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Huffman Circuit Design Method

@ State minimization
@ State assignment

@ Logic minimization
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Circuit Delay Model

@ Uses the bounded gate and wire delay model.
@ Environment must also be constrained:
@ Single-input change (SIC) - each input change must be separated by a
minimum time interval.
@ SIC fundamental mode - the time interval is the maximum delay for circuit
to stabilize.
@ MIC - allow multiple inputs to change.
MIC fundamental mode - waits for circuit to stabilize.
@ Extended burst mode - limited form of MIC operation.

©
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Solving Covering Problems

@ The last step of state minimization, state assignment, and logic synthesis
is to solve a covering problem.

@ A covering problem exists whenever you must select a set of choices with
minimum cost which satisfy a set of constraints.

@ Classic example: selection of the minimum number of prime implicants to
cover all the minterms of a given function.
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Formal Derivation of Covering Problem

Each choice is represented with a Boolean variable x;.

Xx; = 1 implies choice has been included in the solution.

Xx; = 0 implies choice has not been included in the solution.
Covering problem is expressed as a product-of-sums, F.
Each product (or clause) represents a constraint.

Each clause is sum of choices that satisfy the constraint.

e &€ 6 6 6 ¢ ¢

Goal: find x;’s which satisfy all constraints with minimum cost.

t
cost = min) wx (1)
=
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Example Covering Problem

f = X1X_2(X_3+X4)(X_3+X4+X5+X6)(ﬁ+X4+X5 +X6)

(Xa+x1 +x5) (X5 + X)
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Unate versus Binate

@ Unate covering problem - choices appear only in their positive form (i.e.,
uncomplemented).

@ Binate covering problem - choices appear in both positive and negative
form (i.e., complemented).

@ Algorithm presented here considers the more general case of the binate
covering problem, but solution applies to both.
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Constraint Matrix

f is represented using a constraint matrix, A.
Includes a column for each x; variable.
Includes a row for every clause.

Each entry of the matrix ag; is:

e -’ if the variable x; does not appear in the clause,
@ 0’ if the variable appears complemented, and
@ 1’ otherwise.

i row of A is denoted a;.

e ©

j™ column is denoted by A;.
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Constraint Matrix Example

X1 X2 (X3 + Xa) (X3 + Xa + X5 + X ) (X1 + X4 + X5 + Xg)

(74+X1 +X6)(75+X6)
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Binate Covering Problem

@ The binate covering problem is to find an assignment to x of minimum
cost such that for every row a; either
Q J.(g=1)A(x=1);0r
Q . (a,'jZO)/\(XI'ZO).
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bep (A, x,b)

(A,X) = reduce (A,X);
L = lower_bound(A,X);
if (L> cost (b)) thenreturn(b);
if (terminalCase(A)) then

if (A has no rows) return(x); else return(b);
¢ = choose_column (A);
Xe=1; A1 = select_column(A,c); x'=bcp(A' x,b)
if (cost (x')<cost (b)) then

b=x';

if (cost(b)=L) return(b);

=0; A°— remove_column (A,c); x%= bcp(A° x,b)

|f (cost (x%) <cost (b)) then b =x";
return (b) ;
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Reduce Algorithm

reduce (A, x)

do
A =A;
(A,x) = find_essential_rows (A, X);
A = delete_dominating_rows (A);
(A,x) = delete_dominated_columns (A, X);

while (A0 and A#£A');
return (A, Xx) ;
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Essential Rows

@ Arow g; of Ais essential when there exists exactly one j such that a;; is
not equal to ’-’.

This cooresponds to clause consisting of a single literal.

If the literal is x; (i.e., a; = 1), the variable is essential.

If the literal is X; (i.e., a; = 0), the variable is unacceptable.
The matrix A is reduced with respect to the essential literal.

e &6 ¢ o ¢

This variable is set to value of literal, column is removed, and any row
where variable has same value is removed.
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Essential Rows Example

f =

X

1

X2

X3

0
0

X1 X2 (X3 + X4 ) (X3 + Xa + X5+ X6 ) (X1 + X4 + X5 + Xg)
(Xa+x1+ x6) (X5 + X6)

NOoO ok~ W=
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Essential Rows Example

fo= Xa(X3+xa) (X3 +Xa+ X5 + X6 ) (X4 + X5 + X6 ) (X5 + X6)

Xo X3 X4 X5 Xg

0o — — — —

-0 1 1 1

- — 1 1 1

- — — 0 1
X1 = 1

N O~ WD
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Essential Rows Example

fo= (X+xs)(X+Xs+ X5+ Xe)(Xa + X5+ X5) (X5 + Xo)
X3 X4 X5 Xp
0o 1 — — 3
0o 1 1 1 4
A= 1 1 A 5
- — 0 1 7

X1:1,X2:0
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Row Dominance

@ A row ax dominates another row g; if it has all 1’'s and 0’s of a;.

@ Row a, dominates another row g; if for each column A; of A, one of the
following is true:

® gj=—
@ gjj = dayj

@ Removing dominating rows does not affect set of solutions.
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Row Dominance Example

fo= (X+xs)(X+Xs+ X5+ Xe)(Xa + X5+ X5) (X5 + Xo)
X3 X4 X5 Xp
0o 1 — — 3
0o 1 1 1 4
A= 1 1 A 5
- — 0 1 7

X1:1,X2:0
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Row Dominance Example

(X_3+ X4)(X4 + X5 + Xe)(X_5+ Xe)

X3 X4 X5 Xg

|
—
—
—
o
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Column Dominance

@ A column A; dominates another column Ay if for each clause a; of A, one
of the following is true:

@ g;j=1,
¢ g;=—and ay # 1;
o gj=0and ayx = 0.
@ Dominated columns can be removed without affecting the existence of a
solution.
@ When removing a column, the variable is set to 0 which means any rows
including that column with a 0 entry can be removed.
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Column Dominance Example

(% + Xa) (X4 + X5 + X6) (X5 + X6

X3 X4 X5 Xp

|
—
—
—
o
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Column Dominance Example

f= (xa+x)

X4 Xe
A= [1 1] 5

X1=1,x%=0,x3=0,x5 =0
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Checking Weights

@ If weights are not equal, it is necessary to also check the weights of the
columns before removing dominated columns.

@ If weight of dominating column, w;, is greater than weight of dominated
column, wy, then x, should not be removed.

@ Assume w; =3, wo =1,and wg = 1.

X1 X2 X3

24 /234
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bep (A, x,b)

(A,X) = reduce (A,X);
L = lower_bound(A,X);
if (L> cost (b)) thenreturn(b);
if (terminalCase(A)) then

if (A has no rows) return(x); else return(b);
¢ = choose_column (A);
Xe=1; A1 = select_column(A,c); x'=bcp(A' x,b)
if (cost (x')<cost (b)) then

b=x';

if (cost(b)=L) return(b);

=0; A°— remove_column (A,c); x%= bcp(A° x,b)

|f (cost (x%) <cost (b)) then b =x";
return (b) ;
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@ If solved, cost of solution can be determined by Equation 1.

@ Reduced matrix may have a cyclic core.

@ Must test whether or not a good solution can be derived from partial
solution found up to this point.

@ Determine a lower bound, L, on the final cost, starting with the current
partial solution.

@ If Lis greater than or equal to the cost of the best solution found, the
previous best solution is returned.

26 /234
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Maximal Independent Set

@ Finding exact lower bound is as difficult as solving the covering problem.

@ Satisfactory heuristic method is to find a maximal independent set (MIS)
of rows.

@ Two rows are independent when it is not possible to satisfy both by
setting a single variable to 1.

@ Any row which contains a complemented variable is dependent on any
other clause, so we must ignore these rows.
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Lower Bound Algorithm

lower_bound (A, x)

MIS =10
A = delete_rows_with_complemented_variables (A);
do

i =choose_shortest_row (A);

MIS = MIS U {i};

A =delete_intersecting_rows (A,i);
while (A#0);
return (|[MIS| + cost (X));
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Bounding Example

X1 Xo X3 X4 X5 Xe X7 Xg Xo

11— — — — — — -7 A
1 -1 - — — — — - 2
e I 3
- - -1 -1 - - = 4
- -1 - 11 - - - 5
A= _ 1 - - -1 - _ 6
e 7
- - -1 - - -1 = 8
- - -1 - - = =T 9
-1 - — — — — 1 1] 10
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Bounding Example

- - -1 1 - - - - 3

- - -1 -1 - = - 4

- -1 -1 1 - — - 5

e I 6

- - -1 - - -1 - 8

- - — 1 - — — — 1] 9
MIS = {1}
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Bounding Example

X1 Xo X3 X4 X5 Xe X7 Xg Xog
A= [- -1 — — — 1 — —] &6

MIS = {1,3}
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Bounding Example

1 1 - —
1 — 1
-1 1
1___
1 - - _

MIS = {1,3,6}
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bep (A, x,b)

(A,X) = reduce (A,X);
L = lower_bound(A,X);
if (L> cost (b)) thenreturn(b);
if (terminalCase(A)) then

if (A has no rows) return(x); else return(b);
¢ = choose_column (A);
Xe=1; A1 = select_column(A,c); x'=bcp(A' x,b)
if (cost (x')<cost (b)) then

b=x';

if (cost(b)=L) return(b);

=0; A°— remove_column (A,c); x%= bcp(A° x,b)

|f (cost (x%) <cost (b)) then b =x";
return (b) ;
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Termination

@ If A has no more rows, then all the constraints have been satisfied by x,
and it is a terminal case.

@ If no solution exists, it is also a terminal case.
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Infeasible Problems

f=(x+x)X+x)(x1 +X) (X1 +X2)

X1 X2

1 1 1

0 1 2
A= 10 3

00 4
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bep (A, x,b)

(A,X) = reduce (A,X);
L = lower_bound(A,X);
if (L> cost (b)) thenreturn(b);
if (terminalCase(A)) then

if (A has no rows) return(x); else return(b);
¢ = choose_column (A);
Xe=1; A1 = select_column(A,c); x'=bcp(A' x,b)
if (cost (x')<cost (b)) then

b=x';

if (cost(b)=L) return(b);

=0; A°— remove_column (A,c); x%= bcp(A° x,b)

|f (cost (x%) <cost (b)) then b =x";
return (b) ;
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Branching

If A is not a terminal case, matrix is cyclic.

To find minimal solution, must determine column to branch on.
A column intersecting short rows is prefered for branching.
Assign a weight to each row that is inverse of row length.
Sum the weights of all the rows covered by a column.

e 6 © © ¢ ¢

Column x; with highest value is chosen for case splitting.
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Branching Example

X1 Xo X3 X4 X5 Xe X7 Xg Xo

11— — — — — — -7 A
1 -1 - — — — — - 2
e I 3
- - -1 -1 - - = 4
- -1 - 11 - - - 5
A= _ 1 - - -1 - _ 6
e 7
- - -1 - - -1 = 8
- - -1 - - = =T 9
-1 - — — — — 1 1] 10
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e 6 © ¢ ¢ ¢

X is added to the solution and constraint matrix is reduced.
bep is called recursively and result assigned to x”.

If x' better than best, record it.

If x' meets lower bound L, it is minimal.

If not, remove x. from solution and call bep.

If x° better than best, return it.

