Asynchronous Circuit Design

Chris J. Myers

Lecture 6: Muller Circuits
Chapter 6

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

Muller Circuits

@ Uses the unbounded gate delay model.

@ Circuits are guaranteed to work regardless of gate delays assuming that
wire delays are negligible.

@ Requires knowledge of the allowed behaviors of the environment.
@ There are no restrictions on the speed of the environment.

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

Muller Circuit Design

@ Translate higher level specification into a state graph.

@ If not complete state coded, change the protocol or add new internal state
signal(s).

@ Derive logic using modified logic minimization procedure.
@ Map design to gates in a given gate library.

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

Overview

@ Formal definition of speed independence.
@ State assignment of Muller circuits.
@ Logic minimization of Muller circuits.

@ Technology mapping of Muller circuits.

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

Complete Circuits

@ To design a speed independent circuit, must have complete information
about both the circuit and its environment.

@ We restrict our attention to complete circuits.
@ A complete circuit C is defined by a finite set of states, S.
@ At any time, C is said to be in one of these states.

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

Allowed Sequences

@ Behavior of a complete circuit is defined by set of allowed sequences of
states.

@ Each allowed sequence can be either finite or infinite, and the set of
allowed sequences can also be finite or infinite.

@ The sequence (s1, So, S3, ...) says that state sy is followed by state s,,
but it does not state at what time.

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

Properties of Allowed Sequences

@ For a sequence (sy, S, ...), consecutive states must be different (i.e.,
Si # Sjt1).

@ Each state s € S is the initial state of some allowed sequence.

@ If (51, So, S3,...) is allowed sequence then so is (s, S3, ...).

@ If (s1,80,...)and (4, , ...) are allowed sequences and s, = f;, then (
Si, 4y, to, ...) is also an allowed sequence.

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

Simple Example Complete Circuit

@ Consider a complete circuit composed of four states, S = {a, b, ¢, d},
which has the following two allowed sequences:
Q ab,a,b,...
Q acd
@ The sequences above imply the following allowed sequences:

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

Simple Example Complete Circuit

@ Consider a complete circuit composed of four states, S = {a, b, ¢, d},
which has the following two allowed sequences:
Q ab,a,b,...
Q acd
@ The sequences above imply the following allowed sequences:
Q b.a,b,a,...

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

Simple Example Complete Circuit

@ Consider a complete circuit composed of four states, S = {a, b, ¢, d},
which has the following two allowed sequences:
Q ab,a,b,...
Q acd
@ The sequences above imply the following allowed sequences:
Q b.a,b,a,...
Q cd

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

Simple Example Complete Circuit

@ Consider a complete circuit composed of four states, S = {a, b, ¢, d},
which has the following two allowed sequences:
Q ab,a,b,...
Q acd
@ The sequences above imply the following allowed sequences:
Q b.a,b,a,...
Q cd
Qd

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

Simple Example Complete Circuit

@ Consider a complete circuit composed of four states, S = {a, b, ¢, d},
which has the following two allowed sequences:
Q ab,a,b,...
Q acd
@ The sequences above imply the following allowed sequences:
Q b.a,b,a,...
Q cd
Qd
Q ab,acd

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

Simple Example Complete Circuit

@ Consider a complete circuit composed of four states, S = {a, b, ¢, d},
which has the following two allowed sequences:
Q ab,a,b,...
Q acd
@ The sequences above imply the following allowed sequences:
Q b.a,b,a,...
Q cd
Qd
Q ab,acd
@ ab,ab,acd

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

Simple Example Complete Circuit

@ Consider a complete circuit composed of four states, S = {a, b, ¢, d},
which has the following two allowed sequences:
Q ab,a,b,...
Q acd
@ The sequences above imply the following allowed sequences:
Q b.a,b,a,...
Q cd
Qd
Q ab,acd
@ ab,ab,acd
Q b.a,c,d

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

Simple Example Complete Circuit

@ Consider a complete circuit composed of four states, S = {a, b, ¢, d},
which has the following two allowed sequences:
Q ab,a,b,...
Q acd
@ The sequences above imply the following allowed sequences:
Q b.a,b,a,...
Q cd
Qd
Q ab,acd
@ ab,ab,acd
Q b.a,c,d
@ etc.

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

State Diagram For Simple Example

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

R -related and R -sequences

e Two states s;,s; € S are R -related, (denoted s;R s;) when:
Q@ si=s;or
@ s;,s; appear consecutively in some allowed sequence.
@ A sequence (Si, S2, -.-, Sm) is an R -sequence if s;R s;+1 for each
1<i<m—1.

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 10/ 144

The Followed and Equivalence Relations

@ A state s; is followed by a state s; (denoted s; ¥ s)) if there exists an
R -sequence (' Sj, ..., Sj).

@ The F-relation is reflexive and transitive, but not necessarily symmetric.

@ If two states s; and s; are symmetric under the -relation (i.e., s;¥ s; and
s; F si), they are said to be equivalent (denoted s;Es;).

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 11/144

Equivalence Classes

@ The equivalence relation E partitions the finite set of states S of any
circuit into equivalence classes of states.

@ The F-relation can be extended to these equivalence classes.

o If Aand B are two equivalence classes, then A B if there exists states
ac Aand b € Bsuch that a¥ b.

@ Ifac Aand be Band A¥F B, then af b.

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 12/144

Speed Independence

@ For any allowed sequence, there is a definite last class which is called the
terminal class.

@ Acircuit C is speed independent with respect to a state s if all allowed
sequences starting with s have the same terminal class.

13/144

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

Equivalence Classes for Simple Example

o
00

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

Allowed Sequences on State Graphs

@ An allowed sequence of states (sy, Sp, . ..) is any sequence of states
satisfying the following three conditions:
@ No two consecutive states s; and s;. 1 are equal.
@ For any state s;;1 and signal u; one of the following is true:

sip1() = s(i)
si1(i) = sj(i)

© |If there exists a signal u; and a state s; such that s;(i) = s,(/) and

si(i) = s, (i) for all s, in the sequence following s;, then

)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 15/144

Simple Speed-Independent Circuit

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 16/ 144

Totally Sequential

@ A circuit is totally sequential with respect to a state s if there is only one
allowed sequence starting with s.

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 17 /144

Semi-Modularity

@ A circuit is semi-modular if in each state in which multiple signals are
excited, that in the states reached after one signal has transitioned, that
the remaining signals are still excited.

Vh,beT. (S,’,H,Sj) S 5/\(3,-,t2,sk) cd
= dg€8§. (Sj,tg,S/) GS/\(Sk,E,S/) €d

@ A totally sequential circuit is semi-modular but the converse is not
necessarily true.

@ A semi-modular circuit is also speed independent, but again the converse
is not necessarily true.

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 18/144

A Non-Semi-Modular Example

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 19/144

A Simple Semi-Modular Speed Independent Circuit

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 20/144

Output Semi-Modularity

@ Input transitions are typically allowed to be disabled by other input
transitions, so another useful class of circuits are those which are output
semi-modular.

@ A SG is output semi-modular if only input signal transitions can disable
other input signal transitions.

Ve To. Vb e T. (S,‘,H,Sj) GsA(Si,tQ,Sk) €d
= ds€8S. (Sj,fg,S/) € 8/\(Sk,t1,3/) cd

where Tp is the set of output transitions (i.e., To = {u+,u— | u € O}).

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 21/144

Output Semi-Modularity Example

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 22/144

Excitation States

@ ltis often useful to be able to determine in which states a signal is excited

to rise or fall.
@ The sets of excitation states, ES(u+) and ES(u—), are defined as
follows:
ES(u+) = {se€S|s(uy=0AueX(s)}
ES(u—) = {seS|s(uy=1AueX(s)}

@ Recall that X(s) is the set of signals that are excited in state s.

23 /144

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

Quiescent States

@ For each signal u, there are two sets of quiescent states.
@ The sets QS(u+) and QS(u—) are defined as follows:

QS(u+) = {seS|s(uy=1AugX(s)}
QS(u—) = {se€S|s(uy=0Au¢&X(s)}

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 24 /144

Excitation and Quiescent States Example

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

Excitation and Quiescent States Example

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 25/144

Excitation and Quiescent States Example

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 25/144

Excitation and Quiescent States Example

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

Excitation and Quiescent States Example

ES(y+) = {(RR0), (1R0) }
ES(y—) ={(FF1),(0F1)}
QS(y+) = {(R10),(11R)}
QS(y—) = {(F01),(00F)}

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

Excitation Regions

@ An excitation region for signal u is a maximally connected subset of either
ES(u+) or ES(u—).

o Ifitis a subset of ES(u+), itis a set region (denoted ER(u+, k)).
o Similarly, a reset region is denoted ER(u—, k).

Chris J. Myers (Lecture 6: Muller Circuits)

Asynchronous Circuit Design

26/144

Switching Regions

@ The switching region for a transition ux, SR(ux, k), is the set of states
directly reachable through transition usx:

SF)’(U*,k) = {Sj €S | ds; € ER(U*,k).(S,’,U*,Sj) S 8}

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 27 /144

Excitation and Switching Regions Example

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 28/144

Excitation and Switching Regions Example

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 28/144

Excitation and Switching Regions Example

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 28/144

Excitation and Switching Regions Example

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 28/144

Excitation and Switching Regions Example

ER(y+,1) = {{RRO), (1R0) }
ER(y—,1) = {(FF1),(0F1)}
SA(y+,1) = {{R10),{11R)}
SR(y—,1) = {(F01),(00F)}

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

Distributive State Graphs

@ A state graph is distributive if each excitation region has a unique minimal
state.

@ A minimal state for ER(ux, k) is a state in ER(ux, k) which cannot be
directly reached by any other state in ER(ux, k).

@ More formally, a SG is distributive if:
VER(ux, k) . Jexactly one s; € ER(ux,k) .

—3ds; € ER(ux,k) . (s, t,s;) €8

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 29/144

A Distributive State Graph

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

A Non-Distributive State Graph

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 31/144

Trigger Signals

@ Each cube in the implementation is composed of trigger signals and
context signals.

@ For an excitation region, a trigger signal is a signal whose firing can
cause the circuit to enter the excitation region.

@ The set of trigger signals for an excitation region ER(ux, k) is:
TS(ux, k) = {V eN ’ dsi,s; € S.((si,t, Sj) €9)
ANt=v4+Vit=v—)
A (si & ER(ux,k)) A (sj € ER(ux,k))}

32/144

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

Context Signals

@ Any non-trigger signal which is stable in the excitation region can
potentially be a context signal.

@ The set of context signals for an excitation region ER(ux, k) is:

CS(ux,k) = {vie N|v; & TS(ux,k)
AVsj, s € ER(U*,k).Sj(i) = S/(i)}

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 33/144

Trigger and Context Signals Example

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

Trigger and Context Signals Example

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 34/144

Trigger and Context Signals Example

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 34/144

Trigger and Context Signals Example

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 34/144

Trigger and Context Signals Example

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 34/144

The Passive/Active Wine Shop: Petri-net

ack_wine+

Y
req wine- req_winet+

\

ack_patron- ack_wine-

f '

req_patron- req_patron+

AN

ack patron+

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 35/144

The Passive/Active Wine Shop: State Graph

ES(req_patron+) =
ES(req_patron—) =
QS(req_patron+) =
QS(req_patron—)

ER(req_patron+,1) =
ER(req_patron—,1)
SR(req_patron+,1)
SR(req_patron—,1) =
TS(req_patron+,1) =
TS(req_patron—,1) =
CS(req_patron+,1) =

wine- ack_patron-

CS(req_patron—,1) =

Chris J. Myers (Lecture 6: Muller Circuits)

Asynchronous Circuit Design

36/144

The Passive/Active Wine Shop: State Graph

ES(req_patron+) = {(RO0R), (100R) }
ES(req_patron—) =
QS(req_patron+) =

)

QS(req_patron—

ER(req_patron+,1) =
ER(req_patron—,1)
SR(req_patron+,1)
SR(req_patron—,1) =
TS(req_patron+,1) =
TS(req_patron—,1) =
CS(req_patron+,1) =

wine- ack_patron-

CS(req_patron—,1) =

Chris J. Myers (Lecture 6: Muller Circuits)

Asynchronous Circuit Design

36/144

The Passive/Active Wine Shop: State Graph

ES(req_patron-+

) = {(R00R), (100R) }
ES(req_patron—) =
()=
)

{
{(R10F),(110F)}

QS(req_patron+
QS(req_patron—

ER(req_patron+,1) =
ER(req_patron—,1)
SR(req_patron+,1)
SR(req_patron—,1) =
TS(req_patron+,1) =
TS(req_patron—,1) =
CS(req_patron+,1) =

wine- ack_patron-

CS(req_patron—,1) =

Chris J. Myers (Lecture 6: Muller Circuits)

Asynchronous Circuit Design

36/144

The Passive/Active Wine Shop: State Graph

ES(req_patron+) = {{R00R), (100R)}
ES(req_patron—) = {(R10F),(110F)}
QS(req_patron+) = {{RRO1), (1R01)}
QS(req_patron—) =

