
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Semi-Modularity

@ A circuit is semi-modular if in each state in which multiple signals are
excited, that in the states reached after one signal has transitioned, that
the remaining signals are still excited.

Vh,beT. (S,’,H,Sj) S 5/\(3,-,t2,sk) cd
= dg€8§. (Sj,tg,S/) GS/\(Sk,E,S/) €d

@ A totally sequential circuit is semi-modular but the converse is not
necessarily true.

@ A semi-modular circuit is also speed independent, but again the converse
is not necessarily true.
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A Non-Semi-Modular Example
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A Simple Semi-Modular Speed Independent Circuit
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Output Semi-Modularity

@ Input transitions are typically allowed to be disabled by other input
transitions, so another useful class of circuits are those which are output
semi-modular.

@ A SG is output semi-modular if only input signal transitions can disable
other input signal transitions.

Ve To. Vb e T. (S,‘,H,Sj) GsA(Si,tQ,Sk) €d
= ds€8S. (Sj,fg,S/) € 8/\(Sk,t1,3/) cd

where Tp is the set of output transitions (i.e., To = {u+,u— | u € O}).
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Output Semi-Modularity Example

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 22/144



Excitation States

@ ltis often useful to be able to determine in which states a signal is excited

to rise or fall.
@ The sets of excitation states, ES(u+) and ES(u—), are defined as
follows:
ES(u+) = {se€S|s(uy=0AueX(s)}
ES(u—) = {seS|s(uy=1AueX(s)}

@ Recall that X(s) is the set of signals that are excited in state s.
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Quiescent States

@ For each signal u, there are two sets of quiescent states.
@ The sets QS(u+) and QS(u—) are defined as follows:

QS(u+) = {seS|s(uy=1AugX(s)}
QS(u—) = {se€S|s(uy=0Au¢&X(s)}
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Excitation and Quiescent States Example
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Excitation and Quiescent States Example
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Excitation and Quiescent States Example
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Excitation and Quiescent States Example
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Excitation and Quiescent States Example

ES(y+) = {(RR0), (1R0) }
ES(y—) ={(FF1),(0F1)}
QS(y+) = {(R10),(11R)}
QS(y—) = {(F01),(00F)}
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Excitation Regions

@ An excitation region for signal u is a maximally connected subset of either
ES(u+) or ES(u—).

o Ifitis a subset of ES(u+), itis a set region (denoted ER(u+, k)).
o Similarly, a reset region is denoted ER(u—, k).
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Switching Regions

@ The switching region for a transition ux, SR(ux, k), is the set of states
directly reachable through transition usx:

SF)’(U*,k) = {Sj €S | ds; € ER(U*,k).(S,’,U*,Sj) S 8}
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Excitation and Switching Regions Example
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Excitation and Switching Regions Example
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Excitation and Switching Regions Example
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Excitation and Switching Regions Example
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Excitation and Switching Regions Example

ER(y+,1) = {{RRO), (1R0) }
ER(y—,1) = {(FF1),(0F1)}
SA(y+,1) = {{R10),{11R)}
SR(y—,1) = {(F01),(00F)}
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Distributive State Graphs

@ A state graph is distributive if each excitation region has a unique minimal
state.

@ A minimal state for ER(ux, k) is a state in ER(ux, k) which cannot be
directly reached by any other state in ER(ux, k).

@ More formally, a SG is distributive if:
VER(ux, k) . Jexactly one s; € ER(ux,k) .

—3ds; € ER(ux,k) . (s, t,s;) €8
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A Distributive State Graph
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A Non-Distributive State Graph
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Trigger Signals

@ Each cube in the implementation is composed of trigger signals and
context signals.

@ For an excitation region, a trigger signal is a signal whose firing can
cause the circuit to enter the excitation region.

@ The set of trigger signals for an excitation region ER(ux, k) is:
TS(ux, k) = {V eN ’ dsi,s; € S.((si,t, Sj) €9)
ANt=v4+Vit=v—)
A (si & ER(ux,k)) A (sj € ER(ux,k))}
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Context Signals

@ Any non-trigger signal which is stable in the excitation region can
potentially be a context signal.

@ The set of context signals for an excitation region ER(ux, k) is:

CS(ux,k) = {vie N|v; & TS(ux,k)
AVsj, s € ER(U*,k).Sj(i) = S/(i)}
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Trigger and Context Signals Example
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Trigger and Context Signals Example
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Trigger and Context Signals Example
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Trigger and Context Signals Example
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Trigger and Context Signals Example
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The Passive/Active Wine Shop: Petri-net

ack_wine+

Y
req wine- req_winet+

\

ack_patron- ack_wine-

f '

req_patron- req_patron+

AN

ack patron+
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The Passive/Active Wine Shop: State Graph

ES(req_patron+) =
ES(req_patron—) =
QS(req_patron+) =
QS(req_patron—)

ER(req_patron+,1) =
ER(req_patron—,1)
SR(req_patron+,1)
SR(req_patron—,1) =
TS(req_patron+,1) =
TS(req_patron—,1) =
CS(req_patron+,1) =

wine- ack_patron-

CS(req_patron—,1) =
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The Passive/Active Wine Shop: State Graph

ES(req_patron+) = {(RO0R), (100R) }
ES(req_patron—) =
QS(req_patron+) =

)

QS(req_patron—

ER(req_patron+,1) =
ER(req_patron—,1)
SR(req_patron+,1)
SR(req_patron—,1) =
TS(req_patron+,1) =
TS(req_patron—,1) =
CS(req_patron+,1) =

wine- ack_patron-

CS(req_patron—,1) =
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The Passive/Active Wine Shop: State Graph

ES(req_patron-+

) = {(R00R), (100R) }
ES(req_patron—) =
( )=
)

{
{(R10F),(110F)}

QS(req_patron+
QS(req_patron—

ER(req_patron+,1) =
ER(req_patron—,1)
SR(req_patron+,1)
SR(req_patron—,1) =
TS(req_patron+,1) =
TS(req_patron—,1) =
CS(req_patron+,1) =

wine- ack_patron-

CS(req_patron—,1) =
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The Passive/Active Wine Shop: State Graph

ES(req_patron+) = {{R00R), (100R)}
ES(req_patron—) = {(R10F),(110F)}
QS(req_patron+) = {{RRO1), (1R01)}
QS(req_patron—) =

Wme . ER(req_patron+ 1

)=
ER(req_patron—,1)
SR(req_patron+,1)
SR(req_patron—,1) =
TS(req_patron+,1) =
TS(req_patron—,1) =
CS(req_patron+,1) =

CS(req_patron—,1) =
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The Passive/Active Wine Shop: State Graph

{(ROOR), (100R)}
{(R10F), (110F)}
{(RRO1), (1R01)}
{

ES(req_patron+) =
ES(req_patron—) =
QS(req_patron+) =

)