Chris J. Myers (Lecture 5: Huffman Circuits) Asynchronous Circuit Design
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bep (A, x,b)

(A,X) = reduce (A,X);
L = lower_bound(A,X);
if (L> cost (b)) thenreturn(b);
if (terminalCase(A)) then

if (A has no rows) return(x); else return(b);
¢ = choose_column (A);
Xe=1; A1 = select_column(A,c); x'=bcp(A' x,b)
if (cost (x')<cost (b)) then

b=x';

if (cost(b)=L) return(b);

=0; A°— remove_column (A,c); x%= bcp(A° x,b)

|f (cost (x%) <cost (b)) then b =x";
return (b) ;

Chris J. Myers (Lecture 5: Huffman Circuits) Asynchronous Circuit Design

BCP Algorithm

42/234



Branching Example

X1 Xo X3 X4 X5 Xe X7 Xg Xo

11— — — — — — -7 A
1 -1 - — — — — - 2
e I 3
- - -1 -1 - - = 4
- -1 - 11 - - - 5
A= _ 1 - - -1 - _ 6
e 7
- - -1 - - -1 = 8
- - -1 - - = =T 9
-1 - — — — — 1 1] 10
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Branching Example

X1 Xo X3 X5 Xg X7 Xg Xo

1 1 - — — — — — 1

1 — 1 - — — - - 2

- -1 1 1 - - = 5

A=\ 4 2 Z 1 - _ 6

-1 - - -1 - - 7

|- 1 — — — — 1 1] 10
X4 =1
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Branching Example

X1 Xo X3 X7

11 - — 1
1 - 1 = 2
- -1 - 5
- — 11 6
— 1 - 1 7
-1 - =1 10
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Branching Example

Xo=1,x3=1,x4=1,x5=0,%=0,x3=0,xg=0
cost(x') =3
Recall that L=3

Therefore, we are done.
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Branching Example

X1 Xo X3 X4 X5 Xe X7 Xg Xo

11— — — — — — -7 A
1 -1 - — — — — - 2
e I 3
- - -1 -1 - - = 4
- -1 - 11 - - - 5
A= _ 1 - - -1 - _ 6
e 7
- - -1 - - -1 = 8
- - -1 - - = =T 9
-1 - — — — — 1 1] 10
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Branching Example

11— — — — — —7 A
1 - 1 - - — - - 2
- - -1 - - - - 3
e 4
- -1 11 - - = 5
e T A 6
-1 - - -1 - - 7
- - - - - -1 - 8
- - - - = = = A 9
- 1 — — — — 1 1] 10
X4—0
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Branching Example

|

|

—

—
N~No =

X4:O,X5:1,X6:1,X8:1,Xg:1
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State Minimization Overview

@ Original flow table may contain redundant rows, or states.

@ Reducing number of states, reduces number of state variables.

@ State minimization procedure:

Identify all compatible pairs of states.

Finds all maximal compatibles.

Find set of prime compatibles.

Setup a covering problem where prime compatibles are the solutions, and
states are what needs to be covered.

(7

¢ & ¢

@ For SIC fundamental mode, same as for synchronous FSMs.
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Example Huffman Flow Table

Xq Xo X3 X4 X5 X6 X7
alal0| — |dO|el1|b0|a—-| -
b|b0|dl|a-| — | a—| a1 -
c|b0|d1]ai - - - 19,0
d| — |e—-| — |b=-|b0]| - |a-
el b—-|e-|a-| — | b—]e—-|aj
f1bO0Ojc—|—-1|h1]f1 |g0]| —
g| - ¢t | — |el1| — |g0]f0
h|lal|eO|d1]|b0]|b—-|e—-]|al

Chris J. Myers (Lecture 5: Huffman Circuits)
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oSKQ -~ 0O QO O T
oSKQ -~ 0O QO O T

a b c d e f g a b c d e f g
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Unconditionally Compatible

@ Two states u and v are output compatible when for each input in which
both are specified, they produce the same output.

@ Two states u and v are unconditionally compatible when output
compatible and go to the same next states.

@ When two states u and v are unconditionally compatible, the (u,v) entry
is marked with the symbol ~.
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Example Huffman Flow Table

Xq Xo X3 X4 X5 X6 X7
alal0| — |dO|el1|b0|a—-| -
b|b0|dl|a-| — | a—| a1 -
c|b0|d1]ai - - - 19,0
d| — |e—-| — |b=-|b0]| - |a-
el b—-|e-|a-| — | b—]e—-|aj
f1bO0Ojc—|—-1|h1]f1 |g0]| —
g| - ¢t | — |el1| — |g0]f0
h|lal|eO|d1]|b0]|b—-|e—-]|al
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Example after Marking Unconditional Compatibles

S@Q@ -0 Qoo
2
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Incompatibles

@ When two states u and v are not output compatible, the states are
incompatible.

@ When two states u and v are incompatible, the (u,v) entry is marked with
the symbol x.
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Example Huffman Flow Table

Xq Xo X3 X4 X5 X6 X7
alal0| — |dO|el1|b0|a—-| -
b|b0|dl|a-| — | a—| a1 -
c|b0|d1]ai - - - 19,0
d| — |e—-| — |b=-|b0]| - |a-
el b—-|e-|a-| — | b—]e—-|aj
f1bO0Ojc—|—-1|h1]f1 |g0]| —
g| - ¢t | — |el1| — |g0]f0
h|lal|eO|d1]|b0]|b—-|e—-]|al
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Example after Marking Incompatibles

>oQ -~ 0 O O T

X |~
X | ~
x | x| | x
~ | x X
X | x| x|~ X | x|
a b ¢ d e f g
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Conditionally Compatible

@ Two states are conditionally compatible when there exists differences in
their next state entries.

@ If differing next states are merged, they become compatible.

@ When two states u and v are compatible only when states s and t are
merged then the (u,v) entry is marked with s,t.
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Example Huffman Flow Table

Xq Xo X3 X4 X5 X6 X7
alal0| — |dO|el1|b0|a—-| -
b|b0|dl|a-| — | a—| a1 -
c|b0|d1]ai - - - 19,0
d| — |e—-| — |b=-|b0]| - |a-
el b—-|e-|a-| — | b—]e—-|aj
f1bO0Ojc—|—-1|h1]f1 |g0]| —
g| - ¢t | — |el1| — |g0]f0
h|lal|eO|d1]|b0]|b—-|e—-]|al

Chris J. Myers (Lecture 5: Huffman Circuits)

Asynchronous Circuit Design

60/234



Example after Marking Conditional Compatibles

b ad

c X ~

d b,e a,bde d,eag

e | abad| deabae X ~

f X X c,d X c.ebfeqg

g ~ X c,df,g | cebeaf X e,h

h X X X ~ a,ba,d X
a b c d e f
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Final Check

@ The final step is to check each pair of conditional compatibles.

@ If any pair of next states are known to be incompatible, then the states are
are also incompatible.

@ In this case, the (u,v) entry is marked with the symbol x.

Chris J. Myers (Lecture 5: Huffman Circuits)
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Example after Marking Conditional Compatibles

b ad

c X ~

d b,e a,bde d,eag

e | abad| deabae X ~

f X X c,d X c.ebfeqg

g ~ X c,df,g | cebeaf X e,h

h X X X ~ a,ba,d X
a b c d e f

Chris J. Myers (Lecture 5: Huffman Circuits)

Asynchronous Circuit Design

63 /234



Final Pair Chart

b ad
C X ~
d b,e a,bde deag
e | abad | deabae X ~
f X X c,d X X
g ~ X cdfg | X X e,h
h X X X ~ | abad| x
a b c d e f g
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Maximal Compatibles

@ Next need to find larger sets of compatible states.
@ If Sis compatible, then any subset of S is also compatible.

@ A maximal compatible is a compatible that is not a subset of any larger
compatible.

@ From maximal compatibles, can determine all other compatibles.
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Approach One

@ Initialize compatible list (c-list) with compatible pairs in rightmost column
of pair chart having at least one non-x entry.

Examine the columns from right to left.
Set S; to states in column i which do not contain x.
Intersect S; with each member of the current c-list.

e & ¢ ¢

If the intersection has more than one member, add to the c-list an entry
composed of the intersection unioned with J.

@ Remove duplicate entries and those that are subset of others.

@ Add pairs which consist of i and any members of S; that did not appear in
any of the intersections.

@ c-list plus states not contained in c-list are maximal compatibles.
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Example for Approach One

b ad

C X ~

d b,e a,bde d,ea,g

e | abad | deabae X ~

f X X cd X X

g ~ X cdfg | X X e,h

h X X X ~ | abad| x
a b c d e f

Initialize compatible list (c-list) with compatible pairs in rightmost column of pair
chart having at least one non-x entry.
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Example for Approach One

b ad

C X ~

d b,e a,bde d,ea,g

e | abad| deabae X ~

f X X cd X X

g ~ X cdfg | X X e,h

h X X X ~ | abad| x
a b c d e f
First step: c={fg}

Initialize compatible list (c-list) with compatible pairs in rightmost column of pair
chart having at least one non-x entry.
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Example for Approach One

b ad

C X ~

d b,e a,bde d,ea,g

e | abad | deabae X ~

f X X cd X X

g ~ X cdfg | X X e,h

h X X X ~ | abad| x
a b c d e f
First step: c={fg}

Examine the columns from right to left.
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Example for Approach One

b ad

c X ~

d b,e a,bde d,ea,g

e | abad| deabae X ~

f X X cd X X

g ~ X cdfg | X X e,h

h X X X ~ |abad| X
a b c d e f
First step: c={fg}
Se =

Set S; to states in column / which do not contain x.
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Example for Approach One

b ad

c X ~

d b,e a,bde d,ea,g

e | abad| deabae X ~

f X X cd X X

g ~ X cdfg | X X e,h

h X X X ~ |abad| X
a b c d e f
First step: c={fg}
Se=h:

Set S; to states in column / which do not contain x.

Chris J. Myers (Lecture 5: Huffman Circuits)

Asynchronous Circuit Design

67 /234



Example for Approach One

b ad

C X ~

d b,e a,bde d,ea,g

e | abad| deabae X ~

f X X cd X X

g ~ X cdfg | X X e,h

h X X X ~ | abad| x
a b c d e f
First step: c={fg}
Se=h:

Intersect S; with each member of the current c-list, add to the c-list an entry

composed of the intersection unioned with /.
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Example for Approach One

b ad

c X ~

d b,e a,bde d.ea,g

e | abad | deabae X ~

f X X c,d X X

g ~ X cdfg | X X e,h

h X X X ~ |abad| X
a b c d e f
First step: c={fg}
Se=h:

Add pairs which consist of i and any members of S; that did not appear in any

of the intersections.
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Example for Approach One

b ad

c X ~

d b,e a,bde d.ea,g

e | abad | deabae X ~

f X X c,d X X

g ~ X cdfg | X X e,h

h X X X ~ |abad| X
a b c d e f
First step: c={fg}
Se=h: c = {fg,eh}

Add pairs which consist of i and any members of S; that did not appear in any

of the intersections.
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Example for Approach One

b ad
c X ~
d b,e a,bde d,ea,g
e | abad| deabae X ~
f X X cd X X
g ~ X cdfg | X X e,h
h X X X ~ |abad| X
a b c d e f
First step: c={fg}
Se=h: c = {fg,eh}
Sy =

Set S; to states in column / which do not contain x.
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Example for Approach One

b ad
c X ~
d b,e a,bde d,ea,g
e | abad| deabae X ~
f X X cd X X
g ~ X cdfg | X X e,h
h X X X ~ |abad| X
a b c d e f
First step: c={fg}
Se=h: c = {fg,eh}
Sd =eh:

Set S; to states in column / which do not contain x.

Chris J. Myers (Lecture 5: Huffman Circuits)

Asynchronous Circuit Design

67 /234



Example for Approach One

b ad
C X ~
d b,e a,bde d,ea,g
e | abad| deabae X ~
f X X cd X X
g ~ X cdfg | X X e,h
h X X X ~ | abad| x
a b c d e f
First step: c={fg}
Se=h: c = {fg,eh}
Sd =eh:

Intersect S; with each member of the current c-list, add to the c-list an entry

composed of the intersection unioned with /.
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Example for Approach One

b ad

o X ~

d b,e a,bde d,ea,g

e | abad | deabae X ~

f X X cd X X

g ~ X cdfg | X X e,h

h X X X ~ |abad| X
a b c d e f g
First step: c={fg}
Se=h: c = {fg,eh}

Sd:eh:

¢ = {fg, eh,deh}
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Example for Approach One

b ad

C X ~

d b,e a,bde d,ea,g

e | abad| deabae X ~

f X X cd X X

g ~ X cdfg | X X e,h

h X X X ~ | abad| x
a b c d e f
First step: c={fg}
Se=h: c = {fg,eh}
Sy=-¢eh: ¢ = {fg, eh,deh}