Wme . ER(req_patron+ 1

)=
ER(req_patron—,1)
SR(req_patron+,1)
SR(req_patron—,1) =
TS(req_patron+,1) =
TS(req_patron—,1) =
CS(req_patron+,1) =

CS(req_patron—,1) =

Chris J. Myers (Lecture 6: Muller Circuits)

Asynchronous Circuit Design

36/144

The Passive/Active Wine Shop: State Graph

{(ROOR), (100R)}
{(R10F), (110F)}
{(RRO1), (1R01)}
{

ES(req_patron+) =
ES(req_patron—) =
QS(req_patron+) =

)

QS(req_patron—) = {{RF00), (1F00),
(R000), (10R0),
F010),(00F0
D) . (F010), (00FO0)
ack_wine- ack_patron- (req patr On+7

SR(req_patron+,
SR(req_patron—,1) =
TS(req_patron+,1) =
TS(req_patron—,1) =
CS(req_patron+,1) =

)=
ER(req_patron—,1)
(1)

CS(req_patron—,1) =

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 36/144

The Passive/Active Wine Shop: State Graph

{(ROORY), (100R)}
{(R10F), (110F)}
{(RRO1),(1R01)}
{<.‘?FOO>,<1FOO>7

(R000), (10R0),
@ <F010>,<OOFO>}

” ER(req_patron+,1) = {{R00R), (100R)}
ER(req_patron—,1)
(1)

ES(req_patron+) =
ES(req_patron—) =
QS(req_patron+) =
QS(req_patron—)

wine- ack_patron-

SR(req_patron+,
SR(req_patron—,1) =
TS(req_patron+,1) =
TS(req_patron—,1) =
CS(req_patron+,1) =

CS(req_patron—,1) =

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 36/144

The Passive/Active Wine Shop: State Graph

ES(req_patron+) = {(RO0R), (100R) }
ES(req_patron—) = {(R10F),(110F)}
QS(req_patron+) = {(RRO1), (1R01)}
QS(req_patron—) = {(RF00), (1F00),
(R000), (10R0),
@ (F010), (00F0)}
o o ER(req_patron+,1) = {(RO0R), (100R) }
' ER(req_patron—,1) = {(R10F), (110F)}
(1)

SR(req_patron+,
SR(req_patron—,1) =
TS(req_patron+,1) =
TS(req_patron—,1) =
CS(req_patron+,1) =

CS(req_patron—,1) =

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 36/144

The Passive/Active Wine Shop: State Graph

{(ROOR), (100R)}
{(R10F), (110F)}
{(RRO1), (1R01)}
{

ES(req_patron+) =
ES(req_patron—) =
QS(req_patron+) =

)=

QS(req_patron— (RF00), (1F00),

(R000), (10R0),

@ (F010), (00F0)}
o o ER(req_patron+,1) = {(RO0R), (100R) }

' ER(req_patron—,1) = {(R10F), (110F)}
SR(req_patron+,1) = {(RRO1), (1R01)}

SR(req_patron—,1) =
TS(req_patron+,1) =
TS(req_patron—,1) =
CS(req_patron+,1) =

CS(req_patron—,1) =

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 36/144

The Passive/Active Wine Shop: State Graph

{(ROOR), (100R)}
{(R10F),(110F)}
{(RRO1),(1R01)}
{(RF00), (1F00),

(R000), (10R0),

ES(req_patron+) =
ES(req_patron—) =
QS(req_patron+) =
QS(req_patron—) =

@ (F010), (00F0)}
. o ER(req_patron+,1) = {(RO0R), (100R) }
ER(req_patron—,1) = {(R10F),(110F)}
SR(req_patron+,1) = {(RRO1), (1R01)}
SR(req_patron—,1) = {{RF00), (1F00)}

TS(req_patron+,1

)=

TS(req_patron—,1)
CS(req_patron+,1) =

CS(req_patron—,1) =

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 36/144

The Passive/Active Wine Shop: State Graph

{(ROOR), (100R)}
{(R10F), (110F)}
{(RRO1), (1R01)}
{

ES(req_patron+) =
ES(req_patron—) =
QS(req_patron+) =

)=

QS(req_patron— (RF00), (1F00),
(R000), (10R0),
@ (F010), (00F0)}
. o ER(req_patron+,1) = {(RO0R), (100R) }
ER(req_patron—,1) = {(R10F),(110F)}
SR(req_patron+,1) = {(RRO1), (1R01)}
SR(req_patron—,1) = {{RF00), (1F00)}
TS(req_patron+,1

) = {ack_wine}

TS(req_patron—,1)
CS(req_patron+,1) =

CS(req_patron—,1) =

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 36/144

The Passive/Active Wine Shop: State Graph

{(ROOR), (100R)}
{(R10F), (110F)}
{(RRO1), (1R01)}
{

ES(req_patron+) =
ES(req_patron—) =
QS(req_patron+) =

)=

QS(req_patron— (RF00), (1F00),
(R000), (10R0),
(F010), (00F0)}
W o ER(req_patron+,1) = {(RO0R), (100R) }
' ER(req_patron—,1) = {(R10F), (110F)}
SR(req_patron+,1) = {(RRO1), (1R01)}
SR(req_patron—,1) = {{RF00), (1F00)}
1

TS(req_patron+,1) = {ack_wine}
TS(req_patron—,1) = {ack_patron}
CS(req_patron+,1) =

CS(req_patron—,1) =

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 36/144

The Passive/Active Wine Shop: State Graph

{(ROOR), (100R)}
{(R10F), (110F)}
{(RRO1), (1R01)}
{(RF00), (1F00),

(R000), (10R0),

ES(req_patron+) =
ES(req_patron—) =
QS(req_patron+) =
QS(req_patron—) =

G (F010), (00FO0) }
e . ER(req_patron+,1) = {{R00R), (100R)}
ER(req_patron—,1) = {(R10F),(110F)}

SR(req_patron+,1) = {(RRO1), (1R01)}

SR(req_patron—,1) = {{RF00), (1F00)}

TS(req_patron+,1) = {ack_wine}

TS(req_patron—,1) = {ack_patron}
CS(req_patron+,1) = {ack_patron,
req_patron}

CS(req_patron—,1) =

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 36/144

The Passive/Active Wine Shop: State Graph

{(ROOR), (100R)}
{(R10F),(110F)}
{(RRO1),(1R01)}
{(RF00), (1F00),
(R000), (10R0),

ES(req_patron+) =
ES(req_patron—) =
QS(req_patron+) =
QS(req_patron—) =

ER(req_patron+,1) = {
ER(req_patron—,1) = {
(1) ={

{

wine- ack_patron-

—

X

o

o

)
~— —
o~ o~~~

—

o

o

By

SR(req_patron+,
SR(req_patron—,1) = {{RF00), (1F00)}
TS(req_patron+,1) = {ack_wine}
TS(req_patron—,1) = {ack_patron}
CS(req_patron+,1) = {ack_patron,
req_patron}

CS(req_patron—,1) = {ack_wine,
req_patron}

(
(RRO1),
(
1

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 36/144

Unique State Codes (USC)

@ Two states have unique state codes (USC) if they are labeled with
different binary vectors.

USC(S,‘,S/') <~ 7\43(8/) 75 7»3(3])
@ A SG has USC if all states pairs have USC.

USC(S) < V(sj,s) € SxS.USC(si,s)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 37/144

Complete State Codes (CSC)

@ Two states have complete state codes (CSC) if they either have USC or if
they do not have USC but do have the same output signals excited in
each state.

CSC(S,‘, S/') = USC(S,', Sj) V X(S,‘) NOo= X(S/') no
CSC(S) <« V(sj,s) € SxS.CSC(sj,s))

@ A set of state pairs which violate CSC is defined as:

CSCV(S) ={(si,sj)) € S x S|~ CSC(sj,s))}

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 38/144

The Passive/Active Wine Shop: State Graph

ack_patron-

cscv =

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 39/144

The Passive/Active Wine Shop: State Graph

ack_patron-

cscv = {((R000),(ROOR)),
((10R0), (100R))}

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 39/144

The CSC Problem

@ If a circuit does not have USC but has CSC, then the present state/next
state relationship is not unique for input signals.

@ Circuit only synthesized for outputs, so not a problem.

@ When a circuit does not have CSC, the present state/next state
relationship for output signals is ambiguous.

@ Could reshuffle the protocol as described earlier.
@ Now introduce method for inserting state variables.

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 40/ 144

Insertion Points

@ Need to insert a rising and falling transition for new signal.

@ A transition point is TP = (s, t,), where ts is a set of start transitions and
I is a set of end transitions.

@ The transition point represents the location in the protocol in which a
transition on a new state signal is to be inserted.

@ In a Petri net, a TP represents a transition with incoming arcs from {; and
with outgoing arcs to .

@ An insertion pointis IP = (TPg, TPg), where TPg is for the rising
transition and TPr is for the falling transition.

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 41/144

Transitioning States

@ ltis necessary to determine in which states a transition can occur when
inserted into a TP.

@ The transtion on the new state signal becomes excited when the circuit
enters N, SR(t).

@ Once this transition becomes excited it may remain excited in any
subsequent states until there is a transition in .

@ The set of states in which a new transition is excited is defined recursively
as follows:
S(TP) = {Sj €S ‘ S/' € mtetsSR(t) V
(H(S,',t, S/') €d.s¢ S(TP) ANt te)}

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 42 /144

TP = ({req_patron+}, {req_patron—})

req_wine+

ack_patron-

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 43/144

TP = ({req_patron+}, {req_patron—})

ack_patron-

{(RRO1), (1R01),

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 43/144

TP = ({req_patron+}, {req_patron—})

{(RRO1), (1R01),
(R10F),(110F)}

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 43/144

Insertion Point Explosion

@ The set of all possible insertion points includes all combinations of
transitions in {5 and t, for TPg and TPk.

@ Upper bound on number of possible insertion points is 2!7I°.

@ Fortunately, many of these insertion points can be quickly eliminated
because they either:

o Never lead to a satisfactory solution of the CSC problem or
e The same solution is found using a different insertion point.

Chris J. Myers (Lecture 6: Muller Circuits)

Asynchronous Circuit Design

44 /144

Transition Point Restrictions

@ A transition point must satisfy the following three restrictions:
@ Start and end sets are disjoint (i.e., t; N t, = 0).
@ End set does not include input transitions (i.e., Vt € t, . t € T)).
@ Start and end sets include only concurrent transitions (i.e.,
Vh,b €ts. H || bandVt, b €ty . H ||).

45/144

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

TP = ({ack_wine+},{ack wine—})

(req_wine,ack_patron,
ack_wine, req_patron)

ok _paron- T) = {req_wine, ack_patron}

1. Nt =0

2.VtEt, . tE T

3. Vt1,t2€ts- 4 || b
Vb €Ete. ty |

46 /144

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

TP = ({req_patron+},{ack_patron+})

(req_wine,ack_patron,
ack_wine, req_patron)

ok _paron- T) = {req_wine, ack_patron}

1. N, =0

2.Vtet, . t¢ T,

3.Vh,b Ets. k4 || to
Vﬁ,tgete. t H to

46 /144

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

TP = ({ack_wine—},{ack_wine+})

(req_wine,ack_patron,
ack_wine, req_patron)

ok _paron- T) = {req_wine, ack_patron}

1. Nt =0

2.VtEt, . tE T

3. Vt1,t2€ts- 4 || b
Vb €Ete. ty |

46 /144

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

TP = ({req_wine—},{ack_wine—})

(req_wine,ack_patron,
ack_wine, req_patron)

ok _paron- T) = {req_wine, ack_patron}

1. Nt =0

2.VtEt, . tE T

3. Vt1,t2€ts- 4 || b
Vb €Ete. ty |

46 /144

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

TP = ({req_patron+},{req_patron—})

(req_wine,ack_patron,
ack_wine, req_patron)

ok _paron- T) = {req_wine, ack_patron}

1. N, =0

2.Vtet, . t¢ T,

3.Vh,b Ets. k4 || to
Vﬁ,tgete. t H to

46 /144

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

TP = ({ack_patron+},{req_patron—})

(req_wine,ack_patron,
ack_wine, req_patron)

ok _paron- T) = {req_wine, ack_patron}

1. N, =0

2.Vtet, . t¢ T,

3.Vh,b Ets. k4 || to
Vﬁ,tgete. t H to

46 /144

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

TP = ({ack_wine—, req_patron+-},{req_patron—})

(req_wine,ack_patron,
ack_wine, req_patron)

ok _paron- T) = {req_wine, ack_patron}

1. N, =0

2.Vtet, . t¢ T,

3.Vh,b Ets. k4 || to
Vﬁ,tgete. t H to

46 /144

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

TP = ({req_wine+,req_patron—},{ack wine+})