QS(req_patron—) = {{RF00), (1F00),
(R000), (10R0),
F010),(00F0
D) . (F010), (00FO0)
ack_wine- ack_patron- (req patr On+7

SR(req_patron+,
SR(req_patron—,1) =
TS(req_patron+,1) =
TS(req_patron—,1) =
CS(req_patron+,1) =

)=
ER(req_patron—,1)
( 1)

CS(req_patron—,1) =

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 36/144



The Passive/Active Wine Shop: State Graph

{(ROORY), (100R)}
{(R10F), (110F)}
{(RRO1),(1R01)}
{<.‘?FOO>,<1FOO>7

(R000), (10R0),
@ <F010>,<OOFO>}

” ER(req_patron+,1) = {{R00R), (100R)}
ER(req_patron—,1)
( 1)

ES(req_patron+) =
ES(req_patron—) =
QS(req_patron+) =
QS(req_patron—)

wine- ack_patron-

SR(req_patron+,
SR(req_patron—,1) =
TS(req_patron+,1) =
TS(req_patron—,1) =
CS(req_patron+,1) =

CS(req_patron—,1) =
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The Passive/Active Wine Shop: State Graph

ES(req_patron+) = {(RO0R), (100R) }
ES(req_patron—) = {(R10F),(110F)}
QS(req_patron+) = {(RRO1), (1R01)}
QS(req_patron—) = {(RF00), (1F00),
(R000), (10R0),
@ (F010), (00F0)}
o o ER(req_patron+,1) = {(RO0R), (100R) }
' ER(req_patron—,1) = {(R10F), (110F)}
( 1)

SR(req_patron+,
SR(req_patron—,1) =
TS(req_patron+,1) =
TS(req_patron—,1) =
CS(req_patron+,1) =
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The Passive/Active Wine Shop: State Graph

{(ROOR), (100R)}
{(R10F), (110F)}
{(RRO1), (1R01)}
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)=
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The Passive/Active Wine Shop: State Graph

{(ROOR), (100R)}
{(R10F),(110F)}
{(RRO1),(1R01)}
{(RF00), (1F00),

(R000), (10R0),

ES(req_patron+) =
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TS(req_patron—,1)
CS(req_patron+,1) =

CS(req_patron—,1) =

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 36/144



The Passive/Active Wine Shop: State Graph
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The Passive/Active Wine Shop: State Graph

{(ROOR), (100R)}
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The Passive/Active Wine Shop: State Graph

{(ROOR), (100R)}
{(R10F), (110F)}
{(RRO1), (1R01)}
{(RF00), (1F00),

(R000), (10R0),

ES(req_patron+) =
ES(req_patron—) =
QS(req_patron+) =
QS(req_patron—) =

G (F010), (00FO0) }
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The Passive/Active Wine Shop: State Graph

{(ROOR), (100R)}
{(R10F),(110F)}
{(RRO1),(1R01)}
{(RF00), (1F00),
(R000), (10R0),

ES(req_patron+) =
ES(req_patron—) =
QS(req_patron+) =
QS(req_patron—) =

ER(req_patron+,1) = {
ER(req_patron—,1) = {
( 1) ={

{

wine- ack_patron-

—

X

o

o

)
~— —
o~ o~~~

—

o

o

By

SR(req_patron+,
SR(req_patron—,1) = {{RF00), (1F00)}
TS(req_patron+,1) = {ack_wine}
TS(req_patron—,1) = {ack_patron}
CS(req_patron+,1) = {ack_patron,
req_patron}

CS(req_patron—,1) = {ack_wine,
req_patron}

(
(RRO1),
(
1
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Unique State Codes (USC)

@ Two states have unique state codes (USC) if they are labeled with
different binary vectors.

USC(S,‘,S/') <~ 7\43(8/) 75 7»3(3])
@ A SG has USC if all states pairs have USC.

USC(S) < V(sj,s) € SxS.USC(si,s)
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Complete State Codes (CSC)

@ Two states have complete state codes (CSC) if they either have USC or if
they do not have USC but do have the same output signals excited in
each state.

CSC(S,‘, S/') = USC(S,', Sj) V X(S,‘) NOo= X(S/') no
CSC(S) <« V(sj,s) € SxS.CSC(sj,s))

@ A set of state pairs which violate CSC is defined as:

CSCV(S) ={(si,sj)) € S x S|~ CSC(sj,s))}

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 38/144



The Passive/Active Wine Shop: State Graph

ack_patron-

cscv =
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The Passive/Active Wine Shop: State Graph

ack_patron-

cscv = {((R000),(ROOR)),
((10R0), (100R))}
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The CSC Problem

@ If a circuit does not have USC but has CSC, then the present state/next
state relationship is not unique for input signals.

@ Circuit only synthesized for outputs, so not a problem.

@ When a circuit does not have CSC, the present state/next state
relationship for output signals is ambiguous.

@ Could reshuffle the protocol as described earlier.
@ Now introduce method for inserting state variables.
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Insertion Points

@ Need to insert a rising and falling transition for new signal.

@ A transition point is TP = (s, t,), where ts is a set of start transitions and
I is a set of end transitions.

@ The transition point represents the location in the protocol in which a
transition on a new state signal is to be inserted.

@ In a Petri net, a TP represents a transition with incoming arcs from {; and
with outgoing arcs to .

@ An insertion pointis IP = (TPg, TPg), where TPg is for the rising
transition and TPr is for the falling transition.
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Transitioning States

@ ltis necessary to determine in which states a transition can occur when
inserted into a TP.

@ The transtion on the new state signal becomes excited when the circuit
enters N, SR(t).

@ Once this transition becomes excited it may remain excited in any
subsequent states until there is a transition in .

@ The set of states in which a new transition is excited is defined recursively
as follows:
S(TP) = {Sj €S ‘ S/' € mtetsSR(t) V
(H(S,',t, S/') €d.s¢ S(TP) ANt te)}
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TP = ({req_patron+}, {req_patron—})

req_wine+

ack_patron-

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 43/144



TP = ({req_patron+}, {req_patron—})

ack_patron-

{(RRO1), (1R01),
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TP = ({req_patron+}, {req_patron—})

{(RRO1), (1R01),
(R10F),(110F)}
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Insertion Point Explosion

@ The set of all possible insertion points includes all combinations of
transitions in {5 and t, for TPg and TPk.

@ Upper bound on number of possible insertion points is 2!7I°.

@ Fortunately, many of these insertion points can be quickly eliminated
because they either:

o Never lead to a satisfactory solution of the CSC problem or
e The same solution is found using a different insertion point.
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Transition Point Restrictions

@ A transition point must satisfy the following three restrictions:
@ Start and end sets are disjoint (i.e., t; N t, = 0).
@ End set does not include input transitions (i.e., Vt € t, . t € T)).
@ Start and end sets include only concurrent transitions (i.e.,
Vh,b €ts. H || bandVt, b €ty . H || ).