Remove duplicate entries and those that are subset of others.
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Example for Approach One

b ad
c X ~
d b,e a,bde d,e a,g
e | abad | deabae X ~
f X X c,d X X
g ~ X cdfg | x X e,h
h X X X ~ |abad| X
a b C d e f
First step: c={fg}
Se=h: c = {fg,eh}
Sqy=eh: ¢ = {fg,deh}
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Example for Approach One

b ad
c X ~
d b,e a,bde d,e a,g
e | abad | deabae X ~
f X X c,d X X
g ~ X cdfg | x X e,h
h X X X ~ |abad| X
a b C d e f
First step: c={fg}
Se=h: c = {fg,eh}
Sqy=eh: ¢ = {fg,deh}
Sc=
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Example for Approach One

b ad
c X ~
d b,e a,bde d,e a,g
e | abad | deabae X ~
f X X c,d X X
g ~ X cdfg | x X e,h
h X X X ~ |abad| X
a b C d e f
First step: c={fg}
Se=h: c = {fg,eh}
Sqy=eh: ¢ = {fg,deh}
Sc=dfg:
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Example for Approach One

b a,d
c X ~
d b,e a,bde d,e a,g
e | abad | deabae X ~
f X X c,d X X
g ~ X cdfg | x X e,h
h X X X ~ |abad| X
a b C d e f
First step: c={fg}
Se=h: c = {fg,eh}
Sqy=eh: ¢ = {fg,deh}
Sc=dfg: ¢ = {cfg,deh,cd}
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Example for Approach One

b a,d
c X ~
d b,e a,bde d,e a,g
e | abad | deabae X ~
f X X c,d X X
g ~ X cdfg | x X e,h
h X X X ~ |abad| X
a b C d e f
First step: c={fg}
Se=h: c = {fg,eh}
Sqy=eh: ¢ = {fg,deh}
Sc=dfg: ¢ = {cfg,deh,cd}

Sp =
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Example for Approach One

b a,d
c X ~
d b,e a,bde d,e a,g
e | abad | deabae X ~
f X X c,d X X
g ~ X cdfg | x X e,h
h X X X ~ |abad| X
a b C d e f
First step: c={fg}
Se=h: c = {fg,eh}
Sqy=eh: ¢ = {fg,deh}
Sc=dfg: ¢ = {cfg,deh,cd}

Sp = cde:
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Example for Approach One

b a,d
c X ~
d b,e a,bde d,e a,g
e | abad| deabae X ~
f X X c,d X X
g ~ X cdfg | x X e,h
h X X X ~ |abad| X
a b C d e f
First step: c={fg}
Se=h: c = {fg,eh}
Sqy=eh: ¢ = {fg,deh}
Sc=dfg: ¢ = {cfg,deh,cd}
Sp = cde: ¢ = {cfg,deh, bcd, bde}
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Example for Approach One

b a,d
c X ~
d b,e a,bde d,e a,g
e | abad| deabae X ~
f X X c,d X X
g ~ X cdfg | x X e,h
h X X X ~ |abad| X
a b C d e f
First step: c={fg}
Se=h: c = {fg,eh}
Sqy=eh: ¢ = {fg,deh}
Sc=dfg: ¢ = {cfg,deh,cd}
Sp = cde: ¢ = {cfg,deh, bcd, bde}
S.=
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Example for Approach One

b a,d
c X ~
d b,e a,bde d,e a,g
e | abad | deabae X ~
f X X c,d X X
g ~ X cdfg | x X e,h
h X X X ~ |abad| X
a b C d e f
First step: c={fg}
Se=h: c = {fg,eh}
Sqy=eh: ¢ = {fg,deh}
Sc=dfg: ¢ = {cfg,deh,cd}
Sp = cde: ¢ = {cfg,deh, bcd, bde}
Sa=bdeg: c={cfg,deh,bcd,abde,ag}

Chris J. Myers (Lecture 5: Huffman Circuits)

Asynchronous Circuit Design

67 /234



Example for Approach One

b ad
o X ~
d b,e a,bde d.ea,g
e | abad | deabae X ~
f X X c,d X X
g ~ X cdfg | X X e,h
h X X X ~ |abad| X
a b c d e f g
First step: c={fg}
Se=h: c = {fg,eh}
Sq=eh: ¢ = {fg,deh}

S;=dfg: ¢ = {cfg, deh,cd}
Sp = cde: ¢ = {cfg, deh, bcd, bde}
Sa=bdeg: c={cfg,deh,bcd,abde,ag}

c-list plus states not contained in c-list are maximal compatibles.
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Approach Two

@ If s; and s; have been found to be incompatible, we know that no maximal
compatible can include both.

@ Write a Boolean formula that gives the conditions for a set of states to be
compatible.

@ For each state s;, x; = 1 means that s; is in the set.
@ States s;, s; incompatible implies clause (X; + X)) is included.

@ Form conjunction of clauses for each incompatible pair.
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Example for Approach Two

b ad

c X ~

d b,e a,bde d,e a,g

e | abad | deabae X ~

f X X cd X X

g ~ X cdfg | x X e;h

h X X X ~ |abad| X
a b C d e f
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Example for Approach Two

b ad

c X ~

d b,e a,bde d,e a,g

e | abad | deabae X ~

f X X cd X X

g ~ X cdfg | x X e;h

h X X X ~ [abad| x | x|
a b C d e f g
(@a+c)(@a+f(@+h)(b+f(b+9)(b+h)(ct+e
(c+R)(d+7)(d+g)(E+FH(E+g)(F+H)(G+h
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Example for Approach Two

@ Initial Boolean formula for incompatibles:
(@a+7c)(a+f(a+h)(b+f)(b+g)(b+h)(c+e)
(c+h)(d+F)(d+9)(e+F(e+9)(f+h)(g+h)

@ Convert to sum-of-products:

abdeh+abcfg+aefgh+cfgh+bcdefh

@ Each term defines a maximal compatible set where states that do not
occur make up the maximal compatible.

cfg, deh, bcd, abde, ag
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Prime Compatibles

Some states are compatible only if other pairs are merged.

The implied state set for each compatible is called its class set.
The implied compatibles must be selected to guarantee closure.
Cy and C, are compatibles and I'y and I'> are their class sets.

e 6 ¢ ¢ ¢

If Cy C C» then it may appear that C, is better, but if I'y C I'> then Cy may
be better.

@ The best compatibles may not be maximal.

@ A compatible Cy is prime iff there does not exist C, O C; such that
I's CTIy.

@ An optimum solution always uses only prime compatibles.
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Prime Compatible Algorithm

prime_compatibles(C, M) done =0
for(k = |largest(M)|; k > 1; k— —)
foreach(q € M; |q| = k) enqueue(P,q)
foreach(p € P; |p| = k)
if(class_set(CM, p) = 0) continue
foreach(s € max_subsets(p))
if(s € done) continue
I's = class_set(CM, s)
prime = true
foreach(q € P;|q| > k)
if (sCq)
I'q = class_set(CM, q)
if ([sD1Ty)
prime = false; break
if(prime = 1) enqueue(P, s)
done = done U {s}

72/234
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Example for Prime Compatibles

b ad

c X ~

d b,e a,bde d,ea,g

e | abad | deabae X ~

f X X c,d X X

g ~ X cdfg | X X e,h

h X X X ~ | abad| x
a b c d e f

Maximal compatiables = {abde, bcd, cfg, deh, ag}
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Prime Compatibles

| | Prime compatibles | Class set
1 abde 0
2 bed {(a,b),(a,9),(d,e)}
3 cfg {(c,d),(e,h)}
4 deh {(a,b),(a,d)}
5 bc 0
6 cd {(a.g).(d,e)}
7 of {(c.a)
8 cg {(c,a),(f.9)}
9 fg {(e;h)}
10 dh 0
11 ag 0
12 f 0
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Setting up the Covering Problem

@ A collection of prime compatibles forms a valid solution when it is a
closed cover.

@ A collection of compatibles is a cover when all states are contained in
some compatible in the set.

@ A collection is closed when all implied states are contained in some other
compatible.

@ ¢; =1 when the i prime compatible is in the solution.

@ Using ¢; variables, can write a Boolean formula that represents the
conditions for a solution to be a closed cover.

@ The formula is a product-of-sums where each product is a covering or
closure constraint.
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Covering Constraints

@ There is one covering constraint for each state.

@ The product is simply a disjunction of the prime compatibles that include
the state.

@ In other words, for the covering constraint to yield 1, one of the primes
that includes the state must be in the solution. For example, the covering
constraint for state a is:

(c1+ci1)
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Closure Constraints

@ There is a closure constraint for each implied compatible for each prime
compatible.

@ For example, the prime bcd requires the following states to be merged:
(a,b), (a.9), (d,e).

@ Therefore, if we include bed in the cover (i.e., ¢), then we must also
select compatibles which will merge these other state pairs.

@ abde is the only prime compatible that merges a and b.
@ Therefore, we have a closure constraint of the form:

Co> = Cy
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Closure Constraints

@ The prime ag is the only one that merges states a and g, so we also need
a closure constraint of the form:

Co = Cq1

@ Finally, primes abde and deh both merge states d and e, so the resulting
closure constraint is:
= (c1+ca)

@ Converting the implication into disjunctions, we can express the complete
set of closure constraints for bed as follows:

(?2+C1)(5+C11)(5+C1 +C4)
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Prime Compatibles

| | Prime compatibles | Class set
1 abde 0
2 bed {(a,b),(a,9),(d,e)}
3 cfg {(c,d),(e,h)}
4 deh {(a,b),(a,d)}
5 bc 0
6 cd {(a.g).(d,e)}
7 of {(c.a)
8 cg {(c,a),(f.9)}
9 fg {(e;h)}
10 dh 0
11 ag 0
12 f 0
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Product-of-Sums Formulation

(c1+ci1)(er1+ca+cs)(c2+ c3+Cs5+ Cs + C7 + Ca)

(et +ca+ca+cs+cio)(c1+ca)(ca+ o7+ co+ Cr2)
“(e3+cg+co+ci1)(cs+cio)(Ca+cr)(Ca+ci1)(Ca+ ¢ +ca)
(G3+c2+cs)(C3+ca)(Catcr)(Catcr)(Ce+c11)(Cs+C1 +Ca)
(C7+ 2+ Gs)(Ca+ 2+ Cs)(Ca+ 3+ o) (Co + Ca)
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Solving the Covering Problem

Cy C2 C3 Cq C5 Ce c7
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Solving the Covering Problem

Rows 4, 11, and 17 dominate row 5, Row 14 dominates row 15.

cq co c3 cq C5 Cp c7 cg Cy Cc10 c1 C12
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Solving the Covering Problem

Rows 4, 11, and 17 dominate row 5, Row 14 dominates row 15.

Ct C C3 C4 C C C7 Cg Cg Co C11 Ci2
- _ o 4
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Solving the Covering Problem

Cyclic
Ct C C €4 O C C7 C C C0 C11 Ci2
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Solving the Covering Problem

MIS ={1,6,8},s0L=3
Ct C C C O C C7 C C Cio C11 Ci2
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Solving the Covering Problem

(o3

¢y has a branching weight of 1.33 which is best.
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Solving the Covering Problem

1
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Solving the Covering Problem
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Solving the Covering Problem

¢4 essential.

Cc C3 C4 G C C7 C Co C11 Ci2
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Solving the Covering Problem

Co C G C C7 Cg Gy Ci1 Ci2

I S T S B 3

-1 — — 1 — 1 - A 6

-1 - - — 1 1 1 - 7

0o - - — — — — 1 = 10

A= 10 — 1 - - — — - 12
- — -0 - - - 1 = 16

T - — 1 0 - - - - 18

1T - -1 - 0 - - - 19

-1 - = — 0 1 - —] 20

Cq :1704:1,C10:0
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Solving the Covering Problem

C3 C C C7 Cg Cg O
T 1 1 1 1 - —
T - -1 - 1 -
1T - == — 1 1 1
- - = = = — 1
o - 1 - - — -
- - 0 - - - 1
- - 1 0 = - —=
- - 1 - 0 = -
i - - - 0 1 -

Co dominates c¢io.
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Solving the Covering Problem

Co C3 C Cg C7 Cg Co Ci1
1+ 1 1 1 1 1 — =7
-1 - - 1 - 1 -
-1 - - — 1 1 1
o - - - - - — 1
A= i 0 -1 - - — —

— - 0 - - - 1

i - -1 0 — — —

1 - -1 - 0 - -
L - 1 - - 0 1 — |

Cq —1,C4:1,C10:0,C12:0
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Solving the Covering Problem

Cyclic
Co C3 C Cg C7 Cg Cg Ci1
1+ 1 1 1 1 1 — =7
-1 - - 1 - 1 -
-1 - - — 1 1 1
o - - - - - — 1
A= i 0 -1 - — — —
- - - 0 - = — 1
i - -1 0 - — —
1 - -1 - 0 - -
. - 1 - - — 0 1 — |

Cq :1,04:1,01():0,01220

10
12
16
18
19
20

Chris J. Myers (Lecture 5: Huffman Circuits) Asynchronous Circuit Design

86 /234



Solving the Covering Problem

C11

_L_Ll

MIS={3},L=3
Coc C3 C Cg C7 Cg C9
r+ 1 1 1 1 1 —
-1 - - 1 - 1
-1 - — — 1 A1
0 — — — — — —
A= 1 0 -1 - - —
— — — 0 — — —
1 - -1 0 - -
i - -1 - 0 -
I- 1 - — — 0 1
C1 _17C4:1aC1O:0aC12:0

10
12
16
18
19
20

86 /234
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Solving the Covering Problem

¢3 has best branching value of 0.75.