(req_wine,ack_patron,
ack_wine, req_patron)

ok _paron- T) = {req_wine, ack_patron}

1. N, =0

2.Vtet, . t¢ T,

3.Vh,b Ets. k4 || to
Vﬁ,tgete. t H to

46 /144

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

TP = ({req_wine+,req_patron—},{ack_wine—})

(req_wine,ack_patron,
ack_wine, req_patron)

ok _paron- T) = {req_wine, ack_patron}

1. N, =0

2.Vtet, . t¢ T,

3.Vh,b Ets. k4 || to
Vﬁ,tgete. t H to

46 /144

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

TP = ({req_patron+},{ack_wine+,req_patron—})

(req_wine,ack_patron,
ack_wine, req_patron)

ok _paron- T) = {req_wine, ack_patron}

1. N, =0

2.Vtet, . t¢ T,

3.Vh,b Ets. k4 || to
Vﬁ,tgete. t H to

46 /144

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

TP = ({req_wine+, ack_patron—},{ack_wine+})

(req_wine,ack_patron,
ack_wine, req_patron)

ok _paron- T) = {req_wine, ack_patron}

1. N, =0

2.Vtet, . t¢ T,

3.Vh,b Ets. k4 || to
Vﬁ,tgete. t H to

46 /144

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

TP = ({req_patron+},{req_patron+})

(req_wine,ack_patron,
ack_wine, req_patron)

ok _paron- T) = {req_wine, ack_patron}

1. N, =0

2.Vtet, . t¢ T,

3.Vh,b Ets. k4 || to
Vﬁ,tgete. t H to

46 /144

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

TP = ({req_wine+, ack_patron—},{ack_wine—})

(req_wine,ack_patron,
ack_wine, req_patron)

ok _paron- T) = {req_wine, ack_patron}

1. N, =0

2.Vtet, . t¢ T,

3.Vh,b Ets. k4 || to
Vﬁ,tgete. t H to

46 /144

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

Insertion Point Restrictions

@ Each IP = (TPg, TPr) must be checked for compatibility.
@ Two TP’s are incompatible when either of the following is true:

TPg(ts) N TPe(ts) # 0
TPg(te) N TPe(t,) # 0

@ An incompatible insertion point always creates an inconsistent state
assignment.

@ Example:

IP = ({ack_wine+},{ack wine—}),
({req_wine+,req_patron—},{ack_wine—})

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 47 /144

State Graph Coloring

@ Need to determine effect of inserting a state variable in an IP.
@ Can be done by inserting the state signal and finding new SG.

@ This approach is unnecessarily time consuming and may produce a SG
with an inconsistent state assignment.

@ Instead, SG is partitioned into four parts corresponding to the rising,
falling, high, and low sets for the new state signal.

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 48 /144

State Graph Coloring Procedure

@ States in S(TPg) are colored as rising.
@ States in S(TPr) are colored as falling.

@ If a state is colored both rising and falling, this IP leads to an inconsistent
state assignment and must be discarded.

@ All states following those colored rising before reaching any colored
falling are colored as high.

@ Similarly, all states between those colored as falling and those colored as
rising are colored as low.

@ While coloring high or low, if a state to be colored is found to already have
a color, IP leads to inconsistent state assignment.

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 49/144

IP(({req_patron+}, {req_patron—}), ({ack_wine—}, {ack wine+}))

ack_patron-

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 50/ 144

IP(({req_patron+}, {req_patron—}), ({ack_wine—}, {ack wine+}))

Rising = {(RRO1), (1R01),
<F1’10F>7 (1 10F>}

ack_patron-

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 50/ 144

IP(({req_patron+}, {req_patron—}), ({ack_wine—}, {ack wine+}))

Rising = {(RRO1), (1R01),
<F1’10F>,(110F>}
ck_patron- Falling = {{ROOR), (100R),
<Fz',‘:f01>7 (‘I RO1>,
(F?1OF>,(11OF>,
(F:’FOO>, (1 FOO>
(R000), (10F0)

9

Chris J. Myers (Lecture 6: Muller Circuits)

Asynchronous Circuit Design

50/144

IP(({ack_wine+}, {ack_wine—}), ({req_patron+}, {req_patron—}))

ack_patron-

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 51/144

IP(({ack_wine+}, {ack_wine—}), ({req_patron+}, {req_patron—}))

ek _patron-

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

IP(({ack_wine+}, {ack_wine—}), ({req_patron+}, {req_patron—}))

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

IP(({ack_wine+}, {ack_wine—}), ({req_patron+}, {req_patron—}))

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

IP(({ack_wine+}, {ack_wine—}), ({req_patron+}, {req_patron—}))

ack_patron-

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

Insertion Point Primary Cost Function

@ The primary component of the cost function is the number of remaining
CSC violations after a state signal is inserted.

@ Eliminate from CSCV any pair of violations in which one state is colored
high while the other is colored low.

@ States with a USC violation may now have a CSC violation.

@ For each pair of states with a USC violation (but not a CSC violation), if
one is colored rising while the other is colored low, there is now a CSC
violation.

@ Similarly, if one is colored falling and the other is colored high, there is
also a new CSC violation.

@ Each new CSC violation must be added to the total remaining.

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 52/144

Insertion Point Secondary Cost Functions

@ The IP with the smallest sum | TPg(te)| + | TP£(te)|.
@ The IP with the smallest sum | TPg(ts)| + | TPe(ts)|-

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 53/144

State Signal Insertion: Petri-net

State signal can be inserted into a Petri-net by adding arcs from each
transition in {5 to the new state signal transition.

Arcs are also added from the new transition to each of the transitions t,.

The same steps are followed for the reverse transition.

The state signal is assigned an initial value based on the coloring of the
initial state.

At this point, a new SG can be found.

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 54 /144

IP(({ack_wine+}, {ack_wine—}), ({req_patron+}, {req_patron—}))

ack_wine+

/N~

req_winet req_wine- CSCO+

b

ack_patron- ack_wine-
\ J
req_patron- req_patron+
N
ack patron+ CSCO-

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 55/144

IP(({ack_wine+}, {ack_wine—}), ({req_patron+}, {req_patron—}))

(cscor ! req_wine-

‘ack_patron-

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 56 /144

State Signal Insertion: State Graph

Alternatively, the new SG could be found directly.

Each state in the original SG is extended to include new signal.
If a state is colored low, then the new signal is '0’.

If a state is colored high, then the new signal is '1’.

If a state is colored rising then it must be split into two new states, one
with new signal 'R’ and the other has it as '1’.

@ If a state is colored falling then it must be split into two new states, one
has the new signal 'F’ and the other has it as ’'0’.

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 57 /144

CSC Solver Algorithm

csc_solver (SG)
CSCV = find_csc_violations (SG);
if (JcSCcv|=0) return SG;
best =|CSCV]|;
best)p = (0,0);
TP = find_all_transition_points (SG);
foreach TPg € TP
foreach TP c TP
if IP= (TPg, TPr) is legal then
CSG = color_state_graph (SG, TPgr, TPg) ;
CSCV = find_csc_violations (CSG);
if (CSG is consistent) and ((|CSCV| < best) or
((|cScV|=best) and (cost (IP)<cost (bestp)))) then
best =|CSCV]|;
best;p= (TPgr, TPEF);
SG = insert_state_signal (SG,bestpp);
SG = csc_solver (SG) ;
return SG;

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 58/144

Hazard-free Logic Synthesis

@ Requires modified minimization to obtain hazard-free logic.

@ Modifications needed are dependent upon technology.
@ We consider the following technologies:

@ Complex gates
@ Generalized C-elements
© Basic gates

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 59/144

Atomic Gate Implementation

@ Assume that each output to be synthesized is implemented using a single
complex atomic gate.

@ A gate is atomic when its delay is modeled by a single delay element
connected to its output.

i D
b— | Gae

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 60/ 144

Atomic Gate Logic Synthesis

@ On-set for a signal u is the set of states in which u is excited to rise or
stable high.

@ Off-set is set of states in which u is excited to fall or stable low.

@ DC-set is the set of all unreachable states, or equivalently those states
not included in either the on-set or off-set.

ON-set = {As(s)|se€ (ES(u+)UQS(u+))}
OFF-set = {As(s)|se (ES(u—)UQS(u—))}
DC-set = {0,1}M — (ON-setU OFF-set)

@ Find primes using recursive procedure described earlier.
@ Setup and solve a covering problem.

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 61/144

Passive/Active Wine Shop: Atomic Gate

ack_winet+ CSCo-

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 62/144

Atomic Gate: Example (Ack_Wine)

ON-set = {10000,10100,00100,10101}

OFF-set = {00101,00001,10001,00011,10011,01011,00010,
10010,01010,11010,01000,11000,11011,00000}

DC-set = {00110,00111,01001,01100,01101,01110,01111,
10110,10111,11001,11100,11101,11110, 11111}

p = {1-1--,-11--,--11-,--1-0,-1-01,10-00}
1-1-- -11-- --11- --1-0 -1-01 10-00

10000 — — - - - 1

10100 1 - - 1 - 1

00100 — B - 1 - -

10101 1 - - - - -

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 63/144

Passive/Active Shop: Atomic Gate Circuit

ack_wine

req_patron CSCo

CSCo req_wine+
ack_wine
CSCo

ack_patron req_patron ack_wine+

req_patron

req wi ne:Dil req wine-
ack_wine

req_wine @@

ack_patron

u2 ack_wine csco+

req_patron
@D

Csco

ack_wine-
ack_wine

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

64/144

Generalized C-Elements

00 —
01—

s10 —
s11—

r00 —
rol —

rl0 —
rll —

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 65/144

gC Logic Synthesis

@ Two minimization problems must be solved for each signal u: set of the
function (i.e., set(u)) and reset (i.e., reset(u)).
@ For set(u):
o On-set is states in which u is excited to rise.
o Off-set is states in which u is excited to fall or is stable low.
o DC-set is stable high and unreachable states.
o Stable high states are don’t cares, since once a gC is set its feedback
holds its state.

ON-set = {As(s)|se (ES(u+)}
OFF-set = {Ls(s)|s e (ES(u—)uQS(u—))}
DC-set = {0,1}N — (ON-setU OFF-set)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 66 /144

gC Logic Synthesis

@ For reset(u):
o On-set is states in which v is excited to fall.
o Off-set is states in which u is either rising or high.
o DC-set is stable low and unreachable states.

ON-set = {As(s)|se (ES(u—)}
OFF-set = {As(s) | s € (ES(u+)UQS(u+))}
DC-set = {0,1}M — (ON-setU OFF-set)

@ Can now apply standard methods to find a minimum number of primes to
implement the set and reset functions.

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 67 /144

Passive/Active Wine Shop: gC

ack_wine+ CSCo-

Chris J. Myers (Lecture 6: Muller Circuits) i 68 /144

gC Circuit: Example

ON-set = {10000}
OFF-set = {00101,00001,10001,00011,10011,01011,00010,
10010,01010,11010,01000, 11000, 11011,00000}

DC-set = {00110,00111,01001,01100,01101,01110,01111,
10110,10111,11001,11100,11101,11110, 11111,
10100,00100,10101}

P = {1-1--,-11--,--11-,--1-0,-1-01,10-00}

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 69/144

Passive/Active Shop: gC Circuit

ack_wine

—
ﬁ CSsCco
req_patron
ack_wine+

ack_wine J
CSCO ———
req_patron
ack_patron ——
csco— 9 req_wine-
req_wine @@
ack_patron
req_patron - CSCo+
CSCO
o &

ack_wine

req_wine+

ack_wine-

req wine

CSCO (o)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 70/ 144

A Simple Example

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

Combinational Optimization

@ If set(u) is on in all states in which u should be rising or high, then the
state holding element can be removed.

@ Implementation for u is equal to the logic for set(u).

@ If reset(u) is on in all states in which u should be falling or low, then the
signal u can be implemented with reset(u).

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 72/144

Combinational Optimization

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 73/144

Gate-Level Hazard

(F110) — (0F10) — (00FO0)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

Standard C-implementation

00 1 et 1)

—e PR
s10— set(u+,2)

s11—

ro0 —
rol —1

reset(u-,1)

r10 —

reset(u-,2
ri1 — (u-2)

@ Structure similar to gC-implemenation, but built differently.

@ Each AND gate, called a region function, implements a single (or possibly
a set of) excitation region(s) for the signal v.

@ In gC-implemenation, an excitation region can be implemented by
multiple product terms.

@ A region function may need to be implemented using SOP.

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 75/144

Region Function Operation

@ Each region function must:

e Turn on only when it enters a state in its excitation region.
e Turn off monotonically sometime after the signal u changes.
e Must stay off until the excitation region is entered again.

@ To guarantee this behavior, each region function must satisfy certain
correctness constraints.

@ Requires a modified logic minimization procedure.

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 76/ 144

Region Function Covers

@ Each region function is implemented using a single atomic gate,
corresponding to a cover of an excitation region.

@ A cover C(ux, k) is a set of states for which the corresponding region
function evaluates to one.

@ First present a method in which each region function only implements a
single excitation region.