45/144
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TP = ({ack_wine+},{ack wine—})

(req_wine,ack_patron,
ack_wine, req_patron)

ok _paron- T) = {req_wine, ack_patron}

1. Nt =0

2.VtEt, . tE T

3. Vt1,t2€ts- 4 || b
Vb €Ete. ty |
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Insertion Point Restrictions

@ Each IP = (TPg, TPr) must be checked for compatibility.
@ Two TP’s are incompatible when either of the following is true:

TPg(ts) N TPe(ts) # 0
TPg(te) N TPe(t,) # 0

@ An incompatible insertion point always creates an inconsistent state
assignment.

@ Example:

IP = ({ack_wine+},{ack wine—}),
({req_wine+,req_patron—},{ack_wine—})
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State Graph Coloring

@ Need to determine effect of inserting a state variable in an IP.
@ Can be done by inserting the state signal and finding new SG.

@ This approach is unnecessarily time consuming and may produce a SG
with an inconsistent state assignment.

@ Instead, SG is partitioned into four parts corresponding to the rising,
falling, high, and low sets for the new state signal.
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State Graph Coloring Procedure

@ States in S(TPg) are colored as rising.
@ States in S(TPr) are colored as falling.

@ If a state is colored both rising and falling, this IP leads to an inconsistent
state assignment and must be discarded.

@ All states following those colored rising before reaching any colored
falling are colored as high.

@ Similarly, all states between those colored as falling and those colored as
rising are colored as low.

@ While coloring high or low, if a state to be colored is found to already have
a color, IP leads to inconsistent state assignment.
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IP(({req_patron+}, {req_patron—}), ({ack_wine—}, {ack wine+}))

ack_patron-
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IP(({req_patron+}, {req_patron—}), ({ack_wine—}, {ack wine+}))

Rising = {(RRO1), (1R01),
<F1’10F>7 (1 10F>}

ack_patron-
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IP(({req_patron+}, {req_patron—}), ({ack_wine—}, {ack wine+}))

Rising = {(RRO1), (1R01),
<F1’10F>,(110F>}
ck_patron- Falling = {{ROOR), (100R),
<Fz',‘:f01>7 (‘I RO1>,
(F?1OF>,(11OF>,
(F:’FOO>, (1 FOO>
(R000), (10F0)

9
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IP(({ack_wine+}, {ack_wine—}), ({req_patron+}, {req_patron—}))

ack_patron-
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IP(({ack_wine+}, {ack_wine—}), ({req_patron+}, {req_patron—}))

ek _patron-
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IP(({ack_wine+}, {ack_wine—}), ({req_patron+}, {req_patron—}))
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IP(({ack_wine+}, {ack_wine—}), ({req_patron+}, {req_patron—}))

ack_patron-
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Insertion Point Primary Cost Function

@ The primary component of the cost function is the number of remaining
CSC violations after a state signal is inserted.

@ Eliminate from CSCV any pair of violations in which one state is colored
high while the other is colored low.

@ States with a USC violation may now have a CSC violation.

@ For each pair of states with a USC violation (but not a CSC violation), if
one is colored rising while the other is colored low, there is now a CSC
violation.

@ Similarly, if one is colored falling and the other is colored high, there is
also a new CSC violation.

@ Each new CSC violation must be added to the total remaining.
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Insertion Point Secondary Cost Functions

@ The IP with the smallest sum | TPg(te)| + | TP£(te)|.
@ The IP with the smallest sum | TPg(ts)| + | TPe(ts)|-
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State Signal Insertion: Petri-net

State signal can be inserted into a Petri-net by adding arcs from each
transition in {5 to the new state signal transition.

Arcs are also added from the new transition to each of the transitions t,.

The same steps are followed for the reverse transition.

The state signal is assigned an initial value based on the coloring of the
initial state.

At this point, a new SG can be found.
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IP(({ack_wine+}, {ack_wine—}), ({req_patron+}, {req_patron—}))

ack_wine+

/N~

req_winet req_wine- CSCO+

b

ack_patron- ack_wine-
\ J
req_patron- req_patron+
N
ack patron+ CSCO-
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IP(({ack_wine+}, {ack_wine—}), ({req_patron+}, {req_patron—}))

( cscor ! req_wine-

‘ack_patron-
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State Signal Insertion: State Graph

Alternatively, the new SG could be found directly.

Each state in the original SG is extended to include new signal.
If a state is colored low, then the new signal is '0’.

If a state is colored high, then the new signal is '1’.

If a state is colored rising then it must be split into two new states, one
with new signal 'R’ and the other has it as '1’.

@ If a state is colored falling then it must be split into two new states, one
has the new signal 'F’ and the other has it as ’'0’.
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CSC Solver Algorithm

csc_solver (SG)
CSCV = find_csc_violations (SG);
if (JcSCcv|=0) return SG;
best =|CSCV]|;
best)p = (0,0);
TP = find_all_transition_points (SG);
foreach TPg € TP
foreach TP c TP
if IP= (TPg, TPr) is legal then
CSG = color_state_graph (SG, TPgr, TPg) ;
CSCV = find_csc_violations (CSG);
if (CSG is consistent) and ((|CSCV| < best) or
((|cScV|=best) and (cost (IP)<cost (bestp)))) then
best =|CSCV]|;
best;p= (TPgr, TPEF);
SG = insert_state_signal (SG,bestpp);
SG = csc_solver (SG) ;
return SG;
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Hazard-free Logic Synthesis

@ Requires modified minimization to obtain hazard-free logic.

@ Modifications needed are dependent upon technology.
@ We consider the following technologies:

@ Complex gates
@ Generalized C-elements
© Basic gates
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Atomic Gate Implementation

@ Assume that each output to be synthesized is implemented using a single
complex atomic gate.

@ A gate is atomic when its delay is modeled by a single delay element
connected to its output.

i D
b— | Gae
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Atomic Gate Logic Synthesis

@ On-set for a signal u is the set of states in which u is excited to rise or
stable high.

@ Off-set is set of states in which u is excited to fall or stable low.

@ DC-set is the set of all unreachable states, or equivalently those states
not included in either the on-set or off-set.