C
M1

C3
1

Cs C C7 Cg Cg Cqq

11 1 1 - =
- - = 1 1 1
EE e —
- 1 - - - _
-0 - — — 1
-1 — 0 = =

cr=1,c4=1,c10=0,c12=0

10
12
16
18
19
20

Chris J. Myers (Lecture 5: Huffman Circuits)
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Solving the Covering Problem

ct=1,c3=1,c4=1,¢10=0,c12=0

Chris J. Myers (Lecture 5: Huffman Circuits)

\
_L_LO_L|
\

10
12
16
18
19
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Solving the Covering Problem

Rows 18 and 19 dominate row 12.

C4 :1703:1704:17010:07012:0

Co

Cs

Ce

_ - O ==

c;

Ci1

10
12
16
18
19

Chris J. Myers (Lecture 5: Huffman Circuits)
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Solving the Covering Problem

Co C C C7 Cg Co C11

E— 10
A= | 1 1 - — - 12
- 0 — — — 1 16

Cy :1,03:1,04:1,010:0,012:0

Chris J. Myers (Lecture 5: Huffman Circuits)
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Solving the Covering Problem

Column ¢q1 dominates cs, ¢7, cg, and cg.

Co G C C7 Cg Cg Cq

0 — — — — — 1 10
A= |1 — 1 — — — — 12
- -0 - - — 1 16

Cq :1703:1,04:1,01020,012:0

Chris J. Myers (Lecture 5: Huffman Circuits)
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Solving the Covering Problem

Co Cg Cq1

0o — 1 10
A= 1 1 - 12

- 0 1 16

cir=1,c3=1,c4=1,65=0,0,=0,c8 =0,c9 =0,c10 =0,c12=0
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Solving the Covering Problem

Cyclic
C Cs C11
0o — 1 10
A= 1 1 - 12
- 0 1 16

ct=1,c3=1,c4=1,65=0,0,=0,c8 =0, =0,c10=0,c12=0

Chris J. Myers (Lecture 5: Huffman Circuits) Asynchronous Circuit Design 89/234



Solving the Covering Problem

MIS = {12}, L = 4.

C Cs C11
o — 1 10
A= 1 1 — 12
0 1 16

ctr=1,c3=1,c4=1,65=0,¢, =0,08 = 0,09 = 0,10 =0,c12=0

Chris J. Myers (Lecture 5: Huffman Circuits)
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Solving the Covering Problem

Branch on co.

C Cs C11

0o — 1 10
A= 1 1 - 12

- 0 1 16

cir=1,c3=1,c4=1,05=0,0,=0,c8 =0,c9 =0,c10 =0,c12=0

Chris J. Myers (Lecture 5: Huffman Circuits)
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Solving the Covering Problem

Cs Ci1
— 1 10
A= [ 0 1 ] 16

Cq :1,02:1,03:1,C4:1,C5:0,07:0,03:0,0920,010:0,012:0
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Solving the Covering Problem

c14 is essential.
Cs Ci1
- 1 10
A= {0 1] 16

C1—102—103—1C4—1C5 007 OCg ch 0,C10:0,C12:0

Chris J. Myers (Lecture 5: Huffman Circuits) Asynchronous Circuit Design 90 /234



Solving the Covering Problem

Solution is {c1, ¢z, 3, Cs, C11 }-
This is best solution so far, but cost of 5 is greater than lower bound of 4.

Cs Ci1
-1 10
A= [ 0 1 ] 16

C1 :1702:17C3:1704:17C520707:0708:0709:07010:07012:0
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Solving the Covering Problem

Let's try co = 0.

C Cs C11

o — 1 10
A= 1 1 — 12

- 0 1 16

ct=1,c3=1,c4=1,65=0,0,=0,c8 =0, =0,c10=0,c12=0
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Solving the Covering Problem

Cs Ci1
1 - 12
A= [o 1 ] 16

Cq :1,02:0,03:1,C4:1,C5:0,07:0,03:0,0920,010:0,012:0
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Solving the Covering Problem

Now must select both ¢ and ¢4, so another solution of cost 5.
Cs Cni
1 — 12
= o] T

Cy :1702:0703:17C4:1705207072070820709207010:07012:0

Chris J. Myers (Lecture 5: Huffman Circuits) Asynchronous Circuit Design 92/234



Solving the Covering Problem

Let’'s go back and try c3 equal to 0.

Co C3
1 1
.
- 1
0 _
A= 1 0
1 —
1 —
L — 1
¢ =1,

Cs

1

Cc C7 G
11 1
- 1 =
E—
1 - —
0o — —
1.0 —
1 - 0
— -0

Co

cs=1,¢10=0,c12=0

10
12
16
18
19
20
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Solving the Covering Problem

11 1 1 1 - — 3
- - -1 - 1 - 6
- = — — 1 1 1 7
0 — — — — — 1 10

A= - - 0 - - — 1 16
1 -1 0 — — - 18
1 — 1 - 0 - - 19
- - — — 0 1 —] 20

ct=1,c3=0,c4=1,c10=0,c12=0
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Solving the Covering Problem

Cyclic

Co C C Cr Cg Co Cit
11 1 1 1 = = 3
- - -1 - 1 - 6
- - — — 1 1 1 7
o - - - - -1 10
A= - - 0 - — — 1 16
i -1 0 - - - 18
1 -1 - 0 - - 19
| - - - = 0 1 — ] 20

Cq :1,C3:0,C4:1,C10:0,C12:0
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Solving the Covering Problem

Branch on cg.

Co C C C7 Cg C9 Ciq

11 1 1 1 — — 3
T 6
- - - -1 1T 7
0 — — — — — 1 10

A= 12 0 - - g 16
1 — 1 0 — — — 18
1 — 1 — 0 — — 19
- - — — 0 1 —] 20

c1=1,c3=0,c4=1,c10=0,c12=0
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Solving the Covering Problem

Co C C C7 Cg OCry

11 1 1 1 — 3
0 — — — — 1 10
A= | - — 0 — — 1 16
1 — 1 0 — — 18
1 — 1 — 0 - 19

ct=1,c3=0,c2=1,09=1,¢10=0,c12=0

Chris J. Myers (Lecture 5: Huffman Circuits) Asynchronous Circuit Design 95/234



Solving the Covering Problem

Column ¢5 dominates ¢; and cg.

cir=1,c3=0,c4,=1,c9=1,c10=0,c12=0

Co

Cs
1

G C7 Cg
1 1 1
0o — -—
1 0 -
1 - 0

C11

1

3
10
16
18
19

95/234
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Solving the Covering Problem

11 1 = 3
A= |0 — — 1 10
- — 0 1 16

G :17C3:07C4:1707:(),08:0709:17010:07012:0

Chris J. Myers (Lecture 5: Huffman Circuits)
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Solving the Covering Problem

Column ¢5 dominates ¢, and cg.

Cc C GCs C11

111 - 3
A= |0 - — 1 10
~ - 0 1 16

C1 :1703:0704:17072070820709:17C10:07C12:0

Chris J. Myers (Lecture 5: Huffman Circuits)
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Solving the Covering Problem

Cs Ci1

G :1703:0704:1)07:0)08:0)09:1701():07012:0
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Solving the Covering Problem

Cs is essential.

Cs C11

ci=1,c3=0,c4=1,6,=0,c8=0,00 =1,¢10=0,¢12=0
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Solving the Covering Problem

Found solution {ci, ¢4, s, Cg } With cost 4.
Not as good as lower bound of 3.
Continue with cg = 0 to obtain solution {c1, ¢z, ¢4, C7,C11}-

Cs Ci1

cr=1,03=0,c4=1,6,=0,c6 =0,c9 =1,c10=0,c12 =0

Chris J. Myers (Lecture 5: Huffman Circuits) Asynchronous Circuit Design 97 /234



Solving the Covering Problem

Let's try ¢; = 0.
Ct C C €4 O C C7 C C C0 C11 Ci2
-4 Z
1

111 - - - -

-
\

I
I

—_ =
| =
(.
(.
= |
(.
= |
(.
(.
= |

®N®UWN =

-1 - - - - - - 12
e 13
- - - - - - 15

o o |

-
I
I
o = |
I

- - - - = 18
0o - - - - 19
0o 1 - - - 20
- - -1 - — — — 0 - - - 21
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Solving the Covering Problem

Co C3 C4 C C C7 Cg C Cip C1i Ci2

I
I
I
® N OwWN =

T 12
- - - - - - - = 13
- - - - - - - 15
- - - -0 - - - - 1 - 16

1 - - - - - 18

1 o - - - - 19
0o 1 - - - 20
- -1 - — — — 0 - - - 21
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Solving the Covering Problem

cq1 is essential and ¢, and ¢, are unacceptable.

Co C3

1 1

|
- o

o o |

Chris J. Myers (Lecture 5: Huffman Circuits)

C4

Ccs

1
1

Cs

c7

Cs

Asynchronous Circuit Design
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C10

C11

C12
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Solving the Covering Problem

c3

Cs Cg C7 Cg Co Cio Ci2

1T - - _
11 1 1 -

02:0,04:0,011 =1

—

D 01w N

13
18
19
20
21

Chris J. Myers (Lecture 5: Huffman Circuits)

Asynchronous Circuit Design

100 /234



Solving the Covering Problem

C3

All rows dominate row 5.

Cs

C6 C7 C Co Cio

1 - - - — _

CQZO,C4ZO,C11 =1

C12_

D 01T W

13
18
19
20
21

Chris J. Myers (Lecture 5: Huffman Circuits)
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Solving the Covering Problem

C3 C C C7 C Co Cio Ci2
A= [- - — — — — — —-] s

C1=Cg=C4=O,C11=1

Chris J. Myers (Lecture 5: Huffman Circuits) Asynchronous Circuit Design 101/234



Solving the Covering Problem

All columns mutually dominate.

C3 C C C7 Cg Co Cio Ci2
A= [- - — — — — — —-] s

ct=0C=c0c=0,c1=1

Chris J. Myers (Lecture 5: Huffman Circuits) Asynchronous Circuit Design 101/234



Solving the Covering Problem

Cil=C=0C=C=C=C=0C=0C—=2Ci=0,¢11=1,c2=0

Chris J. Myers (Lecture 5: Huffman Circuits) Asynchronous Circuit Design 102 /234



Solving the Covering Problem

No solution, so bep returns best solution of {cy, ¢4, Cs, Co } -

A= [ -] 5

Cil=C=0C=C=C=C=0C=C==Ci=0,c11=1,¢2=0

Chris J. Myers (Lecture 5: Huffman Circuits) Asynchronous Circuit Design 102 /234



Final Solution

| [ Prime compatibles | Class set |

1 abde 0

4 deh {(a,b),(a,d)}
5 bc 0

9 fg {(e,)}
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Example Huffman Flow Table

Xq Xo X3 X4 X5 X6 X7
alal0| — |dO|el1|b0|a—-| -
b|b0|dl|a-| — | a—| a1 -
c|b0|d1]ai - - - 19,0
d| — |e—-| — |b=-|b0]| - |a-
el b—-|e-|a-| — | b—]e—-|aj
f1bO0Ojc—|—-1|h1]f1 |g0]| —
g| - ¢t | — |el1| — |g0]f0
h|lal|eO|d1]|b0]|b—-|e—-]|al

Chris J. Myers (Lecture 5: Huffman Circuits)
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Reduced Flow Table

Xq Xo X3 X4 X5 X6 X7
1 1,0 {1,411 | 1,0 1,1 1,0 1,1 1,1
4 1,1 {1,45,0 | 1,1 | {1,5},0 | {1,5},0 | {1,4},— | 1,1
5| {1,5,0 | {1,4},1 | 1,1 - 1,— 1,1 9,0
9 | {1,5},0 5,1 -1 4,1 9,1 9,0 9,0
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Final Reduced Flow Table

X1 Xo X3 X4 X5 X6 X7
1011|1011 10|11 |11
111101110 |10 | 1-|11
101111 = [1-][11]90
1,051 |—-1]41]91]|90/|90

© o1~ =

Chris J. Myers (Lecture 5: Huffman Circuits) Asynchronous Circuit Design
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State Assignment

@ Each row must be encoded using a unique binary code.