@ Later extend the method to allow a single region function to implement
multiple excitation regions to promote gate sharing.

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 771144

Correctness Constraints: Intuition

@ Each region function can only change when it is needed to actively drive
the output signal to change.
@ Consider a region function for a set region:
o Gate turns on when circuit enters a state in the set region.
@ When region function changes to 1, it excites the OR gate.
o When the OR gate changes to 1 in excites the C-element (assuming the
reset network is low) to set uto 1.
o Only after u rises can the region function be excited to fall.
o The region function then must fall monotonically.
e The signal u will not be able to fall until the region function has fallen and
the OR gate for the set network has fallen.
@ Once region function falls, it cannot be excited again until the circuit again
enters a state in this set region.

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 78 /144

Covering Constraint

@ The reachable states in a correct cover must include the entire excitation
region.

@ It must not include any states outside the union of the excitation region
and associated quiescent states.

ER(ux,k) C [C(ux, k)N S] C [ER(ux, k) UQS(ux)]

Chris J. Myers (Lecture 6: Muller Circuits)

Asynchronous Circuit Design

79/144

Entrance Constraint

@ A cover must only be entered through excitation region states.

[(S/,t,Sj) €dNs ¢ C(U*,k) YRS C(U*,k)] =S5 € ER(U*,k)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 80/ 144

Excitation Region Implicants

@ Goal of logic minimization is to find an optimal SOP for each region
function that satisfies the definition of a correct cover.

@ An implicant of an excitation region is a product that may be part of a
correct cover.

@ cis an implicant of an excitation region ER(ux, k) if the reachable states
covered by ¢ are a subset of the states in the union of the excitation
region and associated quiescent states.

[cN 8] C [ER(ux, k) U QS(ux)].

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 81/144

Gate Level Logic Synthesis: Set Regions

@ For each set region ER(u+,k):

e On-set is those states in ER(u+, k).

o Off-set includes states in which v is falling or low, and also the states
outside this excitation region where u is rising.

o This additional restriction is necessary to make sure that a region function
can only turn on in its excitation region.

ON-set = {As(s)|se€ (ER(u+,k)}
OFF-set = {As(s)|se (ES(u—)UQS(u—))U
(ES(u+) — ER(u+,k))}
DC-set = {0,1}N — (ON-setU OFF-set)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 82/144

Gate Level Logic Synthesis: Reset Regions

@ For a reset region ER(u—, K):

ON-set = {As(s)|se€ (ER(u—,k)}
OFF-set = {As(s)|se (ES(u+)UQS(u+))uU
(ES(u—) — ER(u—,k))}
DC-set = {0,1}M — (ON-setU OFF-set)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 83/144

Gate Level Circuit: Example

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

Gate Level Circuit: Example

@ There are two set regions for ¢: ER(c+,1) = 01R0 and
ER(c+,2) = 11R1.

@ Let's examine the implementation of ER(c+,1).

ON-set = {0100}

OFF-set = {0000,1000,0010,1100,1101}

DC-set = {0001,0011,0101,0110,0111,
1001,1010,1011,1110,1111}

@ The primes found are as follows:

P = {01--,1-1-,-11-,0--1,-0-1,--11}

Chris J. Myers (Lecture 6: Muller Circuits)

Asynchronous Circuit Design

85/144

Implied States

@ The entrance constraint creates a set of implied states for each implicant
¢ (denoted 1S(c)).

@ Astate sisin IS(c) if it is not covered by ¢ but due to the entrance
constraint must be covered if ¢ is part of the cover.

o Astate s;isin IS(c) for ER(ux, k) if it is not covered by ¢, and s; leads to
s; which is both covered by ¢ and not in ER(ux, k).

I1S(c) = {si | si ¢ cA3sj.(si,t,5) €SN (sj€c)N(sj & ER(ux,k))}

@ This means that the product ¢ becomes excited in a quiescent state
instead of an excitation region state.

@ If there no other product in the cover contains this implied state, the cover
violates the entrance constraint.

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 86 /144

Existence of a Prime Cover

@ An implicant may have implied states that are outside the excitation
region and the cooresponding quiescent states.

@ Implied states may not be covered by any other implicant.

@ If this implicant is the only prime which covers some excitation region
state, then no cover can be found using only primes.

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

87 /144

Existence of a Prime Cover: Example

Consider prime 01- -

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

Existence of a Prime Cover: Example

Consider prime 01- -
Entered by (F110,a—,0F10)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 88/144

Existence of a Prime Cover: Example

Consider prime 01- -
Entered by (F110,a—,0F10)
F110 is implied state

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 88/144

Existence of a Prime Cover: Example

Consider prime 01- -
Entered by (F110,a—,0F10)
F110 is implied state
Cover with 1-1-or -11-

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 88/144

Existence of a Prime Cover: Example

Consider prime 01- -

Entered by (F110,a—,0F10)
F110 is implied state

Cover with 1-1-or -11-
Entered by (11R1,c+,111F)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 88/144

Existence of a Prime Cover: Example

Consider prime 01- -
Entered by (F110,a—,0F10)
F110 is implied state
Cover with 1-1-or -11-
Entered by (11R1,c+,111F)
11R1 is implied state

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 88/144

Existence of a Prime Cover: Example

Consider prime 01- -

Entered by (F110,a—,0F10)
F110 is implied state

Cover with 1-1-or -11-
Entered by (11R1,c+,111F)
11R1 is implied state

But it is in the OFF-set

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 88/144

Candidate Implicants

@ Implicant is a candidate implicant if there does not exist one which
properly contains it with a subset of the implied states.

@ ¢; is a candidate implicant if there does not exist an implicant ¢; that
satisfies the following two conditions:

G O G
/S(Cj) C /S(C,').

@ Prime implicants are always candidate implicants, but not all candidate
implicant are prime.

@ An optimal cover exists using only candidate implicants.
@ NOTE: similar to prime compatibles.

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 89/144

Candidate Implicant Algorithm

candidate_implicants(SG, P)
done =10
for(k = |largest(P)|; k > 1; k——)
foreach(q € P; |q| = k) enqueue(C,q)
foreach(c € C; |c| =k)
if(IS(SG, ¢) = 0) continue
foreach(s € lit_extend(c))
if(s € done) continue
T's = IS(SG, s)
prime = true
foreach(q € C;|q| > k)
if (sCq)
I, = IS(SG,q)
if (Ts D T) |
prime = false;
break
if(prime = 1) enqueue(C, s)
done = doneU {s}

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 90/ 144

Candidate Implicant Algorithm Example

Primes Implied States
01--
1-1-
11
0--1
-0-1
--11

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 91/144

Candidate Implicant Algorithm Example

Primes Implied States
01-- F110
1-1-

11

0--1

-0-1

--11

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 91/144

Candidate Implicant Algorithm Example

Primes Implied States

01-- F110
1-1- 11R1
11
0--1
-0-1
--11

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 91/144

Candidate Implicant Algorithm Example

Primes Implied States

01-- F110
1-1- 11R1
-11- 11R1, 01RO
0--1

-0-1

--11

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 91/144

Candidate Implicant Algorithm Example

Primes Implied States

01-- F110
1-1- 11R1
-11- 11R1, 01RO
0--1 0
-0-1

--11

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 91/144

Candidate Implicant Algorithm Example

Primes Implied States

01-- F110
1-1- 11R1
-11- 11R1, 01RO
0--1 0
-0-1 0
--11

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 91/144

Candidate Implicant Algorithm Example

Primes Implied States

01-- F110
1-1- 11R1
-11- 11R1, 01RO
0--1 0
-0-1 0
--11 11R1

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 91/144

Candidate Implicant Algorithm Example

Primes Implied States

01-- F110
1-1- 11R1
-11- 11R1, 01RO
0--1 0
-0-1 0
--11 11R1
010-

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 91/144

Candidate Implicant Algorithm Example

Primes Implied States

01-- F110
1-1- 11R1
-11- 11R1, 01RO
0--1 0
-0-1 0
--11 11R1
010- 0

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 91/144

Candidate Implicant Algorithm Example

Primes Implied States

01-- F110
1-1- 11R1
-11- 11R1, 01RO
0--1 0
-0-1 0
--11 11R1
010- 0
011-

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 91/144

Candidate Implicant Algorithm Example

Primes Implied States

01-- F110
1-1- 11R1
-11- 11R1, 01RO
0--1 0
-0-1 0
--11 11R1
010- 0
011- F110

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 91/144

Candidate Implicant Algorithm Example

Primes Implied States

01-- F110
1-1- 11R1
-11- 11R1, 01RO
0--1 0
-0-1 0
--11 11R1
010- 0
0110

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 91/144

Candidate Implicant Algorithm Example

Primes Implied States

01-- F110
1-1- 11R1
-11- 11R1, 01RO
0--1 0
-0-1 0
--11 11R1
010- 0
0110 F110

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 91/144

Candidate Implicant Algorithm Example

Primes Implied States

01-- F110
1-1- 11R1
-11- 11R1, 01RO
0--1 0
-0-1 0
--11 11R1
010- 0
0111

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 91/144

Candidate Implicant Algorithm Example

Primes Implied States

01-- F110
1-1- 11R1
-11- 11R1, 01RO
0--1 0
-0-1 0
--11 11R1
010- 0
0111 0

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 91/144

Candidate Implicant Algorithm Example

Primes Implied States

01-- F110
1-1- 11R1
-11- 11R1, 01RO
0--1 0
-0-1 0
--11 11R1
010- 0
101-

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 91/144

Candidate Implicant Algorithm Example

Primes Implied States

01-- F110
1-1- 11R1
-11- 11R1, 01RO
0--1 0
-0-1 0
--11 11R1
010- 0
101- 0

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 91/144

Candidate Implicant Algorithm Example

Primes Implied States

01-- F110
1-1- 11R1
-11- 11R1, 01RO
0--1 0
-0-1 0
--11 11R1
010- 0
101- 0
1-10

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 91/144

Candidate Implicant Algorithm Example

Primes Implied States

01-- F110
1-1- 11R1
-11- 11R1, 01RO
0--1 0
-0-1 0
--11 11R1
010- 0
101- 0
1-10 111F

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 91/144

Candidate Implicant Algorithm Example

Primes Implied States

01-- F110
1-1- 11R1
-11- 11R1, 01RO
0--1 0
-0-1 0
--11 11R1
010- 0
101- 0
1-10 111F
-110

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 91/144

Candidate Implicant Algorithm Example

Primes Implied States

01-- F110
1-1- 11R1
-11- 11R1, 01RO
0--1 0
-0-1 0
--11 11R1
010- 0
101- 0
1-10 111F

-110 111F, 01RO

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 91/144

Formulating the Covering Problem

@ Introduce a Boolean variable x; for each candidate implicant c;.
@ The variable x; = 1 when the candidate implicant is included in the cover
and 0 otherwise.

@ Using these variables, we can construct a product of sums representation
of the covering and entrance constraints.

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 92/144

Covering Clauses

@ A covering clause is constructed for each state s in ER(ux, k).
@ Each clause consists of disjunction of candidates that cover s.

\V x.

irs€c;

@ ER(ux,k) = 0100 which is included in only candidate implicants c;
(01— —)and ¢, (010—):
(X1 +x2)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 93/144

Closure Clauses

@ For each candidate implicant c¢;, a closure clause is constructed for each
of its implied states s € 1S(c;).

@ Each closure clause represents an implication if a candidate implicant
used, its implied states must be covered.

6V V.

j:s€¢;

@ The candidate implicant ¢; (01 — —) has implied state 0110.
@ 0110 included in implicants ¢z (1 —1—) and ¢5 (—11—).

(X1 + X3+ x5)

@ Complete formula: (x1 + x2) (X1 + X3 + X5)X3 X5 Xg

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 94 /144

Setting Up the Constraint Matrix

@ Find x;’s that satisfy function with minimum cost.

@ Since negated variables, the covering problem is binate.

@ The constraint matrix has one row for each clause and one column for
each candidate implicant.

@ Rows divided into a covering section and a closure section.

@ Covering section: row for each excitation region state s, with a 1 in every
column with a candidate implicant that includes s.

@ Closure section: row for each implied state s of each candidate implicant
¢, with a 0 in the column corresponding to ¢; and a 1 in each column with
a candidate implicant ¢; that covers s.

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 95/144

Constraint Matrix for ER(c+,1)

¢o1-- 010- 1-1- 101- -11- 0--1 -0-1 --11 1-10 -110

11 1 - - - = = ==
2 0 - 1 - 1 - - - 1 1
3 - - 0 - - - = - - -
4 - - - - 0 - - = = =
5 - - - - - - = 0 -
6 - - 1 - 1 - - 1 o -
7 - - 1 - 1 - - 1 - 0

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 96 /144

A Simple Example

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

Combinational Optimization

@ Can remove the C-element when the covers for the set function for a
signal v include all states where u is rising or high.

Uc(u+,1) 2 ER(u+,/) UQS(u+)
I}

@ Or the covers for the reset function include all states where u is falling or
low.
Uc(u—,1) 2 ER(u—,/)uQS(u—)
I

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 98/144

Gate Sharing

@ Single gate can implement multiple excitation regions.