ON-set = {As(s)|se€ (ES(u+)UQS(u+))}
OFF-set = {As(s)|se (ES(u—)UQS(u—))}
DC-set = {0,1}M — (ON-setU OFF-set)

@ Find primes using recursive procedure described earlier.
@ Setup and solve a covering problem.
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Passive/Active Wine Shop: Atomic Gate

ack_winet+ CSCo-
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Atomic Gate: Example (Ack_Wine)

ON-set = {10000,10100,00100,10101}

OFF-set = {00101,00001,10001,00011,10011,01011,00010,
10010,01010,11010,01000,11000,11011,00000}

DC-set = {00110,00111,01001,01100,01101,01110,01111,
10110,10111,11001,11100,11101,11110, 11111}

p = {1-1--,-11--,--11-,--1-0,-1-01,10-00}
1-1-- -11-- --11- --1-0 -1-01 10-00

10000 — — - - - 1

10100 1 - - 1 - 1

00100  — B - 1 - -

10101 1 - - - - -
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Passive/Active Shop: Atomic Gate Circuit

ack_wine

req_patron CSCo

CSCo req_wine+
ack_wine
CSCo

ack_patron req_patron ack_wine+

req_patron

req wi ne:Dil req wine-
ack_wine

req_wine @@

ack_patron

u2 ack_wine csco+

req_patron
@D

Csco

ack_wine-
ack_wine
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Generalized C-Elements

00 —
01—

s10 —
s11—

r00 —
rol —

rl0 —
rll —
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gC Logic Synthesis

@ Two minimization problems must be solved for each signal u: set of the
function (i.e., set(u)) and reset (i.e., reset(u)).
@ For set(u):
o On-set is states in which u is excited to rise.
o Off-set is states in which u is excited to fall or is stable low.
o DC-set is stable high and unreachable states.
o Stable high states are don’t cares, since once a gC is set its feedback
holds its state.

ON-set = {As(s)|se (ES(u+)}
OFF-set = {Ls(s)|s e (ES(u—)uQS(u—))}
DC-set = {0,1}N — (ON-setU OFF-set)
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gC Logic Synthesis

@ For reset(u):
o On-set is states in which v is excited to fall.
o Off-set is states in which u is either rising or high.
o DC-set is stable low and unreachable states.

ON-set = {As(s)|se (ES(u—)}
OFF-set = {As(s) | s € (ES(u+)UQS(u+))}
DC-set = {0,1}M — (ON-setU OFF-set)

@ Can now apply standard methods to find a minimum number of primes to
implement the set and reset functions.
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Passive/Active Wine Shop: gC

ack_wine+ CSCo-
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gC Circuit: Example

ON-set = {10000}
OFF-set = {00101,00001,10001,00011,10011,01011,00010,
10010,01010,11010,01000, 11000, 11011,00000}

DC-set = {00110,00111,01001,01100,01101,01110,01111,
10110,10111,11001,11100,11101,11110, 11111,
10100,00100,10101}

P = {1-1--,-11--,--11-,--1-0,-1-01,10-00}

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 69/144



Passive/Active Shop: gC Circuit

ack_wine

—
ﬁ CSsCco
req_patron
ack_wine+

ack_wine J
CSCO ———
req_patron
ack_patron ——
csco— 9 req_wine-
req_wine @@
ack_patron
req_patron - CSCo+
CSCO
o &

ack_wine

req_wine+

ack_wine-

req wine

CSCO (o)
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A Simple Example
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Combinational Optimization

@ If set(u) is on in all states in which u should be rising or high, then the
state holding element can be removed.

@ Implementation for u is equal to the logic for set(u).

@ If reset(u) is on in all states in which u should be falling or low, then the
signal u can be implemented with reset(u).
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Combinational Optimization
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Gate-Level Hazard

(F110) — (0F10) — (00FO0)
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Standard C-implementation

00 1 et 1)

—e PR
s10— set(u+,2)

s11—

ro0 —
rol —1

reset(u-,1)

r10 —

reset(u-,2
ri1 — (u-2)

@ Structure similar to gC-implemenation, but built differently.

@ Each AND gate, called a region function, implements a single (or possibly
a set of) excitation region(s) for the signal v.

@ In gC-implemenation, an excitation region can be implemented by
multiple product terms.

@ A region function may need to be implemented using SOP.
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Region Function Operation

@ Each region function must:

e Turn on only when it enters a state in its excitation region.
e Turn off monotonically sometime after the signal u changes.
e Must stay off until the excitation region is entered again.

@ To guarantee this behavior, each region function must satisfy certain
correctness constraints.

@ Requires a modified logic minimization procedure.
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Region Function Covers

@ Each region function is implemented using a single atomic gate,
corresponding to a cover of an excitation region.

@ A cover C(ux, k) is a set of states for which the corresponding region
function evaluates to one.

@ First present a method in which each region function only implements a
single excitation region.

@ Later extend the method to allow a single region function to implement
multiple excitation regions to promote gate sharing.
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Correctness Constraints: Intuition

@ Each region function can only change when it is needed to actively drive
the output signal to change.
@ Consider a region function for a set region:
o Gate turns on when circuit enters a state in the set region.
@ When region function changes to 1, it excites the OR gate.
o When the OR gate changes to 1 in excites the C-element (assuming the
reset network is low) to set uto 1.
o Only after u rises can the region function be excited to fall.
o The region function then must fall monotonically.
e The signal u will not be able to fall until the region function has fallen and
the OR gate for the set network has fallen.
@ Once region function falls, it cannot be excited again until the circuit again
enters a state in this set region.
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Covering Constraint

@ The reachable states in a correct cover must include the entire excitation
region.

@ It must not include any states outside the union of the excitation region
and associated quiescent states.

ER(ux,k) C [C(ux, k)N S] C [ER(ux, k) UQS(ux)]

Chris J. Myers (Lecture 6: Muller Circuits)
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Entrance Constraint

@ A cover must only be entered through excitation region states.

[(S/,t,Sj) €dNs ¢ C(U*,k) YRS C(U*,k)] =S5 € ER(U*,k)
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Excitation Region Implicants

@ Goal of logic minimization is to find an optimal SOP for each region
function that satisfies the definition of a correct cover.

@ An implicant of an excitation region is a product that may be part of a
correct cover.

@ cis an implicant of an excitation region ER(ux, k) if the reachable states
covered by ¢ are a subset of the states in the union of the excitation
region and associated quiescent states.

[cN 8] C [ER(ux, k) U QS(ux)].
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Gate Level Logic Synthesis: Set Regions

@ For each set region ER(u+,k):

e On-set is those states in ER(u+, k).

o Off-set includes states in which v is falling or low, and also the states
outside this excitation region where u is rising.

o This additional restriction is necessary to make sure that a region function
can only turn on in its excitation region.

ON-set = {As(s)|se€ (ER(u+,k)}
OFF-set = {As(s)|se (ES(u—)UQS(u—))U
(ES(u+) — ER(u+,k))}
DC-set = {0,1}N — (ON-setU OFF-set)
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Gate Level Logic Synthesis: Reset Regions

@ For a reset region ER(u—, K):

ON-set = {As(s)|se€ (ER(u—,k)}
OFF-set = {As(s)|se (ES(u+)UQS(u+))uU
(ES(u—) — ER(u—,k))}
DC-set = {0,1}M — (ON-setU OFF-set)
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Gate Level Circuit: Example
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Gate Level Circuit: Example

@ There are two set regions for ¢: ER(c+,1) = 01R0 and
ER(c+,2) = 11R1.