@ In synchronous design, a correct encoding can be assigned arbitrarily
using n bits for a flow table with 2" rows or less.

@ In asynchronous design, more care must be taken to ensure that a circuit
can be built that is independent of signal delays.

107 /234
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Critical Races

When present state equals next state, circuit is stable.

-]
@ When codes differ in one bit, the circuit is in transition.

@ When the codes differ in multiple bits, the circuit is racing.
)

A race is critical when differences in delay can cause it to reach different
stable states.

@ A state assignment is correct when it is free of critical races.

Chris J. Myers (Lecture 5: Huffman Circuits) Asynchronous Circuit Design 108 /234



Minimum Transition Time State Assignment

@ A transition from state s; to state s; is direct (denoted [s;,s;]) when all
state variables are excited to change at the same time.

@ [sj,s;] races critically with [sy,s/] when unequal delays can cause these
transitions to pass through a common state.

@ When all state transitions are direct, the state assignment is called a
minimum transition time state assignment.

@ A flow table in which each unstable state leads directly to a stable state is
called a normal flow table.
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A Simple Huffman Flow Table

X1 Xo X3 X4 Yi¥e | Y1Yey3
ala|b|d|c a| 00 000
b|c|b|b]|b b| 01 011
c|lc|d|b]|ec c| 10 110
dla|d|d]|b d| 11 101

Chris J. Myers (Lecture 5: Huffman Circuits)
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Partition Theory

@ A partition T on a set Sis a set of subsets of S such that their pairwise
intersection is empty.

@ The disjoint subsets of & are called blocks.

@ A partition is completely specified if union of subsets is S.
@ Otherwise, the partition is incompletely specified.

@ Elements of S which do not appear in T are unspecified.
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Partition Theory and State Assignment

@ n state variables yq, ..., y, induce t-partitions t4,...,Ts.
@ States with y; = 0 are in one block of T1 while those with y; = 1 are in the
other block.

@ Each partition is composed of only one or two blocks.
@ Order blocks appear or which is assigned a 0 or 1 is arbitrary.

@ Once we find one valid assignment, others can be found by
complementing or reordering variables.
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Partition Example

YiYo | iYols
a| 00 000
b| 01 011
c| 10 110
d| 11 101

113/234

Chris J. Myers (Lecture 5: Huffman Circuits)

Asynchronous Circuit Design



Partition Example

t = {ab;cd}
Yiyz | Y1Ye)s % = {ac;bd)
al 00 | 000 2 - ’
b| 01 011
t = {ab;cd}
c| 10 110
d| 11 | 101 © = {ad;bc}
13 = {ac;bd}
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Partition List

@ Ty < Ty iff all elements specified in 1o are specified in 4 and each block
of o appears in a unique block of .
@ A partition listis a collection of partitions of the form:
o { 5p,Sq; Sr,Ss } Where [sp,54] and [s;,Ss] are transitions in the same column.
o {8p,5q; St } where [sp,54] and is a transition in the same column as the
stable state s;.
@ A state assignment for a normal flow table is a minimum transition time
assignment free of critical races iff each partition in the partition list is <
some T;.

Chris J. Myers (Lecture 5: Huffman Circuits) Asynchronous Circuit Design 115/234



Tracey’s Theorem

Theorem 5.2 (Tracey, 1966) A row assignment allotting one y-state per row
can be used for direct transition realization of normal flow tables without critical
races if, and only if, for every transition [s;, s;|:

@ [f [sm, Sp] is another transition in the same column, then at least one
y-variable partitions the pair {s;,s;} and the pair {sm, sp} into separate
blocks.

© If s¢ is a stable state in the same column then at least one y-variable
partitions the pair {s;, s;} and the state si into separate blocks.

@ For i # j, si and s; are in separate blocks of at least one y-variable
partition.
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Partition List Example

a
b
c
d

Chris J. Myers (Lecture 5: Huffman Circuits)

Xq Xo X3 X4
al|b|d]|c
c|b|b|b
c|d|bjec
a|d|d|b

Asynchronous Circuit Design
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Partition List Example

X1 X2 X3 X
L R ny = {ad;bc}
ala|b|d|c
n, = {ab;cd}
blc|b|b|b
nz3 = {ad;bc}
clc|d|b|c . {ac: bd}
dla|[d|d]b 4 ’
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Xq Xo X3 X4
alal|b|d]|ec
blc|b|b]|b
clc|d|b]|ec
dlia|d|d|b

YiYo | V1iYo)3
al| 00 000
b | 01 011
c| 10 110
d| 11 101

Chris J. Myers (Lecture 5: Huffman Circuits)
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T
T2
T3
Ty

T
T2

T
T2
T3
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Larger Example

X1 Xo X3 X4
al|ald|cl1|d0]c1i
b|a0O]| f1 |c1]|DbO0
c| f1|c1]cl1]|ec1
d|—-—1d,0]d0| b0
e|a0]|do0|c1]e,1
flf1 ] f1 | ——1ea

118/234
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Larger Example

. = {ab;cf}
n, = {aecf}
X1 Xo X3 X4 . .
ala0|cl1|do]c1 23 B ?{ZEZ?]%
b a0 | f1 |cT|Dbo0 L ’
ns = {bfide}
c|f1 ¢l |cl|ci ne — {ad:bc}
d|—=[d0[do|Dbo nﬁ B (2 d?ce}
e|a0|d0|cl|ei T ’
ng = {ac;bd}
flf1 ] f1|——1e
g = {ac;ef}
T = {bd,ef}
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Boolean Matrix Example

T =
T =
T3 =
Ty =
s =
g =
T, =
g =
g =
Mo =

{ab; cf} 2

T4 0
{ae; cf}

T 0
{ac; de} T 0
{ac; bf} 7t3 0
{bf; de} n“ -
{ad;bc} °

Tl 0
{ad;ce} - 0
{ac; bd} !

Tlg 0
{ac; ef} = 0
{bd;ef} o

Tio —

o

- O = |

oo = =0

O O = = |

- O o = |

o

| =1 =1 =0 | @

—

—_

o = |

Chris J. Myers (Lecture 5: Huffman Circuits)
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Boolean Matrix and State Assignment

@ State assignment problem is to find a Boolean matrix C with a minimum
number of rows such that each row in the original partition list matrix is
covered by some row of C.

@ The rows of this reduced matrix represent the t-partitions.
@ The columns of this matrix represent a state assignment.
@ Number of rows is the same as the number of state variables.
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Intersection

@ Two rows of a Boolean matrix, R; and R, have an intersection if R; and R;
agree wherever both R; and R; are specified.

@ The intersection is formed by creating a row which has specified values
taken from either R; or R;.

@ Entries where neither R; or R; are specified are left unspecified.

@ Arow, R;, includes another row, R;, when R; agrees with R; wherever R;
is specified.

@ Arow, R;, covers another row, R;, if R; includes R; or A; includes the
complement of R;.

@ The complement of R; is denoted R;.
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Boolean Matrix Reduction

a b c d e f
T4 o o0 1 - - 1
m 0 - 1 - 0 1
s 0 - 0 1 1 -
©n 0 1 0 - - 1
 — 0 — 1 0
T 0 1 1 o - -
7 o - 1 0 1 -
g 0 1 0 1 - -
Tl o - 0 - 1 1
T10 - 0 - 0 1 1

Chris J. Myers (Lecture 5: Huffman Circuits) Asynchronous Circuit Design 122/234



Boolean Matrix Reduction

a b c d e f

(TE1 ,7'52) o 01 —-— 0 1
T3 o - 0 1 1 -
T4 o1 0 - - 1
5 - 0 - 1 0
Ts 0 1 1 o - -
f174 o - 1 0 -

Tg o1 0 1 -

Tl o - 0 - 1 1

T10 - 0 - 0 1 1
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Boolean Matrix Reduction

o

(T4,72)
(T03,704)
5
Tlg
74
Tg
Ty
T10 - 0 - 0 1 1

O o0oo0oo | ooow

- | - O =2 00T
OO = = | O=20
| ~ 0o = = |
- | = = oo
- |
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Boolean Matrix Reduction

a b c d e f

(751 ,752) 0O 0 1 -0 1
(Maamg) O 1 0 1 1 1
Tls - 0 - 1 1 0
T o 1 1 0o - -
7 o - 1 0 1 -

T o - 0 - 1 1
T - 0 - 0 1 1
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Boolean Matrix Reduction

a b c d e f

(71',1 ,71',2) 0O 0 1 - 0 1
(7'53,754,7!78,759) 0 1 0 1 1 1
s - 0 - 1 1 0
Tl o 1 1 0 - -
7 o - 1 0 1 -

To0 - 0 - 0 1 1
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Boolean Matrix Reduction

a b c d e f
(7'51 ,752) o 01t - 0 1
(753 ,T04,T0g ,TCg) 0 1 0 1 1 1
(Tt5,T6) 01 1 0 0 1
7 o -1 0 1 -

T10 - 0 0 1
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Boolean Matrix Reduction

a b c d e f

(7t1 ,7t2) 0 0 1 - 0 1
(753,7'54,758,759) 0 1 0 1 1 1
(TT5,T0s) o1t 1 0 0 1
(7'57,7'510) 0o 0 1 0 1 1
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Boolean Matrix Reduction

YiYoy3ya
a b c d e f a 0000
(104,702) o 01 — 0 1 b 0110
(m3,M4,g,Mg) O 1 0 1 1 1 c 1011
(Tt5,706) o 1t 1 0 0 1 d -100
(1t7,710) O o1 0 1 1 e 0101
KIS
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Minimal Boolean Matrix

y1y2y3
000

011
110
001
101
A

(T04,77,T10)
(T2, T, T06)
(T3,T04,Tg, o)

coow
- 2o 0oT
o = =0
N =Y
—~— oo
— —

—h‘CDQ.OO'QJ
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Intersectables

o If a set of rows, m;, T;, ..., Tk, have an intersection, they are called an
intersectable.

@ An intersectable may be enlarged by adding a row 7, iff T, has an
intersection with every element in the set.

@ An intersectable which cannot be enlarged further is called a maximal
intersectable.

125/234
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Finding Pairwise Intersectables

@ For each pair for rows, R; and R;, check whether R; and R; have an
intersection.

@ Also must check whether R; and ﬁ, have an intersection.

@ If there are n partitions to cover, this implies the need to consider 2n

ordered partitions.

Theorem 5.3 (Unger, 1969) Let D be a set of ordered partitions derived
from some set of unordered partitions. For some state s, label as py, po,
etc. the members of D having s in their left sets, and label as gy, g, etc.
the members of D that do not contain s in either set. Then a minimal set
of maximal intersectibles covering each member of D or its complement
can be found by considering only the ordered partitions labeled as p’s or
g’s. (The complements of the p’s can be ignored.)
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Finding Pairwise Intersectables

Tt

T
T3
Ty
Tis
Tlg
7
Tig
Ty
To

a b ¢c d e f
O 01 — — 1
O -1 - 0 1
0 - 0 1 -
o1 0 - - 1
- 0 - 1 1 0
o1 1 0 - -
o -1 0 1 -—
0 0o 1 -

O - 0 - 1 1
- 0 - 0 1 A1
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Finding Pairwise Intersectables

T2
T3
Tty
N5
Tle
7
Tg
Tig
To

To

T M M3 Ty N5 Tg N7 Tg Ng Ty TNs
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Finding Pairwise Intersectables

T2
T3
Tty
N5
Tle
7
Tg
Tig
To

2

XX
2| X[ X| X

XIX| QX X[ | X[X|X|X]|?
X[ QX[ X|X|X[2|X|X]|X
X | X | X2

X 2| X2

X | X|X|X|X|X]|X

X[ Q| X|[X]|X]|?