@ Need to modify the covering constraint to allow the cover to include states
from other excitation regions.

ER(u*,k) C [C(ux,k)NS] C [U ER(ux,l)U QS(U*)]
/

@ Entrance constraint must be modified to allow the cover to be entered
from any corresponding excitation region state.

[(si,t,5)) € dAsi & C(ux, k) Asj € Clux, k)] = s €| JER(ux, 1)
i
@ Additional constraint is now necessary to guarantee that a cover either
includes an entire excitation region or none of it.

ER(ux,l) Z C(u*,k) = ER(ux,l) N C(ux,k) =0

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 99/144

Gate Sharing Example: SG

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 100/ 144

Example: No Sharing

@ ER(c+,1) =100 and ER(c+,2) = 110.

@ Using the earlier constraints, the primes are found to be:
P(c+,1) = {10-,1-1,-11}
P(c+,2) = {11-,1-1,-11}

10- has no implied states.

11- has implied state FR1 which can be covered by 1-1, but this has
implied state 10R which is an OFF-set state.

@ Prime 11- must be expanded to 110.

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 101 /144

Gate Sharing Example: Original Circuit

(op

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 102 /144

Example: Sharing

@ ER(c+,1) =100 and ER(c+,2) = 110.
@ Using the new constraints, the primes are found to be:

P(c+,1) = {1--,-11}
P(c+,2) = {1--,-11}

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 103 /144

Gate Sharing Example: Optimized Circuit

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 104 /144

The Single Cube Algorithm

@ Many region functions composed of a single product, or cube.

@ Now present a more efficient algorithm which finds an optimal single-cube
cover for each region function, if one exists.

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 105/ 144

The Single Cube Algorithm

single_cube (SG, technology)
foreach ve O
EC = find_excitation_cubes (SG);
foreach EC(ux,k) € EC
TC(ux,k) = trigger_cube (SG,EC(u%,k));
CS(u*,k) = context_signals (SG, EC(ux*,k), TC(ux,k)) ;
V(u%,k) = violations (SG,EC(ux,k), TC(u*,k),tech);
CC = build_cover_table (CS(u%,k), V(ux,k));
C(u#,k) = solve_cover_table(CC, TC(ux,k)) ;
solution(u) = optimize_logic(C);
return solution;

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 106 / 144

Excitation Cubes

@ In a single-cube cover, all literals must correspond to signals that are
stable throughout the excitation region.

@ ER(ux,k) is approximated using an excitation cube.

@ The excitation cube is the supercube of the states in the excitation region
and defined on each signal v as follows:

0 ifVse ER(ux,k).s(v)=0
EC(ux,k)(v) =< 1 ifVse ER(ux,k).s(v)=1
— otherwise

@ If a signal has a value of 0 or 1 in the excitation cube, the signal can be
used in the cube implementing the region.

@ The set of states implicitly represented by the excitation cube is always a
superset of the set of excitation region states.

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 107 /144

Trigger Cubes

@ The set of trigger signals for ER(ux, k) can also be represented with a
cube called a trigger cube.

@ TC(ux,v) is defined as follows for each signal v:
si(v) If3(si,t,s5)€d.(t=v+Vi=v—)A

TC(ux,k)(v) = (si & ER(ux,k)) A (s; € ER(ux,k))
— otherwise

@ The single cube cover of an excitation region must contain all its trigger
signals (i.e., C(ux, k) C TC(ux,k)).
@ Therefore, all trigger signals must be stable (i.e., EC(u*, k) C TC(ux, k)).

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 108 /144

Example: Excitation and Trigger Cubes

ux,k | EC(y*,k) | TC(ux,k)

109/ 144

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

Example: Excitation and Trigger Cubes

ux,k | EC(y*,k) | TC(ux,k)
cr,1 | 0100

109/ 144

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

Example: Excitation and Trigger Cubes

ux,k | EC(y*,k) | TC(ux,k)
cr,1 | 0100 B

109/ 144

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

Example: Excitation and Trigger Cubes

ux,k | EC(y*,k) | TC(ux,k)
cr,1 | 0100 “1--
c+,2 1101

c—,1

d+,1

d—,1

109/ 144

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

Example: Excitation and Trigger Cubes

ux,k | EC(y*,k) | TC(ux,k)
cr,1 | 0100 “1--
cr,2 | 1101]
c—,1

a+,1

d—,1

109/ 144

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

Example: Excitation and Trigger Cubes

ux,k | EC(y*,k) | TC(ux,k)
cr,1 | 0100 B
cr,2 | 1101]
c—.1 | 0010

a+,1

d—,1

109/ 144

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

Example: Excitation and Trigger Cubes

ux,k | EC(y*,k) | TC(ux,k)
cr,1 | 0100 B
cr,2 | 1101]
c—.1 | 0010 —0--
a+,1

d—,1

109/ 144

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

Example: Excitation and Trigger Cubes

ux,k | EC(y*,k) | TC(ux,k)
cr,1 | 0100 B
ct+.2 | 1101 —
c—.1 | 0010 —0--
d+,1| 1100

d—,1

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 109/ 144

Example: Excitation and Trigger Cubes

ux,k | EC(y*,k) | TC(ux,k)
cr,1 | 0100 B
ct+.2 | 1101 —
c—.1 | 0010 —0--
d+,1| 1100 “1--
d—,1

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 109/ 144

Example: Excitation and Trigger Cubes

ux,k | EC(y*,k) | TC(ux,k)
cr,1 | 0100 B
ct+.2 | 1101 —
c—.1 | 0010 —0--
d+,1| 1100 “1--
d— 1| 1111

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 109/ 144

Example: Excitation and Trigger Cubes

ux,k | EC(y*,k) | TC(ux,k)
cr,1 | 0100 B
ct+.2 | 1101 —
c—.1 | 0010 —0--
d+,1| 1100 “1--
d— 1| 1111 —1-

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 109/ 144

Violating States

@ Goal is to find smallest product C(us, k) where
EC(ux, k) C C(ux,k) C TC(ux*, k)

and satisfies the required correctness constraints.
@ Begin with a cube consisting only of the trigger signals.

@ If this cover contains no states that violate the required correctness
constraints, we are done.

@ If not, context signals must be added to the cube to remove any violating
states.

@ For each violation, the procedure determines the choices of context
signals which would exclude the violating state.

@ Finding smallest set of context signals is a covering problem.

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 110/144

Violating States: gC Circuits

@ In gC circuits, for a set region a state is a violating state when the trigger
cube intersects the falling or low sets.

@ Similarly, for a reset region, a state is a violating state when the trigger
cube intersects the rising or high sets.

V(u+,k) = {seS|seTC(u+,k)Ase ES(u—)UQS(u—)}
V(u—,k) = {seS|seTC(u—,k)Ase ES(u+)UQS(u+)}

111/144

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

Example: Violating States

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 112/144

Example: Violating States

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 112/144

Example: Violating States

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 112/144

Example: Violating States

TC(c+,1) -1--
V(c+,1) {110R}
TC(c+,2) ---1
V(c+,2)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 112/144

Example: Violating States

TC(c+,1) -1--
V(ct,1) {110R}
TC(c+,2) ---1
V(c+,2) 0

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 112/144

Example: Violating States

TC(c+,1) -1--
V(ct,1) {110R}
TC(c+,2) ---1
V(c+,2) 0
TC(c—,1) -0--
V(e—,1)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 112/144

Example: Violating States

TC(c+,1) -1--
V(c+,1) {110R}
TC(c+,2) ---1
V(c+,2) 0
TC(c—,1) -0--
V(c—,1) 0

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 112/144

Example: Violating States

TC(c+,1) -1--
V(c+,1) {110R}
TC(c+,2) ---1
V(c+,2) 0
TC(c—,1) -0--
V(e—,1) 0
TC(d+,1) -1--
V(d+,1)

Chris J. Myers (Lecture 6: Muller Circuits)

Asynchronous Circuit Design

112/144

Example: Violating States

TC(c+,1) -1--
V(c+,1) {110R}
TC(c+,2) ---1
V(c+,2) 0
TC(c—,1) -0--
V(c—,1) 0
TC(d+,1) -1--
V(d+,1) {111F,F110,
0F10,01R0}

Chris J. Myers (Lecture 6: Muller Circuits)

Asynchronous Circuit Design

112/144

Example: Violating States

TC(c+,1) -1--
V(c+,1) {110R}
TC(c+,2) ---1
V(c+,2) 0
TC(c—,1) -0--
V(c—,1) 0
TC(d+,1) -1--
V(d+,1) {111F,F110,

0F10,01R0}
TC(d—,1) —-1-
V(d—,1)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

112/144

Example: Violating States

TC(c+,1) -1--
V(ct,1) {110R}
TC(c+,2) ---1
V(c+,2) 0
TC(c—,1) -0--
V(c—,1) 0
TC(d+,1) -1--
V(d+,1) {111F,F110,
0F10,01R0}
TC(d—,1) —-1-
V(d—,1) 0

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

112/144

Context Signal Choices

@ Determine context signals which remove these violating states.

@ A signal is allowed to be a context signal if it is stable in the excitation
cube (i.e., EC(ux,k)(v) =0 or EC(u*,k)(v) =1).

@ A context signal removes a violating state when it has a different value in
the excitation cube and the violating state.

@ In other words, a context signal v removes a violating state s when

EC(ux,k)(v) = s(v).

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 113/144

Example: Context Signals

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 114 /144

Example: Context Signals

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 114 /144

Example: Context Signals

EC(c+,1) 0100
TC(ct+,1) -1--
110R

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 114 /144

Example: Context Signals

EC(c+,1) 0100
TC(ct+,1) -1--
110R a

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 114 /144

Example: Context Signals

EC(c+,1) 0100

TC(c+,1) -1--
110R a
EC(d+,1) 1100
TC(d+,1) -1--

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 114 /144

Example: Context Signals

EC(c+,1) 0100

TC(c+,1) -1--
110R a
EC(d+,1) 1100
TC(d+,1) -1--

111F

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 114 /144

Example: Context Signals

EC(c+,1) 0100

TC(c+,1) -1--
110R a
EC(d+,1) 1100
TC(d+,1) -1--

111F c,d

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 114 /144

Example: Context Signals

EC(c+,1) 0100

TC(c+,1) -1--
110R a
EC(d+,1) 1100
TC(d+,1) -1--
111F c.d

F110

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 114 /144

Example: Context Signals

EC(c+,1) 0100

TC(c+,1) -1--
110R a
EC(d+,1) 1100
TC(d+,1) -1--
111F c,d
F110 c

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 114 /144

Example: Context Signals

EC(c+,1) 0100

TC(c+,1) -1--
110R a
EC(d+,1) 1100
TC(d+,1) -1--
111F c,d
F110 c

0F10

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 114 /144

Example: Context Signals

EC(c+,1) 0100

TC(c+,1) -1--
110R a
EC(d+,1) 1100
TC(d+,1) -1--
111F c,d
F110 c
0F10 a,c

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 114 /144

Example: Context Signals

EC(c+,1) 0100

TC(c+,1) -1--
110R a
EC(d+,1) 1100
TC(d+,1) -1--

111F c,d
F110 c
0F10 a,c

01RO

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 114 /144

Example: Context Signals

EC(c+,1) 0100

TC(c+,1) -1--
110R a
EC(d+,1) 1100
TC(d+,1) -1--
111F c,d
F110 c
0F10 a,c
01RO a

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 114 /144

Setting Up the Covering Problem

@ The constraint matrix has a row for each violating state and a column for
each context signal.

@ The constraint matrix for ER(d+,1) is shown below:

a c d
111F — 1 1
F110 — 1 —
0OF10 1 1 —
01RO 1 — —

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 115/144

Gate Level Circuits: Cover Violations

@ Gate level circuits have covering and entrance constraints.

@ For each ER(u+,k), find all states in the initial cover, TC(ux, k), which
violate the covering constraint:
@ A state sin TC(ux, k) is a violating state if:
e The signal u has the same value but is not excited,
o Is excited in the opposite direction, or

o |s excited in the same direction but the state is not in the current excitation
region.

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 116 /144

Example: Cover Violations

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 117 /144

Example: Cover Violations

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 117 /144

Example: Cover Violations

TC(c+,1) 1--
cV(c+,1) {110R,11R1}

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 117 /144

Example: Cover Violations

TC(c+,1) -1--
CV(c+,1) {110R,11R1}
TC(c+,2) ---1
CV(c+,2) 0
TC(c—,1) -0--
CV(c—,1) 0
TC(d+,1) -1--
CV(d+,1) {111F, F110,
0F10,01R0}
TC(d—,1) --1-
cV(d—,1) 0

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 117 /144

Gate Level Circuits: Entrance Violations

@ Must check state transitions for potential entrance violations.

@ For each state transition (s;, t, s;), this is possible when s; is a quiescent
state, s; is in the initial cover, and Ar(t) excludes s;.