@ Let's examine the implementation of ER(c+,1).

ON-set = {0100}

OFF-set = {0000,1000,0010,1100,1101}

DC-set = {0001,0011,0101,0110,0111,
1001,1010,1011,1110,1111}

@ The primes found are as follows:

P = {01--,1-1-,-11-,0--1,-0-1,--11}
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Implied States

@ The entrance constraint creates a set of implied states for each implicant
¢ (denoted 1S(c)).

@ Astate sisin IS(c) if it is not covered by ¢ but due to the entrance
constraint must be covered if ¢ is part of the cover.

o Astate s;isin IS(c) for ER(ux, k) if it is not covered by ¢, and s; leads to
s; which is both covered by ¢ and not in ER(ux, k).

I1S(c) = {si | si ¢ cA3sj.(si,t,5) €SN (sj€c)N(sj & ER(ux,k))}

@ This means that the product ¢ becomes excited in a quiescent state
instead of an excitation region state.

@ If there no other product in the cover contains this implied state, the cover
violates the entrance constraint.
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Existence of a Prime Cover

@ An implicant may have implied states that are outside the excitation
region and the cooresponding quiescent states.

@ Implied states may not be covered by any other implicant.

@ If this implicant is the only prime which covers some excitation region
state, then no cover can be found using only primes.
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Existence of a Prime Cover: Example

Consider prime 01- -
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Existence of a Prime Cover: Example

Consider prime 01- -
Entered by (F110,a—,0F10)
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Existence of a Prime Cover: Example

Consider prime 01- -
Entered by (F110,a—,0F10)
F110 is implied state
Cover with 1-1-or -11-
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Existence of a Prime Cover: Example

Consider prime 01- -
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F110 is implied state

Cover with 1-1-or -11-
Entered by (11R1,c+,111F)
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Existence of a Prime Cover: Example

Consider prime 01- -
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Existence of a Prime Cover: Example

Consider prime 01- -

Entered by (F110,a—,0F10)
F110 is implied state

Cover with 1-1-or -11-
Entered by (11R1,c+,111F)
11R1 is implied state

But it is in the OFF-set
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Candidate Implicants

@ Implicant is a candidate implicant if there does not exist one which
properly contains it with a subset of the implied states.

@ ¢; is a candidate implicant if there does not exist an implicant ¢; that
satisfies the following two conditions:

G O G
/S(Cj) C /S(C,').

@ Prime implicants are always candidate implicants, but not all candidate
implicant are prime.

@ An optimal cover exists using only candidate implicants.
@ NOTE: similar to prime compatibles.
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Candidate Implicant Algorithm

candidate_implicants(SG, P)
done =10
for(k = |largest(P)|; k > 1; k——)
foreach(q € P; |q| = k) enqueue(C,q)
foreach(c € C; |c| =k)
if(IS(SG, ¢) = 0) continue
foreach(s € lit_extend(c))
if(s € done) continue
T's = IS(SG, s)
prime = true
foreach(q € C;|q| > k)
if (sCq)
I, = IS(SG,q)
if (Ts D T) |
prime = false;
break
if(prime = 1) enqueue(C, s)
done = doneU {s}
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Candidate Implicant Algorithm Example

Primes Implied States
01--
1-1-
_11_
0--1
-0-1
--11
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Primes Implied States
01-- F110
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Candidate Implicant Algorithm Example

Primes Implied States

01-- F110
1-1- 11R1
_11_
0--1
-0-1
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Candidate Implicant Algorithm Example

Primes Implied States

01-- F110
1-1- 11R1
-11- 11R1, 01RO
0--1

-0-1

--11
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Candidate Implicant Algorithm Example

Primes Implied States

01-- F110
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Candidate Implicant Algorithm Example
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1-1- 11R1
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Candidate Implicant Algorithm Example

Primes Implied States

01-- F110
1-1- 11R1
-11- 11R1, 01RO
0--1 0
-0-1 0
--11 11R1
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Candidate Implicant Algorithm Example

Primes Implied States

01-- F110
1-1- 11R1
-11- 11R1, 01RO
0--1 0
-0-1 0
--11 11R1
010- 0
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Candidate Implicant Algorithm Example

Primes Implied States

01-- F110
1-1- 11R1
-11- 11R1, 01RO
0--1 0
-0-1 0
--11 11R1
010- 0
011-
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Candidate Implicant Algorithm Example

Primes Implied States

01-- F110
1-1- 11R1
-11- 11R1, 01RO
0--1 0
-0-1 0
--11 11R1
010- 0
011- F110
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Candidate Implicant Algorithm Example

Primes Implied States

01-- F110
1-1- 11R1
-11- 11R1, 01RO
0--1 0
-0-1 0
--11 11R1
010- 0
0110
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Candidate Implicant Algorithm Example

Primes Implied States

01-- F110
1-1- 11R1
-11- 11R1, 01RO
0--1 0
-0-1 0
--11 11R1
010- 0
0110 F110
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Candidate Implicant Algorithm Example

Primes Implied States
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Candidate Implicant Algorithm Example

Primes Implied States

01-- F110
1-1- 11R1
-11- 11R1, 01RO
0--1 0
-0-1 0
--11 11R1
010- 0
0111 0
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Candidate Implicant Algorithm Example

Primes Implied States

01-- F110
1-1- 11R1
-11- 11R1, 01RO
0--1 0
-0-1 0
--11 11R1
010- 0
101-
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Candidate Implicant Algorithm Example

Primes Implied States
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Candidate Implicant Algorithm Example

Primes Implied States

01-- F110
1-1- 11R1
-11- 11R1, 01RO
0--1 0
-0-1 0
--11 11R1
010- 0
101- 0
1-10
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Candidate Implicant Algorithm Example

Primes Implied States

01-- F110
1-1- 11R1
-11- 11R1, 01RO
0--1 0
-0-1 0
--11 11R1
010- 0
101- 0
1-10 111F
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Candidate Implicant Algorithm Example

Primes Implied States

01-- F110
1-1- 11R1
-11- 11R1, 01RO
0--1 0
-0-1 0
--11 11R1
010- 0
101- 0
1-10 111F
-110
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Candidate Implicant Algorithm Example

Primes Implied States

01-- F110
1-1- 11R1
-11- 11R1, 01RO
0--1 0
-0-1 0
--11 11R1
010- 0
101- 0
1-10 111F

-110 111F, 01RO
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Formulating the Covering Problem

@ Introduce a Boolean variable x; for each candidate implicant c;.
@ The variable x; = 1 when the candidate implicant is included in the cover
and 0 otherwise.

@ Using these variables, we can construct a product of sums representation
of the covering and entrance constraints.
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Covering Clauses

@ A covering clause is constructed for each state s in ER(ux, k).
@ Each clause consists of disjunction of candidates that cover s.