X | X || X]|X

XX |2

X

X

To

a
a
N
a
w
a
s
a
[$)]
a
[}
a
Ko
a
[ee]
a
©
a
o
a
(83}
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Finding Maximal Intersectables

(T4, T2) (701, 77) (T4, Te10) (T2, o6 ) (T2, Ts ) (T3, o4 ) (T3, s ) (T3, Tog ) (73, 7o)
(T4, 78) (T4, g ) (T4, 05 ) (T, 707 ) (W6, W5 ) (707, 010 ) (T, T ) (Tee, W10) (Mo, T10)

First step: ¢ ={(mg,T10)}
Spg =
Sr, =
Sp, =
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Finding Maximal Intersectables

(T4, T2) (701, 77) (T4, Te10) (T2, o6 ) (T2, Ts ) (T3, o4 ) (T3, s ) (T3, Tog ) (73, 7o)
(T4, 78) (T4, g ) (T4, 05 ) (T, 707 ) (W6, W5 ) (707, 010 ) (T, T ) (Tee, W10) (Mo, T10)

First step: ¢ ={(mg,T10)}
STEg = TCQ,T‘IO:
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Finding Maximal Intersectables

(T4, T2) (701, 77) (T4, Te10) (T2, o6 ) (T2, Ts ) (T3, o4 ) (T3, s ) (T3, Tog ) (73, 7o)
(T4, 78) (T4, g ) (T4, 05 ) (T, 707 ) (W6, W5 ) (707, 010 ) (T, T ) (Tee, W10) (Mo, T10)

First step: ¢ ={(mg,T10)}

Spg = M9, T1o: ¢ = {(m9,T10), (Te, Ta), (T8, T10) }
Sr, =

Sp, =
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Finding Maximal Intersectables

(T4, T2) (701, 77) (T4, Te10) (T2, o6 ) (T2, Ts ) (T3, o4 ) (T3, s ) (T3, Tog ) (73, 7o)
(T4, 78) (T4, g ) (T4, 05 ) (T, 707 ) (W6, W5 ) (707, 010 ) (T, T ) (Tee, W10) (Mo, T10)

First step: ¢ = {(mg,T10)}

Spg = M9, T1o: ¢ = {(m9,T10), (Te, Ta), (T8, T10) }
Sn7 = T0:

Sfce —

Sn4 —

Sna —
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Finding Maximal Intersectables

(T4, T2) (701, 77) (T4, Te10) (T2, o6 ) (T2, Ts ) (T3, o4 ) (T3, s ) (T3, Tog ) (73, 7o)
(T4, 78) (T4, g ) (T4, 05 ) (T, 707 ) (W6, W5 ) (707, 010 ) (T, T ) (Tee, W10) (Mo, T10)

First step: ¢ ={(mg,m0)}

Spg = Mo, T10: ¢ = {(mg,T10), (T, ), (Tg, T10) }

Sy, = To: ¢ = {(mg,T10), (s, o), (Tg, T10), (7, T10) }
Sfce —

Sn4 —

Sna -
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Finding Maximal Intersectables

(T4, T2) (701, 77) (T4, Te10) (T2, o6 ) (T2, Ts ) (T3, o4 ) (T3, s ) (T3, Tog ) (73, 7o)
(T4, 78) (T4, g ) (T4, 05 ) (T, 707 ) (W6, W5 ) (707, 010 ) (T, T ) (Tee, W10) (Mo, T10)

First step: ¢ = {(mg,T10)}

Spg = Mo, T10: ¢ = {(m9,T10), (Te, Ta), (T8, T10) }

Sy, = To: ¢ = {(mg,T10), (s, o), (Tg, T10), (7, T10) }
STCG :TE7,TT52

Sn4 —

Sna —
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Finding Maximal Intersectables

(T4, T2) (701, 77) (T4, Te10) (T2, o6 ) (T2, Ts ) (T3, o4 ) (T3, s ) (T3, Tog ) (73, 7o)
(T4, 78) (T4, g ) (T4, 05 ) (T, 707 ) (W6, W5 ) (707, 010 ) (T, T ) (Tee, W10) (Mo, T10)

First step: ¢ ={(mg,T10)}

Spg = M9, T1o: ¢ = {(m9,T10), (Te, Ta), (T8, T10) }

Sr, = Tyo: ¢ = {(mg,T10), (g, Mg ), (Mg, T10), (M7, T10) }

Sp, = 17, Ts: ¢ = {(mg,T10), (g, T9), (g, T10), (77, T10),
(755,757),(755,7575)}

S, =

S, =
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Finding Maximal Intersectables

(T4, T2) (701, 77) (T4, Te10) (T2, o6 ) (T2, Ts ) (T3, o4 ) (T3, s ) (T3, Tog ) (73, 7o)
(T4, 78) (T4, g ) (T4, 05 ) (T, 707 ) (W6, W5 ) (707, 010 ) (T, T ) (Tee, W10) (Mo, T10)

First step: ¢ ={(mg,T10)}

Sngzng,ﬁ: C={(75977510)7(W87n9)>(n8>ﬁ)}

Sr, = Tyo: ¢ = {(mg,T10), (g, Mg ), (Mg, T10), (M7, T10) }

Sp, = 17, Ts: ¢ = {(mg,T10), (g, T9), (g, T10), (77, T10),
(755,757),(755,7575)}

STC4 :ng,ng,ff{,:

Sna =
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Finding Maximal Intersectables

(T4, T2) (701, 77) (T4, Te10) (T2, o6 ) (T2, Ts ) (T3, o4 ) (T3, s ) (T3, Tog ) (73, 7o)
(T4, 78) (T4, g ) (T4, 05 ) (T, 707 ) (W6, W5 ) (707, 010 ) (T, T ) (Tee, W10) (Mo, T10)

First step: ¢ ={(mg,T10)}

Spg = M9, T1o: ¢ = {(m9,T10), (T8, Tg), (Mg, T10) }

Sr, = To: ¢ = {(mg,T10), (T8, 9), (Tg, T10), (M7, T10) }
Sny = T7, Ts: ¢ = {(m9,T10), (Te, Tg), (g, T10), (7, T10)

STC4 :ng,ng,ff{,:

{(mg,m10), (8, T10), (%7, T10), (W6, T07),
(T6,T5), (T4, Mg, Tg), (T4, T5) }

)
10)

)
(T6,77), (T6, T5) }
)

(

Sna -
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Finding Maximal Intersectables

(T4, T2) (701, 77) (T4, Te10) (T2, o6 ) (T2, Ts ) (T3, o4 ) (T3, s ) (T3, Tog ) (73, 7o)
(T4, 78) (T4, g ) (T4, 05 ) (T, 707 ) (W6, W5 ) (707, 010 ) (T, T ) (Tee, W10) (Mo, T10)

First step: ¢ ={(mg,T10)}

Spg = M9, T1o: ¢ = {(m9,T10), (T8, Tg), (Mg, T10) }

Sr, = To: ¢ = {(mg,T10), (T8, 9), (Tg, T10), (M7, T10) }
Sny = T7, Ts: ¢ = {(m9,T10), (Te, Tg), (g, T10), (7, T10)

STC4 :ng,ng,ﬁ:

{(mg,m10), (8, T10), (%7, T10), (W6, T07),
(T6,T5), (T4, Mg, Tg), (T4, T5) }

)
10)

)
(T6,77), (T6, T5) }
)

(

STC;; = T4, 75, g, Ty
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Finding Maximal Intersectables

(T4, T2) (701, 77) (T4, Te10) (T2, o6 ) (T2, Ts ) (T3, o4 ) (T3, s ) (T3, Tog ) (73, 7o)
(T4, 78) (T4, g ) (T4, 05 ) (T, 707 ) (W6, W5 ) (707, 010 ) (T, T ) (Tee, W10) (Mo, T10)

First step: ¢ ={(mg,m0)}

Sre = Tlg, Ti0: ¢ = {(m, T10), (g, g),, (T3, T10) }

871',7 = To: c= {(TC O)a(ﬁB ),(7’53,75710),(757,7510)}

Spe = M7, Ts: ¢ = {(m9,T10), (Te, Tg), (g, T10), (7, T10)
(T6,77), (T, Ts) }

Sp, = Tg, Mg, N5 = {(m9,T10), (T8, T10), (7, T10), (6, T07),
(M6, T0s), (T4, g, o), (T4, s) }

Spy, = T4, M5, N, Mg = {(m9,T10), (T8, T10), (7, T10), (6, T07),
(76, Ts ), (T4, 5, (T3, T4, g, g ),
(Tfs,ﬂs)}
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Finding Maximal Intersectables (cont)

(T4, 72) (701, 707) (T4, Te10) (T2, Tog ) (T2, Ts ) (T3, o4 ) (T3, 75 ) (T3, Tog ) (73, 7o)
(4,8 ) (T4, o9 ) (T4, T5) (M6, 07 ) (706, 75 ) (77, 10 ) (e, oo ) (Teg, 10) (To9, T10)

Sr, = M4, M5, Mg, Mg € = {(Tg,T10), (Tg, T10), (7, T10), (W6, 7)),
(756,7‘575),(754,7575),(753,754,758,759),
(75377T5)}
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Finding Maximal Intersectables (cont)

(T4, 72) (701, 707) (T4, Te10) (T2, Tog ) (T2, Ts ) (T3, o4 ) (T3, 75 ) (T3, Tog ) (73, 7o)
(4,8 ) (T4, o9 ) (T4, T5) (M6, 07 ) (706, 75 ) (77, 10 ) (e, oo ) (Teg, 10) (To9, T10)

Sny = T4, M5, Mg, Mg: € = {(T9,T10), (Ts, T10), (77, T10), (T, 07),
(6, Ts5), (T4, T05), (T3, T4, Mg, g ),
(73, 75) }

Sﬂ:z :ﬂs,ﬁl
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Finding Maximal Intersectables (cont)

(T4, 72) (701, 707) (T4, Te10) (T2, Tog ) (T2, Ts ) (T3, o4 ) (T3, 75 ) (T3, Tog ) (73, 7o)
(4,8 ) (T4, o9 ) (T4, T5) (M6, 07 ) (706, 75 ) (77, 10 ) (e, oo ) (Teg, 10) (To9, T10)

Sny = T4, M5, Mg, Mg: € = {(T9,T10), (Ts, T10), (77, T10), (T, 07),
(6, Ts5), (T4, T05), (T3, T4, Mg, g ),
(T3, 705) }

Sr, = T, 5" ¢ = {(®9,T10), (T8, T10), (7, 10), (T, 707),
(T4,Ts5), (3, T4, g, Tg), (T3, T0s5),
(752,7'56,7[75)}
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Finding Maximal Intersectables (cont)

(T4, 72) (701, 707) (T4, Te10) (T2, Tog ) (T2, Ts ) (T3, o4 ) (T3, 75 ) (T3, Tog ) (73, 7o)
(4,8 ) (T4, o9 ) (T4, T5) (M6, 07 ) (706, 75 ) (77, 10 ) (e, oo ) (Teg, 10) (To9, T10)

Sny = T4, M5, Mg, Mg: € = {(T9,T10), (Ts, T10), (77, T10), (T, 07),
(6, Ts5), (T4, T05), (T3, T4, Mg, g ),
(T3, 705) }

Sr, = T, 5" ¢ = {(®9,T10), (T8, T10), (7, 10), (T, 707),
(T4,Ts5), (3, T4, g, Tg), (T3, T0s5),
(752,7'56,7[75)}

Sm = T2, 7, T
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Finding Maximal Intersectables (cont)

(T4, 72) (701, 707) (T4, Te10) (T2, Tog ) (T2, Ts ) (T3, o4 ) (T3, 75 ) (T3, Tog ) (73, 7o)
(4,8 ) (T4, o9 ) (T4, T5) (M6, 07 ) (706, 75 ) (77, 10 ) (e, oo ) (Teg, 10) (To9, T10)

Sny = T4, M5, Mg, Mg: € = {(T9,T10), (Ts, T10), (77, T10), (T, 07),
(6, Ts5), (T4, T05), (T3, T4, Mg, g ),
(T3, 705) }

Sr, = T, 5" ¢ = {(®9,T10), (T8, T10), (7, 10), (T, 707),
(T4,Ts5), (3, T4, g, Tg), (T3, T0s5),
(752,7'56,7[75)}

Sp, = T2, M7, T0: €= {(Tg,T10), (e, T10), (W6, 707), (T4, W5,
(103,74, T8, o), (T3, T0s5), (T2, 6, s,
(101,77, T10), (01, 2) }
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Finding Maximal Intersectables (cont)

X1 (751 ,7t2)

X2 (751,7t7,7t10)
X3 (T2, M6, Ts5)
X4 (T3, T4, Tg, o)
X5 (T3, 5)