EV(u+.k) = {sje S| (sj,vx,s)) €dAs; € QS(u+

A §j € TC(u+,k) A EC(u+,k)(v) = si(v)
EV(u—,k) = {s;€S|(sj,vx,s) €dAs; € QS(u—

A sj€ TC(u—,k) N EC(u—,k)(v) = si(v

@ For each potential entrance violation, a context signal must be added
which excludes s; from the cover when A7 (t) is included.

e If Ar(t) is a trigger signal, then the state s; is a violating state.

@ If Ar(t) is a possible context signal choice, then s; becomes a violating
state when A (t) is included in the cover.

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 118/144

Example: Entrance Violations

State =

Consider each (s;, v, s;)
sj is in EV(us, k) when:
1. s; € QS(ux)
2.8 € TC(U*,k)

3. EC(ux,k)(v) = si(v)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 119/144

Example: Entrance Violations

EC(c+,1) =0100
TC(c4,1) = —1— —
EV(ct,1) =

State =

Consider each (s;, v, s;)
sj is in EV(us, k) when:
1. s; € QS(ux)
2.8 € TC(U*,k)

3. EC(ux,k)(v) = si(v)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 119/144

Example: Entrance Violations

EC(c+,1) =0100

TC(c+,1)=—1— —
EV(ct,1) =
(RR00, a+,1R00)?

State =

Consider each (s;, v, s;)
sj is in EV(us, k) when:
1. s; € QS(ux)
2.8 € TC(U*,k)

3. EC(ux,k)(v) = si(v)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 119/144

Example: Entrance Violations

EC(c+,1) = 0100
TC(c+,1)=—1— —
EV(ct,1) =

(RR00, a+,1R00)? No 1

State =

Consider each (s;, v, s;)
sj is in EV(us, k) when:
1. s; € QS(ux)
2.8 € TC(U*,k)

3. EC(ux,k)(v) = si(v)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 119/144

Example: Entrance Violations

EC(c+,1) = 0100
TC(c+,1)=—1— —
EV(ct,1) =

(RR00, a+,1R00)? No 1
(1R00,b+,110R)?

State =

Consider each (s;, v, s;)
sj is in EV(us, k) when:
1. s; € QS(ux)
2.8 € TC(U*,k)

3. EC(ux,k)(v) = si(v)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 119/144

Example: Entrance Violations

EC(c+,1) = 0100
TC(c+,1)=—1— —
EV(ct,1) =

(RR00, a+,1R00)? No 1
(1R00, b+,110R)? No 1

State =

Consider each (s;, v, s;)
sj is in EV(us, k) when:
1. s; € QS(ux)
2.8 € TC(U*,k)

3. EC(ux,k)(v) = si(v)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 119/144

Example: Entrance Violations

EC(c+,1) = 0100
TC(c+,1)=—1— —
EV(ct,1) =

(RR00, a+,1R00)? No 1
(1R00, b+,110R)? No 1
(110R,d+,11R1)?

State =

Consider each (s;, v, s;)
sj is in EV(us, k) when:
1. s; € QS(ux)
2.8 € TC(U*,k)

3. EC(ux,k)(v) = si(v)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 119/144

Example: Entrance Violations

EC(c+,1) = 0100
TC(c+,1)=—1——
EV(ct,1) =

(RR00, a+,1R00)? No 1
(1R00, b+,110R)? No 1
(110R,d+,11R1)? No 1

State =

Consider each (s;, v, s;)
sj is in EV(us, k) when:
1. s; € QS(ux)
2.8 € TC(U*,k)

3. EC(ux,k)(v) = si(v)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 119/144

Example: Entrance Violations

EC(c+,1) = 0100
TC(c+,1) = —1— —
EV(ct,1) =

(RR00, a+,1R00)? No 1
(1R00, b+,110R)? No 1
(110R,d+,11R1)? No 1
(11R1,c+,111F)?

State =

Consider each (s;, v, s;)
sj is in EV(us, k) when:
1. s; € QS(ux)
2.8 € TC(U*,k)

3. EC(ux,k)(v) = si(v)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 119/144

Example: Entrance Violations

EC(c+,1) = 0100
TC(c+,1)=—1——
EV(ct,1) =

(RR00, a+,1R00)? No 1
(1R00, b+,110R)? No 1
(110R,d+,11R1)? No 1
(11R1,c+,111F)? No 3

State =

Consider each (s;, v, s;)
sj is in EV(us, k) when:
1. s; € QS(ux)
2.8 € TC(U*,k)

3. EC(ux,k)(v) = si(v)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 119/144

Example: Entrance Violations

EC(c+,1) = 0100
TC(c+,1)=—1——
EV(c+,1) =

(RR00, a+,1R00)? No 1
(1R00, b+,110R)? No 1
(110R,d+,11R1)? No 1
(11R1,c+,111F)? No 3
(111F,d—,F110)?

State =

Consider each (s;, v, s;)
sj is in EV(us, k) when:
1. s; € QS(ux)
2.8 € TC(U*,k)

3. EC(ux,k)(v) = si(v)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 119/144

Example: Entrance Violations

EC(c+,1) = 0100
TC(c+,1)=—1——
EV(c+,1) = {F110
(RR00, a+,1R00)? No 1
(1R00, b+,110R)? No 1
(110R,d+,11R1)? No 1
(11R1,c+,111F)? No 3
(111F,d—,F110)? Yes

State =

Consider each (s;, v, s;)
sj is in EV(us, k) when:
1. s; € QS(ux)
2.8 € TC(U*,k)

3. EC(ux,k)(v) = si(v)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 119/144

Example: Entrance Violations

EC(c+,1) = 0100
TC(c+,1)=—1——
EV(c+,1) = {F110
(RR00, a+,1R00)? No 1
(1R00, b+,110R)? No 1
(110R,d+,11R1)? No 1
(11R1,c+,111F)? No 3
(111F,d—,F110)? Yes
(F110,a—,0F10)?

State =

Consider each (s;, v, s;)
sj is in EV(us, k) when:
1. s; € QS(ux)
2.8 € TC(U*,k)

3. EC(ux,k)(v) = si(v)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 119/144

Example: Entrance Violations

EC(c+,1) = 0100
TC(c+,1)=—1——
EV(c+,1) = { F110, OF10
(RR00, a+,1R00)? No 1
(1R00, b+,110R)? No 1
(110R,d+,11R1)? No 1
(11R1,c+,111F)? No 3
(111F,d—,F110)? Yes
(F110,a—,0F10)? Yes

State =

Consider each (s;, v, s;)
sj is in EV(us, k) when:
1. s; € QS(ux)
2.8 € TC(U*,k)

3. EC(ux,k)(v) = si(v)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 119/144

Example: Entrance Violations

EC(c+,1) = 0100
TC(c+,1)=—1——
EV(c+,1) = {F110, 0F10
(RR00, a+,1R00)? No 1
(1R00, b+,110R)? No 1
(110R,d+,11R1)? No 1
(11R1,c+,111F)? No 3
(111F,d—,F110)? Yes
()
()

F110,a—,0F10)? Yes
0F10,b—,00F0)?

State =

Consider each (s;, v, s;)
sj is in EV(us, k) when:
1. s; € QS(ux)
2.8 € TC(U*,k)

3. EC(ux,k)(v) = si(v)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 119/144

Example: Entrance Violations

EC(c+,1) = 0100
TC(c+,1)=—1——
EV(c+,1) = {F110, 0F10
(RR00, a+,1R00)? No 1
(1R00, b+,110R)? No 1
(110R,d+,11R1)? No 1
(11R1,c+,111F)? No 3
(111F,d—,F110)? Yes
()
()

F110,a—,0F10)? Yes
0F10,b—,00F0)? No 1

State =

Consider each (s;, v, s;)
sj is in EV(us, k) when:
1. s; € QS(ux)
2.8 € TC(U*,k)

3. EC(ux,k)(v) = si(v)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 119/144

Example: Entrance Violations

EC(c+,1) = 0100
TC(c+,1)=—1——
EV(c+,1) = {F110, 0F10
(RR00, a+,1R00)? No 1
(1R00, b+,110R)? No 1
(110R,d+,11R1)? No 1
(11R1,c+,111F)? No 3
(111F,d—,F110)? Yes
()
()
(

F110,a—,0F10)? Yes
0F10,b—,00F0)? No 1
00F0,c—,RR00)?

State =

Consider each (s;, v, s;)
sj is in EV(us, k) when:
1. s; € QS(ux)
2.8 € TC(U*,k)

3. EC(ux,k)(v) = si(v)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 119/144

Example: Entrance Violations

EC(c+,1) = 0100
TC(c+,1)=—1——
EV(c+,1) = {F110, 0F10
(RR00, a+,1R00)? No 1
(1R00, b+,110R)? No 1
(110R,d+,11R1)? No 1
(11R1,c+,111F)? No 3
(111F,d—,F110)? Yes
()
()
(

F110,a—,0F10)? Yes
0F10,b—,00F0)? No 1
00F0,c—, RR00)? No 1

State =

Consider each (s;, v, s;)
sj is in EV(us, k) when:
1. s; € QS(ux)
2.8 € TC(U*,k)

3. EC(ux,k)(v) = si(v)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 119/144

Example: Entrance Violations

EC(c+,1) = 0100
TC(c+,1)=—1——
EV(c+,1) = {F110, 0F10
(RR00, a+,1R00)? No 1
(1R00, b+,110R)? No 1
(110R,d+,11R1)? No 1
(11R1,c+,111F)? No 3
(111F,d—,F110)? Yes
()
()
(
(

F110,a—,0F10)? Yes
0F10,b—,00F0)? No 1
00F0,c—, RR00)? No 1
RRO00, b+,01R0)?

State =

Consider each (s;, v, s;)
sj is in EV(us, k) when:
1. s; € QS(ux)
2.8 € TC(U*,k)

3. EC(ux,k)(v) = si(v)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 119/144

Example: Entrance Violations

EC(c+,1) = 0100
TC(c+,1)=—1——
EV(c+,1) = {F110, 0F10
(RR00, a+,1R00)? No 1
(1R00, b+,110R)? No 1
(110R,d+,11R1)? No 1
(11R1,c+,111F)? No 3
(111F,d—,F110)? Yes
()
()
(
(

F110,a—,0F10)? Yes

0F10,b—,00F0)? No 1
00F0,c—, RR00)? No 1
RRO00, b+,01R0)? No 1

State =

Consider each (s;, v, s;)
sj is in EV(us, k) when:
1. s; € QS(ux)
2.8 € TC(U*,k)

3. EC(ux,k)(v) = si(v)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 119/144

Example: Entrance Violations

EC(c+,1) = 0100
TC(c+,1)=—1——
EV(c+,1) = {F110, 0F10
(RR00, a+,1R00)? No 1
1R00, b+,110R)? No 1
110R,d+,11R1)? No 1
11R1,c+,111F)? No 3
111F,d—, F110)? Yes
)
)

(
(
E
State = EF110,a—,OF10 ? Yes
(
(
(

, 0F10,b—,00F0)? No 1
Consider each (s;, v, s;) 00F0,c—, RR00)? No 1
sj is in EV(us, k) when: RR00, b+,01R0)? No 1

1. ;€ QS(ux)

01R0,c+,0F10)?
2.8 € TC(U*,k)

3. EC(ux,k)(v) = si(v)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 119/144

Example: Entrance Violations

EC(c+,1) = 0100
TC(c+,1)=—1——
EV(c+,1) = {F110, 0F10}
(RR00, a+,1R00)? No 1
1R00, b+,110R)? No 1
110R,d+,11R1)? No 1
11R1,c+,111F)? No 3
111F,d—, F110)? Yes
)
)

(
(
E
State = EF110,a—,OF10 ? Yes
(
(
(

. 0F10,b—,00F0)? No 1
Consider each (s;, v, s;) 00F0,c—, RR00)? No 1
sj is in EV(us, k) when:)

RRO00, b+,01R0)? No 1
1. s; € QS(ux) 01R0,c+,0F10)? No 3
2. sj € TC(ux,k)

3. EC(ux,k)(v) = si(v)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 119/144

Example: Entrance Violations

State =

Consider each (s;, v, s;)
sjis in EV(ux, k) when:
1. s, € QS(ux)
2.8 € TC(U*,/()

3. EC(u*,k)(v) = si(v)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 120/ 144

Example: Entrance Violations

EC(d—,1) = 1111
TC(d—,1) = — —1—
EV(d—,1) =

State =

Consider each (s;, v, s;)
sjis in EV(ux, k) when:
1. s, € QS(ux)
2.8 € TC(U*,/()

3. EC(u*,k)(v) = si(v)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 120/ 144

Example: Entrance Violations

EC(d—,1)=1111

TC(d— 1) = — —1—
EV(d—,1) =
(RR00, a+,1R00)?