\V x.

irs€c;

@ ER(ux,k) = 0100 which is included in only candidate implicants c;
(01— —)and ¢, (010—):
(X1 +x2)
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Closure Clauses

@ For each candidate implicant c¢;, a closure clause is constructed for each
of its implied states s € 1S(c;).

@ Each closure clause represents an implication if a candidate implicant
used, its implied states must be covered.

6V V.

j:s€¢;

@ The candidate implicant ¢; (01 — —) has implied state 0110.
@ 0110 included in implicants ¢z (1 —1—) and ¢5 (—11—).

(X1 + X3+ x5)

@ Complete formula: (x1 + x2) (X1 + X3 + X5)X3 X5 Xg
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Setting Up the Constraint Matrix

@ Find x;’s that satisfy function with minimum cost.

@ Since negated variables, the covering problem is binate.

@ The constraint matrix has one row for each clause and one column for
each candidate implicant.

@ Rows divided into a covering section and a closure section.

@ Covering section: row for each excitation region state s, with a 1 in every
column with a candidate implicant that includes s.

@ Closure section: row for each implied state s of each candidate implicant
¢, with a 0 in the column corresponding to ¢; and a 1 in each column with
a candidate implicant ¢; that covers s.
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Constraint Matrix for ER(c+,1)

¢o1-- 010- 1-1- 101- -11- 0--1 -0-1 --11 1-10 -110

11 1 - - - = = ==
2 0 - 1 - 1 - - - 1 1
3 - - 0 - - - = - - -
4 - - - - 0 - - = = =
5 - - - - - - = 0 -
6 - - 1 - 1 - - 1 o -
7 - - 1 - 1 - - 1 - 0
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A Simple Example
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Combinational Optimization

@ Can remove the C-element when the covers for the set function for a
signal v include all states where u is rising or high.

Uc(u+,1) 2 ER(u+,/) UQS(u+)
I}

@ Or the covers for the reset function include all states where u is falling or
low.
Uc(u—,1) 2 ER(u—,/)uQS(u—)
I
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Gate Sharing

@ Single gate can implement multiple excitation regions.

@ Need to modify the covering constraint to allow the cover to include states
from other excitation regions.

ER(u*,k) C [C(ux,k)NS] C [U ER(ux,l)U QS(U*)]
/

@ Entrance constraint must be modified to allow the cover to be entered
from any corresponding excitation region state.

[(si,t,5)) € dAsi & C(ux, k) Asj € Clux, k)] = s €| JER(ux, 1)
i
@ Additional constraint is now necessary to guarantee that a cover either
includes an entire excitation region or none of it.

ER(ux,l) Z C(u*,k) = ER(ux,l) N C(ux,k) =0
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Gate Sharing Example: SG
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Example: No Sharing

@ ER(c+,1) =100 and ER(c+,2) = 110.

@ Using the earlier constraints, the primes are found to be:
P(c+,1) = {10-,1-1,-11}
P(c+,2) = {11-,1-1,-11}

10- has no implied states.

11- has implied state FR1 which can be covered by 1-1, but this has
implied state 10R which is an OFF-set state.

@ Prime 11- must be expanded to 110.
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Gate Sharing Example: Original Circuit

(op
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Example: Sharing

@ ER(c+,1) =100 and ER(c+,2) = 110.
@ Using the new constraints, the primes are found to be:

P(c+,1) = {1--,-11}
P(c+,2) = {1--,-11}
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Gate Sharing Example: Optimized Circuit
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The Single Cube Algorithm

@ Many region functions composed of a single product, or cube.

@ Now present a more efficient algorithm which finds an optimal single-cube
cover for each region function, if one exists.
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The Single Cube Algorithm

single_cube (SG, technology)
foreach ve O
EC = find_excitation_cubes (SG);
foreach EC(ux,k) € EC
TC(ux,k) = trigger_cube (SG,EC(u%,k));
CS(u*,k) = context_signals (SG, EC(ux*,k), TC(ux,k)) ;
V(u%,k) = violations (SG,EC(ux,k), TC(u*,k),tech);
CC = build_cover_table (CS(u%,k), V(ux,k));
C(u#,k) = solve_cover_table(CC, TC(ux,k)) ;
solution(u) = optimize_logic(C);
return solution;
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Excitation Cubes

@ In a single-cube cover, all literals must correspond to signals that are
stable throughout the excitation region.

@ ER(ux,k) is approximated using an excitation cube.

@ The excitation cube is the supercube of the states in the excitation region
and defined on each signal v as follows:

0 ifVse ER(ux,k).s(v)=0
EC(ux,k)(v) =< 1 ifVse ER(ux,k).s(v)=1
— otherwise

@ If a signal has a value of 0 or 1 in the excitation cube, the signal can be
used in the cube implementing the region.

@ The set of states implicitly represented by the excitation cube is always a
superset of the set of excitation region states.
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Trigger Cubes

@ The set of trigger signals for ER(ux, k) can also be represented with a
cube called a trigger cube.

@ TC(ux,v) is defined as follows for each signal v:
si(v) If3(si,t,s5)€d.(t=v+Vi=v—)A

TC(ux,k)(v) = (si & ER(ux,k)) A (s; € ER(ux,k))
— otherwise

@ The single cube cover of an excitation region must contain all its trigger
signals (i.e., C(ux, k) C TC(ux,k)).
@ Therefore, all trigger signals must be stable (i.e., EC(u*, k) C TC(ux, k)).
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Example: Excitation and Trigger Cubes

ux,k | EC(y*,k) | TC(ux,k)

109/ 144
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Example: Excitation and Trigger Cubes

ux,k | EC(y*,k) | TC(ux,k)
cr,1 | 0100

109/ 144
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Example: Excitation and Trigger Cubes

ux,k | EC(y*,k) | TC(ux,k)
cr,1 | 0100 B

109/ 144
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Example: Excitation and Trigger Cubes

ux,k | EC(y*,k) | TC(ux,k)
cr,1 | 0100 “1--
c+,2 1101

c—,1

d+,1

d—,1

109/ 144
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Example: Excitation and Trigger Cubes

ux,k | EC(y*,k) | TC(ux,k)
cr,1 | 0100 “1--
cr,2 | 1101 ]
c—,1

a+,1

d—,1

109/ 144
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Example: Excitation and Trigger Cubes

ux,k | EC(y*,k) | TC(ux,k)
cr,1 | 0100 B
cr,2 | 1101 ]
c—.1 | 0010

a+,1

d—,1

109/ 144
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Example: Excitation and Trigger Cubes

ux,k | EC(y*,k) | TC(ux,k)
cr,1 | 0100 B
cr,2 | 1101 ]
c—.1 | 0010 —0--
a+,1

d—,1

109/ 144
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Example: Excitation and Trigger Cubes

ux,k | EC(y*,k) | TC(ux,k)
cr,1 | 0100 B
ct+.2 | 1101 —
c—.1 | 0010 —0--
d+,1| 1100

d—,1
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Example: Excitation and Trigger Cubes

ux,k | EC(y*,k) | TC(ux,k)
cr,1 | 0100 B
ct+.2 | 1101 —
c—.1 | 0010 —0--
d+,1| 1100 “1--
d—,1
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Example: Excitation and Trigger Cubes

ux,k | EC(y*,k) | TC(ux,k)
cr,1 | 0100 B
ct+.2 | 1101 —
c—.1 | 0010 —0--
d+,1| 1100 “1--
d— 1| 1111
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Example: Excitation and Trigger Cubes

ux,k | EC(y*,k) | TC(ux,k)
cr,1 | 0100 B
ct+.2 | 1101 —
c—.1 | 0010 —0--
d+,1| 1100 “1--
d— 1| 1111 —1-
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Violating States

@ Goal is to find smallest product C(us, k) where
EC(ux, k) C C(ux,k) C TC(ux*, k)

and satisfies the required correctness constraints.
@ Begin with a cube consisting only of the trigger signals.