X6 (T4, T5)

X7 (16, 707)

Xg (g, T10)

X9 (9, T10)
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Setting up the Covering Problem

[ 1 1 - - — - - - = T
1 -1 - - - - - - Tl

1 1 - - - - T3
- - -1 -1 - - - Ty
- -1 -1 1 - - - Ts
- -1 - - - 1 - - Tlg
-1 - - - -1 - - (1%
- - - 1 - Tlg
- - = =1 Tl
-1 - - - - - 1 1 T0
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Setting up the Covering Problem

Cyclic with L =3

[ 1 1 - - — - - - = T
1 -1 - - - - - - Tl

1 1 - - - - T3
- - -1 -1 - - - Ty
- -1 -1 1 - - - Ts
- -1 - - - 1 - - Tlg
-1 - - - -1 - - (1%
- - - 1 - Tlg
- - = =1 Tl
-1 - - - - - 1 1 T0
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Setting up the Covering Problem

Cyclic with L =3
Branch on x4

X1 Xo X3 X4 X5 Xg X7 Xg Xo
[ 1 1 - - — — — — = T
1 -1 - - - - - - Tl
1 - - - - T3
Ty

|
|
|
— —
|
—
|
|
|

- -1 - - - 1 - - Tlg
-1 - - - -1 - - (1%
- - - 1 - Tlg
- - = =1 Tl
-1 - - - - - 1 1 T0
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Reduced Covering Problem

T

T2
Tis
Tlg
7
To




Reduced Covering Problem

Column x5 dominates x5 and xg
Column x> dominates xg and xg

X1 Xo
11

1 —

A= |
— 1

| — 1
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X5 X
1 1
X4 =1

X7

—_

Xg

T

T2
Tis
Tlg
7
To



Reduced Covering Problem

X4 = 1,X5 :O,XG = O,Xs = O,Xg =0

X1 Xo X3 X7

—_ =

T

T2
Ts
Tle
7
To

Chris J. Myers (Lecture 5: Huffman Circuits)
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Reduced Covering Problem

Xo and x3 are now essential

X1 Xo X3 X7

|
|
— — —
—_ . |

- 1 - —

=0,%=0,x3g=0,x=0

T

T2
Ts
Tle
7
To
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Minimal Boolean Matrix

1yoys
000
11|
10|
001
EETTE
1

Xo : (T1,T7,T10)
X3 (T2,T5,Tg)
Xq @ (T3,T4,Tg,Tog)

cocow
- 2 oo
o = =0
—~— oo a
— o =2
—_ = k-

=e]e]o]=]=]
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Original Flow Table

- O Q O T ©

X1 Xo X3 X4
a,0 | c1|do0| c1
a0 | f1 |c1 | b0
f1 |¢c1|c1|c1
—-— [ d0]d0 | b0
a,0 | d,0 | c1 | e,
f1 ] f1 | ——1e(

136 /234

Chris J. Myers (Lecture 5: Huffman Circuits)

Asynchronous Circuit Design



Encoded Flow Table

Xq X2 X3 X4
000 | 000,0 | 011,1 | 100,0 | 011,1
110 | 000,0 | 111,1 | 011,1 | 110,0
011 | 111,1 | 011,1 | 011,11 | 011,1

100 | —- | 100,0 | 100,0 | 110,0
101 | 000,0 | 100,0 | O11,1 | 101,1
111 | 11,1 | 1111 -— | 111,1
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Fed-Back Outputs as State Variables

@ Previously ignored outputs during state assignment.
@ May be possible to feed back outputs as state variables.

@ Determine in each state under each input the value of each output upon
entry.

@ This information can satisfy some partitions.
@ Satisfying partitions, can reduce number of state variables.

Chris J. Myers (Lecture 5: Huffman Circuits) Asynchronous Circuit Design 138/234



Example Flow Table

Xq Xo X3 X4
al|ald|cl1|d0]c1
b|a0| f,1 | c1|Db0
c|f1]c1]|ct1|c1i
d|—-—-1]4d0|do0| b0
e| a0 |do|ct1]|en
flf1]f1|——]e1

T
T2
T3
Ty
Tis
Tle
7
Tig
Ty
To

{ab; cf}
{ae; cf}
{ac; de}
{ac; bf}
{bf;de}
{ad;bc}
{ad;ce}
{ac; bd}
{ac; ef}
{bd; ef}

Chris J. Myers (Lecture 5: Huffman Circuits)

Asynchronous Circuit Design

139/234



Example Flow Table

Xq Xo X3 X4
(0)a|a0d|c1|do|c1
b|a0| f,1 | c1|Db0
c|f1]c1]|ct1|c1i
d|—-—-1]4d0|do0| b0

e| a0 |do|ct1]|en
flf1]f1|——]e1

T
T2
T3
Ty
Tis
Tle
7
Tig
Ty
To

{ab; cf}
{ae; cf}
{ac; de}
{ac; bf}
{bf;de}
{ad;bc}
{ad;ce}
{ac; bd}
{ac; ef}
{bd; ef}

Chris J. Myers (Lecture 5: Huffman Circuits)
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Example Flow Table

Xq Xo X3 X4
(0)a|a0d|c1|do|c1
O0Ob|a0]| f,1|c1|Db0

c|f1]c1]|ct1|c1i
d|—-—-1]4d0|do0| b0
e| a0 |do|ct1]|en
flf1]f1|——]e1

Chris J. Myers (Lecture 5: Huffman Circuits)

T
T2
T3
Ty
Tis
Tle
7
Tig
Ty
To
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{ab; cf}
{ae; cf}
{ac; de}
{ac; bf}
{bf;de}
{ad;bc}
{ad;ce}
{ac; bd}
{ac; ef}
{bd; ef}



Example Flow Table

Xq Xo X3 X4
(0)a|a0d|c1|do|c1
O0Ob|a0]| f,1|c1|Db0
(e | 1 | c1 | c1]|c

d|—-—1]4d0|d0| b0
e| a0 |do|ct1]|en
flf1]f1|—-—]en

T
T2
T3
Ty
Tis
Tle
7
Tig
Ty
To

{ab; cf}
{ae; cf}
{ac; de}
{ac; bf}
{bf;de}
{ad;bc}
{ad;ce}
{ac; bd}
{ac; ef}
{bd; ef}
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Modified Partition List

a b c d e f
T, = {ae,cf} T 0 — 1 — 0
Moo= facdel o _ g0 1 1 -
meo= facbfy R g
Ts = {bf de} Lo 6 - 11 0
T = fadbel ot
T = fackbd} ot
o= facef} 0t o

Chris J. Myers (Lecture 5: Huffman Circuits) Asynchronous Circuit Design 140/234



Pairwise Intersectibles

T3 X

Ty X ~

Tl X ~ X

g | ~ | X | x| x

g X ~ ~ X X

Tg | X |~ | ~] x| x|~

T |~ | x| ~] x SEd

Mo T3 Ty Ts5 Tg Tg Tg

(2,6 ) (T2, 75 ) (T3, T4 ) (T3, Ts ) (70, Tog ) (70, T ) (T, )
(T4, T9) (T4, Ts) (6, 05 ) (T, o)
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Maximal Intersectibles

First step:
STCG = f5:
Sp, = Tg, Mg, s

STC3 = T4, 5, g, Tlg:

Sn2 — TCB,E

T4, Mg, Tg), (T4, Ts5), (6, T5) }

T3, T4, g, Mg, (T3, 75 ), (T4, W5 ), (T, 7)) }
= {(m3, T4, Mg, Mg, (T3, T5), (704, T0s5),

(T2, 76, T5) }

(
Ens,ng) (nﬁjﬁ)’}
(
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Maximal Intersectables (cont)

Chris J. Myers (Lecture 5: Huffman Circuits)

X1 (T2, T, T
Xz (T3,T4,Tg, o)
X3 (3, T5)

X4 (T4, Ts5)

Asynchronous Circuit Design
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Constraint Matrix

X1 Xo X3 X4

1 - - — T

1 1 — L%

-1 — 1 Ty

A= |1 — 1 1 Tis
1 - - — Tl

-1 - = Tlg

- 1 = =1 T
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Constraint Matrix

Xx; and xo are essential.

X1 Xo X3 X4

1 - - — Tl

— 1 1 — L%

-1 - 1 Ty

A= 1 - 1 1 U5
1 - - — Tlg

- 1 - = Tl

- 1 = =1 ™
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Minimal Boolean Matrix

1yoys
00
7
01
10
10
—

b
1
1

- O Q

a
Xy @ (T, T5,Mg) O
Xo © (T3,T4,Tg,Mg) O

o = 0

- O 0

—
=|o|2|°[o]e]
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Original Flow Table

- O Q O T ©

X1 Xo X3 X4
a,0 | c1|do0| c1
a0 | f1 |c1 | b0
f1 |¢c1|c1|c1
—-— [ d0]d0 | b0
a,0 | d,0 | c1 | e,
f1 ] f1 | ——1e(
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New Encoded Flow Table

Xq X2 X3 X4
00 | 00,0 | 01,1 | 10,0 | 01,1
11 00,0 | 11,1 | 01,1 | 11,0
01| 11,1 | 01,1 | 01,1 | 01,1

10 [ —= [ 10,0 [ 10,0 | 11,0
10 [ 00,0 | 10,0 [ 01,1 | 10,1
[ [ 11 == [ 111
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Hazard-free Logic Synthesis

@ For each next state and output signal:

o Derive sum-of-products (SOP) implementation.

e Transform SOP using laws of Boolean algebra into a multi-level logic
implementation.

@ Map to gates found in the given gate library.

@ For asynchronous FSMs, must avoid hazards in SOP.
@ Some laws of Boolean algebra introduce hazards.
@ First describe for SIC fundamental-mode.
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Boolean Functions and Minterms

©

A Boolean function f of nvariables xy, X2, ..., X, is @ mapping:
f:{0,1}" —{0,1,—}.

Each element m of {0,1}" is called a minterm.

The value of a variable x; in a minterm m is given by m(i).

The ON-set of f is the set of minterms which return 1.

The OFF-set of f is the set of minterms which return 0.

e 6 © ¢ ¢

The DC-set of f is the set of minterms which return —.
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Literals and Products

A literal is either the variable, x;, or its complement, x;.

The literal x; evaluates to 1 in the minterm m when m(i) = 1.
The literal x/ evaluates to 1 when m(i) = 0.
A productis a conjunction (AND) of literals.

e 6 ¢ ¢ ¢

A product evaluates to 1 for m (i.e., the product contains m) if each literal
evaluates to 1 in m.

X C Y if minterms contained in X are a subset of those in Y.
Intersection of two products is the minterms contained in both.
A sum-of-products (SOP) is a set of products.

e & ¢ ¢

A SOP contains m when a product in the SOP contains m.
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Implicants and Prime Implicants

@ An implicantis a product that contains none of the OFF-set.
@ A prime implicantis an implicant contained by no other.

@ A coveris a SOP which contains the entire ON-set and none of the
OFF-set.

@ A cover may optionally include part of the DC-set.

@ The two-level logic minimization problem is to find a minimum-cost cover
of the function.

@ For SIC fundamental-mode, a minimal cover is always composed of only
prime implicants.
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Two-Level Logic Minimization Example

yz

wx
00| 01|11 10
00 11|11
ol o1 |1]-
1o 1 ]1]o0
100 —-]o0]o0
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Two-Level Logic Minimization Example

wx
00 | 01|11 ] 10
00 | 1 1 1 1
yz 01| 0 | 1 1| —
111 0 1 1 0
10 0| — | O 0
ON-set = {WXyz,wWxyz,wxyz,wxXyz, wxyz, wxyz, wxyz, wxyz}
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Prime Implicant Generation

@ For functions of less than 4 variables, can use a Karnaugh map.

@ For more variables, Karnaugh maps too tedious.

@ Quine’s tabular method is better but requires all minterms be listed.

@ Recursive procedure based on consensus and complete sums is better.
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Consensus and Complete Sums

@ The consensus theorem states: xy +xz = xy +xz + yz.
@ The product yz is called the consensus for xy and xz.

@ A complete sum is defined to be a SOP formula composed of all the
prime implicants.
@ Theorem 5.5 (Blake, 1937) A SOP is a complete sum iff:

@ No term includes any other term.
© The consensus of any two terms of the formula either does not exist or is
contained in some term of the formula.