State =

Consider each (s;, v, s;)
sjis in EV(ux, k) when:
1. s, € QS(ux)
2.8 € TC(U*,/()

3. EC(u*,k)(v) = si(v)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 120/ 144

Example: Entrance Violations

EC(d—,1) = 1111
TC(d—,1) = — —1—
EV(d—,1) =

(RR00, a+,1R00)? No 2

State =

Consider each (s;, v, s;)
sjis in EV(ux, k) when:
1. s, € QS(ux)
2.8 € TC(U*,/()

3. EC(u*,k)(v) = si(v)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 120/ 144

Example: Entrance Violations

EC(d—,1) = 1111
TC(d—,1) = — —1—
EV(d—,1) =

(RR00, a+,1R00)? No 2
(1R00,b+,110R)?

State =

Consider each (s;, v, s;)
sjis in EV(ux, k) when:
1. s, € QS(ux)
2.8 € TC(U*,/()

3. EC(u*,k)(v) = si(v)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 120/ 144

Example: Entrance Violations

EC(d—,1) = 1111
TC(d—,1) = — —1—
EV(d—,1) =

(RR00, a+,1R00)? No 2
(1R00, b+,110R)? No 2

State =

Consider each (s;, v, s;)
sjis in EV(ux, k) when:
1. s, € QS(ux)
2.8 € TC(U*,/()

3. EC(u*,k)(v) = si(v)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 120/ 144

Example: Entrance Violations

EC(d—,1) = 1111
TC(d—,1) = — —1—
EV(d—,1) =

(RR00, a+,1R00)? No 2
(1R00, b+,110R)? No 2
(110R, d+,11R1)?

State =

Consider each (s;, v, s;)
sjis in EV(ux, k) when:
1. s, € QS(ux)
2.8 € TC(U*,/()

3. EC(u*,k)(v) = si(v)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 120/ 144

Example: Entrance Violations

EC(d—,1) = 1111
TC(d—,1) = — —1—
EV(d—,1) =

(RR00, a+,1R00)? No 2
(1R00, b+,110R)? No 2
(110R,d+,11R1)? No 1

State =

Consider each (s;, v, s;)
sjis in EV(ux, k) when:
1. s, € QS(ux)
2.8 € TC(U*,/()

3. EC(u*,k)(v) = si(v)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 120/ 144

Example: Entrance Violations

EC(d—,1) = 1111
TC(d—,1) = — —1—
EV(d—,1) =

(RR00, a+,1R00)? No 2
(1R00, b+,110R)? No 2
(110R,d+,11R1)? No 1
(11R1,c+,111F)?

State =

Consider each (s;, v, s;)
sjis in EV(ux, k) when:
1. s, € QS(ux)
2.8 € TC(U*,/()

3. EC(u*,k)(v) = si(v)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 120/ 144

Example: Entrance Violations

EC(d—,1) = 1111
TC(d—,1) = — —1—
EV(d—,1) =

(RR00, a+,1R00)? No 2
(1R00, b+,110R)? No 2
(110R,d+,11R1)? No 1
(11R1,c+,111F)? No 1

State =

Consider each (s;, v, s;)
sjis in EV(ux, k) when:
1. s, € QS(ux)
2.8 € TC(U*,/()

3. EC(u*,k)(v) = si(v)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 120/ 144

Example: Entrance Violations

EC(d—,1) = 1111
TC(d—,1)=— —1—
EV(d—,1) =

(RR00, a+,1R00)? No 2
(1R00,b+,110R)? No 2
(110R,d+,11R1)? No 1
(11R1,c+,111F)? No 1
(111F,d—, F110)?

State =

Consider each (s;, v, s;)
sjis in EV(ux, k) when:
1. s, € QS(ux)
2.8 € TC(U*,/()

3. EC(u*,k)(v) = si(v)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 120/ 144

Example: Entrance Violations

EC(d—,1) = 1111
TC(d—,1)=— —1—
EV(d—,1) =

(RR00, a+,1R00)? No 2
(1R00,b+,110R)? No 2
(110R,d+,11R1)? No 1
(11R1,c+,111F)? No 1
(111F,d—,F110)? No 3

State =

Consider each (s;, v, s;)
sjis in EV(ux, k) when:
1. s, € QS(ux)
2.8 € TC(U*,/()
3. EC(ux,k)(v) = s;(v)

Chris J. Myers (Lecture 6: Muller Circuits)

Asynchronous Circuit Design

120/ 144

Example: Entrance Violations

EC(d—,1) = 1111
TC(d—,1) = — —1—
EV(d—,1) =

(RR00, a+,1R00)? No 2
(1R00, b+,110R)? No 2
(110R,d+,11R1)? No 1
(11R1,c+,111F)? No 1
()
(

111F,d—,F110)? No 3
F110,a—,0F10)?

State =

Consider each (s;, v, s;)
sjis in EV(ux, k) when:
1. s, € QS(ux)
2.8 € TC(U*,/()

3. EC(u*,k)(v) = si(v)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 120/ 144

Example: Entrance Violations

EC(d—,1) = 1111
TC(d—,1) = — —1—
EV(d—,1) =

(RR00, a+,1R00)? No 2
(1R00, b+,110R)? No 2
(110R,d+,11R1)? No 1
(11R1,c+,111F)? No 1
()
(

111F,d—,F110)? No 3
F110,a—,0F10)? No 3

State =

Consider each (s;, v, s;)
sjis in EV(ux, k) when:
1. s, € QS(ux)
2.8 € TC(U*,/()

3. EC(u*,k)(v) = si(v)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 120/ 144

Example: Entrance Violations

EC(d—,1) = 1111
TC(d—,1)=— —1—
EV(d—,1) =

(RR00, a+,1R00)? No 2
(1R00,b+,110R)? No 2
(110R,d+,11R1)? No 1
(11R1,c+,111F)? No 1
()
(
(

111F,d—, F110)? No 3
F110,a—,0F10)? No 3
0F10, b—,00F0)?

State =

Consider each (s;, v, s;)
sjis in EV(ux, k) when:
1. s, € QS(ux)
2.8 € TC(U*,/()

3. EC(u*,k)(v) = si(v)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 120/ 144

Example: Entrance Violations

EC(d—,1) = 1111
TC(d—,1)=— —1—
EV(d—,1) =

(RR00, a+,1R00)? No 2
(1R00,b+,110R)? No 2
(110R,d+,11R1)? No 1
(11R1,c+,111F)? No 1
()
(
(

111F,d—,F110)? No 3
F110,a—,0F10)? No 3
)?No 3

State =

Consider each (s;, v, s;)
sjis in EV(ux, k) when:
1. s, € QS(ux)
2.8 € TC(U*,/()

3. EC(u*,k)(v) = si(v)

0F10,b—,00F0

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 120/ 144

Example: Entrance Violations

EC(d—,1) = 1111
TC(d—,1)=— —1—
EV(d—,1) =

(RR00, a+,1R00)? No 2
(1R00,b+,110R)? No 2
(110R,d+,11R1)? No 1
(11R1,c+,111F)? No 1
(111F,d—,F110)? No 3
(
(
(

F110,a—,0F10)? No 3
0F10,b—,00F0)? No 3
00F0, c—, RR00)?

State =

Consider each (s;, v, s;)
sjis in EV(ux, k) when:
1. s, € QS(ux)
2.8 € TC(U*,/()

3. EC(u*,k)(v) = si(v)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 120/ 144

Example: Entrance Violations

EC(d—,1) = 1111
TC(d—,1)=— —1—
EV(d—,1) =

(RR00, a+,1R00)? No 2
(1R00,b+,110R)? No 2
(110R,d+,11R1)? No 1
(11R1,c+,111F)? No 1
(111F,d—,F110)? No 3
(
(
(

F110,a—,0F10)? No 3
0F10,b—,00F0)? No 3
00F0,c—, RR00)? No 3

State =

Consider each (s;, v, s;)
sjis in EV(ux, k) when:
1. s, € QS(ux)
2.8 € TC(U*,/()

3. EC(u*,k)(v) = si(v)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 120/ 144

Example: Entrance Violations

EC(d—,1) = 1111
TC(d—,1) = — —1—
EV(d—,1) =

(RR00, a+,1R00)? No 2
1R00, b+,110R)? No 2
110R, d+,11R1)? No 1
11R1,¢+,111F)? No 1
111F,d—,F110)? No 3

(
(
E
State = Cabed) EF1 10,a—,0F10)? No 3
(
(

. 0F10,b—,00F0)? No 3
Consider each (s;, v, s;) 00F0, c—, RR00)? No 3
sjis in EV(ux, k) when:

)
RRO00, b+,01R0)?
1. s, € QS(ux)

2.8 € TC(U*,/()

3. EC(u*,k)(v) = si(v)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 120/ 144

Example: Entrance Violations

EC(d—,1) = 1111
TC(d—,1) = — —1—
EV(d—,1) =

(RR00, a+,1R00)? No 2
1R00, b+,110R)? No 2
110R, d+,11R1)? No 1
11R1,¢+,111F)? No 1
111F,d—,F110)? No 3

(
(
E
State = Cabed) EF1 10,a—,0F10)? No 3
(
(

. 0F10,b—,00F0)? No 3
Consider each (s;, v, s;) 00F0, c—, RR00)? No 3
sjis in EV(ux, k) when:

)
RRO00, b+,01R0)? No 2
1. s, € QS(ux)

2.8 € TC(U*,/()

3. EC(u*,k)(v) = si(v)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 120/ 144

Example: Entrance Violations

EC(d—,1) = 1111
TC(d—,1) = — —1—
EV(d—,1) =

(RR00, a+,1R00)? No 2
1R00, b+,110R)? No 2
110R, d+,11R1)? No 1
11R1,¢+,111F)? No 1
111F,d—,F110)? No 3

(
(
g
State = Cabed) EF1 10,a—,0F10)? No 3
(
(
(

. 0F10,b—,00F0)? No 3
Consider each (s;, v, s;) 00F0, c—, RR00)? No 3
sjis in EV(ux, k) when:

)
RR00, b-+,01R0)? No 2
1.5€ QS(ux) 01R0, c+,0F10)?
2.8 € TC(U*,/()

3. EC(u*,k)(v) = si(v)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 120/ 144

Example: Entrance Violations

EC(d—,1) = 1111
TC(d—,1) = — —1—
EV(d—,1) ={OF10}
(RR00, a+,1R00)? No 2
1R00, b+,110R)? No 2
110R, d+,11R1)? No 1
11R1,¢+,111F)? No 1
111F,d—,F110)? No 3

(
(
g
State = Cabed) EF1 10,a—,0F10)? No 3
(
(
(

. 0F10,b—,00F0)? No 3
Consider each (s;, v, s;) 00F0, c—, RR00)? No 3
sjis in EV(ux, k) when:

)
RR00, b-+,01R0)? No 2
1.5€ QS(ux) 01R0,c+,0F10)? Yes!
2.8 € TC(U*,/()

3. EC(u*,k)(v) = si(v)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 120/ 144

Setting Up the Covering Problem

@ Since inclusion of certain context signals cause some states to have
entrance violations, the covering problem is binate.

@ There is a row in the constraint matrix for each violation and each
violation that could arise from a context signal choice.

@ There is a column for each context signal.

@ The entry in the matrix contains a 1 if the context signal excludes the
violating state.

@ An entry in the matrix contains a 0 if the inclusion of the context signal
would require a new violation to be resolved.

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 121 /144

Example: Constraint Matrix

@ The constraint matrix for ER(c+,1) is shown below:

a c d
110R 1 — -—
11R1 1 — 1
0OF10 0 1 —
F110 1 1 0

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 122 /144

Example: gC versus Standard-C

gC Implementation Standard C-Implementation

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 123 /144

Example: Non-Persistent Trigger Signals

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 124 /144

Example: Non-Persistent Trigger Signals

EC(z+,1) =

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 124 /144

Example: Non-Persistent Trigger Signals

EC(z+,1) =--0

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 124 /144

Example: Non-Persistent Trigger Signals

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 124 /144

Example: Non-Persistent Trigger Signals

EC(z+,1)=--0
TC(z+,1) =11~

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 124 /144

Example: Non-Persistent Trigger Signals

EC(z+,1)=--0
TC(z+,1) =11~
Trigger signals are not stable

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 124 /144

Example: Non-Persistent Trigger Signals

EC(z+,1)=--0

TC(z+,1) =11~

Trigger signals are not stable
No single cube cover exists

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 124 /144

Example: Non-Persistent Trigger Signals

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 125/144

Example: Non-Persistent Trigger Signals

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 125/144

Example: Non-Persistent Trigger Signals

EC(w—,1)=10--

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 125/144

Example: Non-Persistent Trigger Signals

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 125/144

Example: Non-Persistent Trigger Signals

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 125/144

Example: Non-Persistent Trigger Signals

EC(w—,1)=10--
TC(w—,1) =--0-
Trigger signals are not stable

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 125/144

Example: Non-Persistent Trigger Signals

EC(w—,1)=10--
TC(w—,1) =--0-

Trigger signals are not stable
No single cube cover exists

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 125/144

Example: Unresolvable Violations

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 126 /144

Example: Unresolvable Violations

EC(x+,1) =

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 126 /144

Example: Unresolvable Violations

EC(x+,1) =00~ -

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 126 /144

Example: Unresolvable Violations

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 126 /144

Example: Unresolvable Violations

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 126 /144

Example: Unresolvable Violations

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 126 /144

Example: Unresolvable Violations

EC(x+,1) =00--
Clx+,1) =0- - -
V(x+,1) ={0F11,R011}

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 126 /144

Example: Unresolvable Violations

EC(x+,1)=00--

TC(x+,1) =0---

V(x+,1) ={0F11,R011}

No context signal to remove R011

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 126 /144

Hazard-Free Decomposition

Synthesis method put no restrictions on the size of the gates.
There is always some limitation on the number of inputs.