@ If this cover contains no states that violate the required correctness
constraints, we are done.

@ If not, context signals must be added to the cube to remove any violating
states.

@ For each violation, the procedure determines the choices of context
signals which would exclude the violating state.

@ Finding smallest set of context signals is a covering problem.
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Violating States: gC Circuits

@ In gC circuits, for a set region a state is a violating state when the trigger
cube intersects the falling or low sets.

@ Similarly, for a reset region, a state is a violating state when the trigger
cube intersects the rising or high sets.

V(u+,k) = {seS|seTC(u+,k)Ase ES(u—)UQS(u—)}
V(u—,k) = {seS|seTC(u—,k)Ase ES(u+)UQS(u+)}

111/144
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Example: Violating States
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Example: Violating States
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Example: Violating States
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Example: Violating States

TC(c+,1) -1--
V(c+,1) {110R}
TC(c+,2) ---1
V(c+,2)
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Example: Violating States

TC(c+,1) -1--
V(ct,1) {110R}
TC(c+,2) ---1
V(c+,2) 0
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Example: Violating States

TC(c+,1) -1--
V(ct,1) {110R}
TC(c+,2) ---1
V(c+,2) 0
TC(c—,1) -0--
V(e—,1)
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Example: Violating States

TC(c+,1) -1--
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Example: Violating States

TC(c+,1) -1--
V(c+,1) {110R}
TC(c+,2) ---1
V(c+,2) 0
TC(c—,1) -0--
V(e—,1) 0
TC(d+,1) -1--
V(d+,1)
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Example: Violating States

TC(c+,1) -1--
V(c+,1) {110R}
TC(c+,2) ---1
V(c+,2) 0
TC(c—,1) -0--
V(c—,1) 0
TC(d+,1) -1--
V(d+,1)  {111F,F110,
0F10,01R0}
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Example: Violating States

TC(c+,1) -1--
V(c+,1) {110R}
TC(c+,2) ---1
V(c+,2) 0
TC(c—,1) -0--
V(c—,1) 0
TC(d+,1) -1--
V(d+,1)  {111F,F110,

0F10,01R0}
TC(d—,1) —-1-
V(d—,1)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

112/144



Example: Violating States

TC(c+,1) -1--
V(ct,1) {110R}
TC(c+,2) ---1
V(c+,2) 0
TC(c—,1) -0--
V(c—,1) 0
TC(d+,1) -1--
V(d+,1)  {111F,F110,
0F10,01R0}
TC(d—,1) —-1-
V(d—,1) 0
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Context Signal Choices

@ Determine context signals which remove these violating states.

@ A signal is allowed to be a context signal if it is stable in the excitation
cube (i.e., EC(ux,k)(v) =0 or EC(u*,k)(v) =1).

@ A context signal removes a violating state when it has a different value in
the excitation cube and the violating state.

@ In other words, a context signal v removes a violating state s when

EC(ux,k)(v) = s(v).
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Example: Context Signals
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Example: Context Signals
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Setting Up the Covering Problem

@ The constraint matrix has a row for each violating state and a column for
each context signal.

@ The constraint matrix for ER(d+,1) is shown below:

a c d
111F — 1 1
F110 — 1 —
0OF10 1 1 —
01RO 1 — —
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Gate Level Circuits: Cover Violations

@ Gate level circuits have covering and entrance constraints.

@ For each ER(u+,k), find all states in the initial cover, TC(ux, k), which
violate the covering constraint:
@ A state sin TC(ux, k) is a violating state if:
e The signal u has the same value but is not excited,
o Is excited in the opposite direction, or

o |s excited in the same direction but the state is not in the current excitation
region.
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Example: Cover Violations

TC(c+,1) -1--
CV(c+,1) {110R,11R1}
TC(c+,2) ---1
CV(c+,2) 0
TC(c—,1) -0--
CV(c—,1) 0
TC(d+,1) -1--
CV(d+,1) {111F, F110,
0F10,01R0}
TC(d—,1) --1-
cV(d—,1) 0
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Gate Level Circuits: Entrance Violations

@ Must check state transitions for potential entrance violations.

@ For each state transition (s;, t, s;), this is possible when s; is a quiescent
state, s; is in the initial cover, and Ar(t) excludes s;.

EV(u+.k) = {sje S| (sj,vx,s)) €dAs; € QS(u+

A §j € TC(u+,k) A EC(u+,k)(v) = si(v)
EV(u—,k) = {s;€S|(sj,vx,s) €dAs; € QS(u—

A sj€ TC(u—,k) N EC(u—,k)(v) = si(v

@ For each potential entrance violation, a context signal must be added
which excludes s; from the cover when A7 (t) is included.

e If Ar(t) is a trigger signal, then the state s; is a violating state.

@ If Ar(t) is a possible context signal choice, then s; becomes a violating
state when A (t) is included in the cover.
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Example: Entrance Violations

State =

Consider each (s;, v, s;)
sj is in EV(us, k) when:
1. s; € QS(ux)
2.8 € TC(U*,k)

3. EC(ux,k)(v) = si(v)
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Example: Entrance Violations

EC(d—,1) = 1111
TC(d—,1) = — —1—
EV(d—,1) ={OF10}
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Setting Up the Covering Problem

@ Since inclusion of certain context signals cause some states to have
entrance violations, the covering problem is binate.

@ There is a row in the constraint matrix for each violation and each
violation that could arise from a context signal choice.

@ There is a column for each context signal.

@ The entry in the matrix contains a 1 if the context signal excludes the
violating state.

@ An entry in the matrix contains a 0 if the inclusion of the context signal
would require a new violation to be resolved.
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Example: Constraint Matrix

@ The constraint matrix for ER(c+,1) is shown below:

a c d
110R 1 — -—
11R1 1 — 1
0OF10 0 1 —
F110 1 1 0
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Example: gC versus Standard-C

gC Implementation Standard C-Implementation
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Example: Non-Persistent Trigger Signals
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Example: Non-Persistent Trigger Signals

EC(z+,1) =
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Example: Non-Persistent Trigger Signals

EC(z+,1) =--0
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Example: Non-Persistent Trigger Signals

EC(w—,1)=10--
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Example: Unresolvable Violations
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Example: Unresolvable Violations

EC(x+,1) =
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Example: Unresolvable Violations

EC(x+,1) =00~ -
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Example: Unresolvable Violations
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Example: Unresolvable Violations
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Example: Unresolvable Violations
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Example: Unresolvable Violations

EC(x+,1) =00--
Clx+,1) =0- - -
V(x+,1) ={0F11,R011}
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Example: Unresolvable Violations

EC(x+,1)=00--

TC(x+,1) =0---

V(x+,1) ={0F11,R011}

No context signal to remove R011
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Hazard-Free Decomposition

Synthesis method put no restrictions on the size of the gates.
There is always some limitation on the number of inputs.

In CMOS, no more than 4 transistors can be in series.

Large transistor stacks can have charge sharing problems.
Necessary to decompose high-fanin gates.

For Huffman circuits, decomposition of high-fanin gates can be done in an
arbitrary fashion preserving hazard-freedom.

@ For Muller circuits, this problem is much more difficult.
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Example: Decomposition |

(F110) — (0F10) — (00F0) — (RR00)
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Example: Decomposition |

(F110) — (0F10) — (00F0) — (RR00)
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Hazard-Free Decomposition Overview

@ Special care needed to guarantee a hazard-free decomposition.
@ Need to find new internal signal that produces simpler circuit.

@ Present here a simple technique for finding hazard-free decompositions
using insertion points.
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Example: Insertion Points

IP=(({at+}:{d+}),({c+}:{d-}))
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Example: Insertion Points

IP = (({b+}:{d+}),({a—}:0))
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Example: Insertion Points

)

IP = (({b+}:{d+}),({a—}:0))

Cannot use b— as end transition as it is an input

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 132/144



Example: Insertion Points

State = CJ} d

IP=(({b+};:{d+}),({a-1}:0))
Cannot use b— as end transition as it is an input
Using c— makes e a three-input gate!
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Transition Point Filters

@ Requirements on transition points ({s,1.):
@ The start and end sets should be disjoint.
(i.e., tsNte=10)
@ The end set should not include input transitions.
(e, Vtet, . t&€T)
@ Start and end sets should only include concurrent transitions.
(e, Vb €ts. || band Vi, b €ty . 4 || b)
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Transition Point Filters for Decomposition

@ Consider decomposition of C(ux*, k) composed of a single cube.
@ Restrict the start set for one transition point to transitions on just those
signals in the gate being decomposed.
o Consider all possible combinations of the trigger signals.
@ Only consider concurrent subsets of the context signals.
@ Only consider transitions that occur after those in the start set and before
ux as potential candidates to be in the end set.
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Transition Point Filters for Decomposition

@ If both a set and reset regions of u must be decomposed, use same
restrictions for reverse transition on the new signal.
@ If not:
e Start set should include concurrent transitions which occur after u* and
before any transitions in the first start set.
@ Including the reverse transition of ux in the end set is often useful, but any
transition after ux could be used.
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Algorithm for Decomposition

decomposition (SG, design, maxsize)
HF = find_high_fanin_gates (design, maxsize) ;
if (|HF|=0) return design;
best = |HF|; best;p = design;
TP = find_all_transition_points (SG, design, HF) ;
foreach TP TP
foreach TP TP
if IP= (TPg, TPr) is legal then
CSG = color_state_graph (SG, TPgr, TPEg) ;
if (CSG 1s consistent) then
SG = insert_state_signal (SG, IP);
design = synthesis (SG);
HF = find_high_fanin_gates (design, maxsize) ;
if ((|HF| < best) or ((|HF| = best) and
(cost (design) < cost(bestie)))) then
best = |HF|; best;p = design;
design = decomposition (SG, design) ;
return design;
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Passive/Active Shop: State Graph

Teq_wine+

ack_patron-
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Passive/Active Shop: gC Circuit
ack_wineﬁ

ﬁ CSCo
req_patron
ack_wine
coo |

ack_patron
csco— ¢

req_patron

req_wine
ack_patron
req_patron ‘

CSCO a

ack_wine

req wine
CSCo
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Rising Transition Point Choices

Note that req_wine and ack_patron are trigger signals for ack_wine—+-.
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Rising Transition Point Choices

Note that req_wine and ack_patron are trigger signals for ack_wine—+-.

Transition points using context signals:

({csco—},{ack _wine+})
({req_patron—},{ack_wine+})

Transition points using trigger signals:

({req_wine+},{ack wine+})
({ack_patron—},{ack _wine+})
({req_wine+, ack_patron—},{ack_wine+})
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Passive/Active Shop: State Graph

Teq_wine+

ack_patron-
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Falling Transition Point Choices

Consider only ack_wine+, CSC0+, req_wine—, and ack_wine—
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Falling Transition Point Choices
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Checking the Insertion Points

@ Form insertion points out of combinations.

Color the graph to determine if the insertion point leads to a consistent
state assignment.

Check if any USC violations become CSC violations.
If okay, derive a new state graph and synthesize the circuit.

If new circuit meets the fanin constraints, then accept.

If not, try the next insertion point.
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({req_patron—},{ack_wine+}) ({ack wine+},{ack wine—})

req_wine __|
ack_patron
y @}\
req_patron .
ack_wi ne§ —y ack_wine
Csco req_wine _
CSC0 —
ack_wine y —
\ ack wine

CSCo

ra:Lpa[rOn rw_patron
ack J)atron
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({req_patron—},{ack_wine+}) ({ack wine+},{ack wine—})

req_ wine __|
ack_patron

y G

req_patron }\ .
ack_wi ne§ —y ack_wine
CSCOo req_wine _
CSC0o —
ack_wine y —
\ ack wine
/@7 = %
I‘E(Lpatron rw_patron
ack Joatron

If bubble on ack_patron input to set AND gate for ack_wine is replaced with an
inverter, this circuit is no longer hazard-free.
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({req_patron—},{ack_wine+}) ({ack wine+},{ack wine—})

req_ wine __|
ack_patron _

y G

req_patron }\ .
ack_wi ne§ —y ack_wine
Csco req_wine _
CSCO —
. y |

ack_wine \
ack wine

/@7 = %
rw_patron rm_patron
ack Jaatron

(ROOR1) — req_patron+ — (RRO1F) — ack_patron+ — (R101F) —
CSCO0— — (R10F0) — req _patron — (RFOOO) — ack_patron — (ROOOO)
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Summ

@ Formal definition of speed independence.

@ Complete state coding.

@ Hazard-free logic synthesis of Muller circuits.
@ Hazard-free decomposition.
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