In CMOS, no more than 4 transistors can be in series.

Large transistor stacks can have charge sharing problems.
Necessary to decompose high-fanin gates.

For Huffman circuits, decomposition of high-fanin gates can be done in an
arbitrary fashion preserving hazard-freedom.

@ For Muller circuits, this problem is much more difficult.

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 127 /144

Example: Decomposition |

(F110) — (0F10) — (00F0) — (RR00)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 128 /144

Example: Decomposition |

(F110) — (0F10) — (00F0) — (RR00)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 129/144

Hazard-Free Decomposition Overview

@ Special care needed to guarantee a hazard-free decomposition.
@ Need to find new internal signal that produces simpler circuit.

@ Present here a simple technique for finding hazard-free decompositions
using insertion points.

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

130/ 144

Example: Insertion Points

IP=(({at+}:{d+}),({c+}:{d-}))

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 131/144

Example: Insertion Points

IP = (({b+}:{d+}),({a—}:0))

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 132/144

Example: Insertion Points

)

IP = (({b+}:{d+}),({a—}:0))

Cannot use b— as end transition as it is an input

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 132/144

Example: Insertion Points

State = CJ} d

IP=(({b+};:{d+}),({a-1}:0))
Cannot use b— as end transition as it is an input
Using c— makes e a three-input gate!

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 132/144

Transition Point Filters

@ Requirements on transition points ({s,1.):
@ The start and end sets should be disjoint.
(i.e., tsNte=10)
@ The end set should not include input transitions.
(e, Vtet, . t&€T)
@ Start and end sets should only include concurrent transitions.
(e, Vb €ts. || band Vi, b €ty . 4 || b)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 133/144

Transition Point Filters for Decomposition

@ Consider decomposition of C(ux*, k) composed of a single cube.
@ Restrict the start set for one transition point to transitions on just those
signals in the gate being decomposed.
o Consider all possible combinations of the trigger signals.
@ Only consider concurrent subsets of the context signals.
@ Only consider transitions that occur after those in the start set and before
ux as potential candidates to be in the end set.

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 134 /144

Transition Point Filters for Decomposition

@ If both a set and reset regions of u must be decomposed, use same
restrictions for reverse transition on the new signal.
@ If not:
e Start set should include concurrent transitions which occur after u* and
before any transitions in the first start set.
@ Including the reverse transition of ux in the end set is often useful, but any
transition after ux could be used.

135/144

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design

Algorithm for Decomposition

decomposition (SG, design, maxsize)
HF = find_high_fanin_gates (design, maxsize) ;
if (|HF|=0) return design;
best = |HF|; best;p = design;
TP = find_all_transition_points (SG, design, HF) ;
foreach TP TP
foreach TP TP
if IP= (TPg, TPr) is legal then
CSG = color_state_graph (SG, TPgr, TPEg) ;
if (CSG 1s consistent) then
SG = insert_state_signal (SG, IP);
design = synthesis (SG);
HF = find_high_fanin_gates (design, maxsize) ;
if ((|HF| < best) or ((|HF| = best) and
(cost (design) < cost(bestie)))) then
best = |HF|; best;p = design;
design = decomposition (SG, design) ;
return design;

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 136 /144

Passive/Active Shop: State Graph

Teq_wine+

ack_patron-

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 137 /144

Passive/Active Shop: gC Circuit
ack_wineﬁ

ﬁ CSCo
req_patron
ack_wine
coo |

ack_patron
csco— ¢

req_patron

req_wine
ack_patron
req_patron ‘

CSCO a

ack_wine

req wine
CSCo

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 138 /144

Rising Transition Point Choices

Note that req_wine and ack_patron are trigger signals for ack_wine—+-.

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 139/144

Rising Transition Point Choices

Note that req_wine and ack_patron are trigger signals for ack_wine—+-.

Transition points using context signals:

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 139/144

Rising Transition Point Choices

Note that req_wine and ack_patron are trigger signals for ack_wine—+-.

Transition points using context signals:

({csco—},{ack _wine+})
({req_patron—},{ack_wine+})

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 139/144

Rising Transition Point Choices

Note that req_wine and ack_patron are trigger signals for ack_wine—+-.

Transition points using context signals:

({csco—},{ack _wine+})
({req_patron—},{ack_wine+})

Transition points using trigger signals:

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 139/144

Rising Transition Point Choices

Note that req_wine and ack_patron are trigger signals for ack_wine—+-.

Transition points using context signals:

({csco—},{ack _wine+})
({req_patron—},{ack_wine+})

Transition points using trigger signals:

({req_wine+},{ack wine+})
({ack_patron—},{ack _wine+})
({req_wine+, ack_patron—},{ack_wine+})

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 139/144

Passive/Active Shop: State Graph

Teq_wine+

ack_patron-

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 140/ 144

Falling Transition Point Choices

Consider only ack_wine+, CSC0+, req_wine—, and ack_wine—

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 141 /144

Falling Transition Point Choices

Consider only ack_wine+, CSC0+, req_wine—, and ack_wine—

({ack_wine+},{CSC0+})

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 141 /144

Falling Transition Point Choices

Consider only ack_wine+, CSC0+, req_wine—, and ack_wine—

({ack_wine+},{CSC0+}) OK

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 141 /144

Falling Transition Point Choices

Consider only ack_wine+, CSC0+, req_wine—, and ack_wine—

({ack_wine+},{CSC0+}) OK
({ack_wine+},{req_wine—})

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 141 /144

Falling Transition Point Choices

Consider only ack_wine+, CSC0+, req_wine—, and ack_wine—

({ack_wine+},{CSC0+}) OK
({ack_wine+},{req_wine—}) No, input

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 141 /144

Falling Transition Point Choices

Consider only ack_wine+, CSC0+, req_wine—, and ack_wine—

({ack_wine+},{CSC0+}) OK
({ack_wine+},{req_wine—}) No, input
({ack_wine+},{ack_wine—})

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 141 /144

Falling Transition Point Choices

Consider only ack_wine+, CSC0+, req_wine—, and ack_wine—

({ack_wine+},{CSC0+}) OK
({ack_wine+},{req_wine—}) No, input
({ack_wine+},{ack_wine—}) OK

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 141 /144

Falling Transition Point Choices

Consider only ack_wine+, CSC0+, req_wine—, and ack_wine—

({ack_wine+},{CSC0+}) OK
({ack_wine+},{req_wine—}) No, input
({ack_wine+},{ack_wine—}) OK

)

({CcsCo+}, {req_wine—}

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 141 /144

Falling Transition Point Choices

Consider only ack_wine+, CSC0+, req_wine—, and ack_wine—

({ack_wine+},{CSC0+}) OK
({ack_wine+},{req_wine—}) No, input
({ack_wine+},{ack_wine—}) OK

)

({CcsCo+}, {req_wine—} No, input

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 141 /144

Falling Transition Point Choices

Consider only ack_wine+, CSC0+, req_wine—, and ack_wine—

({ack_wine+},{CSC0+}) OK
({ack_wine+},{req_wine—}) No, input
({ack_wine+},{ack_wine—}) OK
({CSCo+},{req_wine—})
)

({Csco+},{ack_wine—}

No, input

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 141 /144

Falling Transition Point Choices

Consider only ack_wine+, CSC0+, req_wine—, and ack_wine—

({ack_wine+},{CSC0+}) OK
({ack_wine+},{req_wine—}) No, input
({ack_wine+},{ack_wine—}) OK
({CSCo+},{req_wine—})
)

({Csco+},{ack_wine—}

No, input
OK

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 141 /144

Falling Transition Point Choices

Consider only ack_wine+, CSC0+, req_wine—, and ack_wine—

({ack_wine+},{CSC0+}) OK
({ack_wine+},{req_wine—}) No, input
({ack_wine+},{ack_wine—}) OK
({CSCo+},{req_wine—})
({CSscCo+},{ack_wine—})
)

({req_wine—},{CSCO+}

No, input
OK

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 141 /144

Falling Transition Point Choices

Consider only ack_wine+, CSC0+, req_wine—, and ack_wine—

({ack_wine+},{CSC0+}) OK
({ack_wine+},{req_wine—}) No, input
({ack_wine+},{ack_wine—}) OK
({CSCo+},{req_wine—}) No, input
({CSscCo+},{ack_wine—}) OK
)

({req_wine—},{CSCO+} OK

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 141 /144

Falling Transition Point Choices

Consider only ack_wine+, CSC0+, req_wine—, and ack_wine—

({ack_wine+},{CSC0+}) OK
({ack_wine+},{req_wine—}) No, input
({ack_wine+},{ack_wine—}) OK
({CSCo+},{req_wine—}) No, input
({CSscCo+},{ack_wine—}) OK
({req_wine—},{CSCO0+}) OK
)

({req_wine—},{ack_wine—}

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 141 /144

Falling Transition Point Choices

Consider only ack_wine+, CSC0+, req_wine—, and ack_wine—

({ack_wine+},{CSC0+}) OK
({ack_wine+},{req_wine—}) No, input
({ack_wine+},{ack_wine—}) OK

({CSCo+},{req_wine—}) No, input

({CSscCo+},{ack_wine—}) OK

({req_wine—},{CSCO0+}) OK

)

({req_wine—},{ack_wine—} OK

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 141 /144

Falling Transition Point Choices

Consider only ack_wine+, CSC0+, req_wine—, and ack_wine—

({ack_wine+},{CSCO+}
({ack_wine+},{req_wine—}
({ack_wine+},{ack_wine—}

({CcsCo+}, {req_wine—} No, input

) OK

)

)

)
({CSCo+},{ack_wine—}) OK

)

)

)

No, input
OK

({req_wine—},{CSCO+} OK
({req_wine—},{ack_wine—} OK
({CSCO+, req_wine—},{ack_wine—}

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 141 /144

Falling Transition Point Choices

Consider only ack_wine+, CSC0+, req_wine—, and ack_wine—

({ack_wine+},{CSCO+}
({ack_wine+},{req_wine—}
({ack_wine+},{ack_wine—}

({CcsCo+}, {req_wine—} No, input

) OK

)

)

)
({CSCo+},{ack_wine—}) OK

)

)

)

No, input
OK

({req_wine—},{CSCO+} OK
({req_wine—},{ack_wine—} OK
({CSCO+,req _wine—},{ack wine—} OK

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 141 /144

Checking the Insertion Points

@ Form insertion points out of combinations.

Color the graph to determine if the insertion point leads to a consistent
state assignment.

Check if any USC violations become CSC violations.
If okay, derive a new state graph and synthesize the circuit.

If new circuit meets the fanin constraints, then accept.

If not, try the next insertion point.

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 142/144

({req_patron—},{ack_wine+}) ({ack wine+},{ack wine—})

req_wine __|
ack_patron
y @}\
req_patron .
ack_wi ne§ —y ack_wine
Csco req_wine _
CSC0 —
ack_wine y —
\ ack wine

CSCo

ra:Lpa[rOn rw_patron
ack J)atron

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 143 /144

({req_patron—},{ack_wine+}) ({ack wine+},{ack wine—})

req_ wine __|
ack_patron

y G

req_patron }\ .
ack_wi ne§ —y ack_wine
CSCOo req_wine _
CSC0o —
ack_wine y —
\ ack wine
/@7 = %
I‘E(Lpatron rw_patron
ack Joatron

If bubble on ack_patron input to set AND gate for ack_wine is replaced with an
inverter, this circuit is no longer hazard-free.

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 143 /144

({req_patron—},{ack_wine+}) ({ack wine+},{ack wine—})

req_ wine __|
ack_patron _

y G

req_patron }\ .
ack_wi ne§ —y ack_wine
Csco req_wine _
CSCO —
. y |

ack_wine \
ack wine

/@7 = %
rw_patron rm_patron
ack Jaatron

(ROOR1) — req_patron+ — (RRO1F) — ack_patron+ — (R101F) —
CSCO0— — (R10F0) — req _patron — (RFOOO) — ack_patron — (ROOOO)

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 143 /144

Summ

@ Formal definition of speed independence.

@ Complete state coding.

@ Hazard-free logic synthesis of Muller circuits.
@ Hazard-free decomposition.

Chris J. Myers (Lecture 6: Muller Circuits) Asynchronous Circuit Design 144 /144