Chris J. Myers (Lecture 5: Huffman Circuits) Asynchronous Circuit Design 154 /234



Recursive Prime Generation

@ Theorem 5.6 (Blake, 1937) If we have two complete sums f; and f, we
can obtain the complete sum for f; - £, using the following two steps:
@ Multiply out f; and f, using the following properties
@ Xx-Xx = x (idempotent)
9 x-(y+2z) = xy+ xz (distributive)
@ x-X =0 (complement)

@ Eliminate all terms contained in some other term.

@ A recursive procedure for finding the complete sum for f:

cs(f) = abs([xs +cs(f(0,xz,...,Xn))]
Xt +ces(f(1,x2,...,x1))])

where abs(f) removes absorbed terms from f (abs(a+ ab) = a).
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Two-Level Logic Minimization Example

WX
00 | 01|11 ] 10
00 | 1 1 1 1
yz 01| 0 | 1 1| —
11| 0 1 1 0
10 0| — | O 0
ON-set = {WXyz,wWxyz,wxyz,wxXyz, wxyz, wxyz, wxyz, wxyz}
OFF-set = {WXyz,WXyz,wXyz,WXyZ, wxyzZ,wxyz}

DC-set = {wxyz, wxyz}

156 /234

Chris J. Myers (Lecture 5: Huffman Circuits) Asynchronous Circuit Design



Recursive Prime Generation: Example

cs(f) = abs([x;+cs(f(0,xz,...,xn))] X1 +ecs(f(1,x2,...,xn))])

fw,x,y,z) = y'Z+xz+wx'y'z+w'xyZ
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Recursive Prime Generation: Example
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f(w,x,y,0) =
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Recursive Prime Generation: Example

cs(f) abs([xi +cs(f(0,x2,...,Xxn))]- X1 +cs(f(1,X2,...,Xn))])
f(w,x,y,2) VZ 4 xz+wx'y z+wxyZ
f(w,x,y,0) = y' +wxy
f(w,x,0,0) =
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Recursive Prime Generation: Example

cs(f
f(w,x,y,z
f(w,x,y,0
f(w,x,0,0

)
)
)
)

abs([x1 +cs(f(0,X2,...,xn))]| - X1 +cs(f(1,x2,...,Xn))])
VZ 4 xz+wx'y z+wxyZ

y' +wxy

1
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Recursive Prime Generation: Example

cs(f)
(w,x,y,2)
f(w,x,y,0)
(w,x,0,0)
( )

w,x,1,0

abs([x1 +c¢s(f(0,X2,...,Xn))] - X1 +cs(f(1,X2,...,Xn))])

VZ 4 xz+wx'y z+wxyZ

y' +wxy

1
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Recursive Prime Generation: Example

cs(f

W7X7y7z

w, x,0,0

(
f(W7X7y7O

(

(W’X’1’O

)
)
)
)
)

abs([x1 +cs(f(0,X2,...,xn))]| - X1 +cs(f(1,x2,...,Xn))])
VZ 4 xz+wx'y z+wxyZ

y' +wxy

1

w'x
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Recursive Prime Generation: Example

cs(f)
f(w,x,y,2)
f(w,x,y,0)
f(w,x,0,0)
f(w,x,1,0)
cs(f(w,x,y,0))

abs([x; +c¢s(f(0,x2,...,Xn))] - X1 +cs(f(1, Xz, ...

VZ 4 xz+wx'y z+wxyZ
y' +wxy
1

w'x

+%n))])
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Recursive Prime Generation: Example

cs(f)
f(w,x,y,2)
f(w,x,y,0)
f(w,x,0,0)
f(w,x,1,0)
cs(f(w,x,y,0))

abs([xi +cs(f(0,x2,...,Xxn))]- X1 +cs(f(1,X2,...,Xn))])
VZ 4 xz+wx'y z+wxyZ

y' +wxy

1

w'x

abs((y +1)(y' +w'x)) = y' +w'x
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Recursive Prime Generation: Example

os (1)
39,2
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Recursive Prime Generation: Example

cs(f) = abs([x1+cs(f(0,x2,...,xn))] - [X1 +cs(f(1,x2,...,Xn))])
fw,x,y,z) = y'Z+xz+wx'y'z+w'xyZ
f(w,x,y,0) = y' +wxy
f(w,x,0,0) = 1
flw,x,1,0) = w'x
cs(f(w,x,y,0)) = abs((y+1)(y'+wx)) =y +w'x
fw,x,y,1) = x+wx'y
f(w,0,y,1) = wy
flw,1,y,1) = 1
cs(f(w,x,y,1)) =
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Recursive Prime Generation: Example

abs([xi +cs(f(0,x2,...,Xxn))]- X1 +cs(f(1,X2,...,Xn))])
VZ 4 xz+wx'y z+wxyZ

y' +wxy

1

w'x

abs((y +1)(y' +w'x)) = y' +w'x

x+wx'y

wy'

1

abs((x+wy") (X' +1)) = x+wy'
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Recursive Prime Generation: Example
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Recursive Prime Generation: Example

abs([xi +cs(f(0,x2,...,Xxn))]- X1 +cs(f(1,X2,...,Xn))])
VZ 4 xz+wx'y z+wxyZ

y' +wxy

1

w'x

abs((y +1)(y' +w'x)) = y'+w'x
x+wx'y

wy'

1

abs((x+wy") (X' +1)) = x+wy'
abs((z+y' +wx)(Z +x+wy'))
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Recursive Prime Generation: Example

abs([xi +cs(f(0,x2,...,Xxn))]- X1 +cs(f(1,X2,...,Xn))])
VZ 4 xz+wx'y z+wxyZ

y'+wxy

1

w'x

abs((y+1)(y' +w'x)) =y’ +w'x

x+wx'y'

wy'

1

abs((x+wy") (X' +1)) = x+wy'

abs((z+y' +wx)(Z +x+wy'))
abs(xz+wy'z+y'Z +xy' + wy' + w'xz' + w'x)
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Recursive Prime Generation: Example

abs([xi +cs(f(0,x2,...,Xxn))]- X1 +cs(f(1,X2,...,Xn))])
VZ - xz+wx'y' z4+w xyZ

y'+wxy

1

w'x

abs((y+1)(y' +w'x)) =y’ +w'x

x+wx'y'

wy'

1

abs((x+wy") (X' +1)) = x+wy'

abs((z+y' +wx)(Z +x+wy'))
abs(xz+wy'z+y'Z +xy' + wy' + w'xz' + w'x)
xz4+y'Z +xy +wy +w'x
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Recursion Tree for Example

29N

1 1
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Prime Implicant Selection

WXyZz
wxyz
wxy z
wXyz
wxyz
wxyz
wxyz
wxyz

- 1 - _
- 1 11
- 1 = 1
1 - 1 -
1 — 1 1
1 — —
1 - - _
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Prime Implicant Selection

wxyz — 1
wxyz — 1
wxyz — 1 1 1
wxyz — 1
wxyz
wxyz
wxyz
wxyz

—_ =
—_
—_

Solution: f=xz+yz
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Combinational Hazards

@ For asynchronous design, two-level logic minimization problem is
complicated by hazards.

@ Let us consider the design of a function f to implement either an output or
next state variable.

@ When input changes under SIC, circuit moves from minterm m; to
another m» which differ in value in exactly one x;.
@ During this transition, there are four possible transitions of f:
@ Static 0 — 0 transition: f(my) = f(mp) = 0.
@ Static1 — 1 transition: f(my) = f(mp) = 1.
© Dynamic 0 — 1 transition: f(my) =0 and f(my) = 1
© Dynamic 1 — 0 transition: f(my) =1 and f(my) = 0.
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Static 0-Hazard

@ If during a static 0 — 0 transition, the cover of f can due to differences in
delays momentarily evaluate to 1, then we say that there exists a static
0-hazard.

@ In a SOP cover of a function, no product term is allowed to include either
my or mo since they are in the OFF-set.

@ Static 0-hazard exists only if some product includes both x; and X;.
@ Such a product is not useful since it contains no minterms.

@ If we exclude such product terms from the cover, then the SOP cover can
never produce a static 0-hazard.
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Static 1-Hazard

@ If during a static 1 — 1 transition, the cover of f can evaluate to 0, then
we say that there exists a static 1-hazard.

@ Consider case where one product p; contains my but not m, and another
product po contains my but not my.

@ If py is implemented with a faster gate than po, then the gate for p; can
turn off faster than the gate for p, turns on which can lead to the cover
momentarily evaluating to a 0.

@ To eliminate static 1-hazards, for each my — mo, there must exist a
product in the cover that includes both my and mo.
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Static 1-Hazard Example

N| <]

N>

wx
00| o01]11]10
. 00| {111
yz 0110 [T 1| —
1jo U] tU]o
10/lo|l—-]o0]o0
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Dynamic Hazards

@ If during a 0 — 1 transition, the cover can change from 0 to 1 back to 0
and finally stabilize at 1, we say the cover has a dynamic 0 — 1 hazard.

@ Assuming no useless product terms (ones that include both x; and X;),
this is impossible under the SIC assumption.

@ No product is allowed to include my since it is in the OFF-set.
@ Any product that includes my turns on monotonically.
@ Similarly, there are no dynamic 1 — 0 hazards.
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Removing Hazards

@ A simple, inefficent approach to produce a hazard-free SOP cover is to
include all prime implicants in the cover.

@ Since two minterms my and ms in a transition are distance 1 apart, they
must be included together in some prime.

@ An implicant exists which is made up of all literals that are equal in both
my and m..

@ This implicant must be part of some prime implicant.

@ For our example, the following cover is guaranteed to be hazard-free
under SIC:

f = xz4+yzZ+xy+wy+wx
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Better Approach to Remove Hazards

@ Form an implicant out of each pair of states my and m, involved in a static
1 — 1 transition which includes each literal that is the same value in both
my and m..

@ The covering problem is now to find the minimum number of prime
implicants that cover each of these transition cubes.
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Two-Level Logic Minimization Example

WX
00 | 01|11 ] 10
00 | 1 1 1 1
yz 01| 0 | 1 1| —
11| 0 1 1 0
10 0| — | O 0
ON-set = {WXyz,wWxyz,wxyz,wxXyz, wxyz, wxyz, wxyz, wxyz}
OFF-set = {WXyz,WXyz,wXyz,WXyZ, wxyzZ,wxyz}

DC-set = {wxyz, wxyz}
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2-Level Hazard-Free Synthesis: Example

wyz — 1 — =

xyz — 1 - - -
wxy — — 1 = 1
wxy — — 1 1 -
wyz
Xyz
wxz
wxz

_L_L_Ll
\
\
—_
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2-Level Hazard-Free Synthesis: Example

wyz — 1 — =

xyz - 1 - - -
wxy — — 1 — 1

wxy — — 1 1 -
wyz —
xyz A1

wxz 1 - = 1
wxz 1

Solution: f=xz+yz
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2-Level Hazard-Free Synthesis: Example

Xy wy wx
wxy 1 — 1
wxy 1 1 —

Solution: f=xz+yz
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2-Level Hazard-Free Synthesis: Example

Xy
wxy 1
wxy 1

Solution: f=xz+yZ
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2-Level Hazard-Free Synthesis: Example

Xy
wxy 1
wxy

Solution: f =xz+yZz+ xy
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2-Level Hazard-Free Synthesis: Example

X —
7 —

X |

y —

wx
00 | 01 | 11| 10
c 00| CIAATN™NTT
yz 01| o lka | -
1jo U] tU]o
1[o|—-]o0o]o
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Extensions for MIC Operation

@ Preceeding restricted the class of circuits to SIC.

@ Each input burst can have only a single transition.

@ Now extend the synthesis method to MIC.

@ Synthesize any XBM machine satisfying the maximal set property.
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Transition Cubes

@ MIC Transitions begin in one minterm my and end in another m, where
the values of multiple variables may have changed.

my is called the start point while my is called the end point.
Machine may pass through minterms between m; and mo.
Set of minterms is called a transition cube (denoted [my, my]).

¢ 6 ¢ ¢

Transition cube can be represented with a product which contains a literal
for each x; in which my (i) = ma(i).

@ Open transition cube [my, my) includes all minterms in [my, m2] except
mo.

@ An open transition cube represented using a set of products.
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Transition Cube: Example

yz

wx
00| 01|11 |10
00 | 1 1 1 1
01| 0 1 1 1
11| 0 1 1 0
10| O 1 0|0

Wxyz, wxyz|
Wxyz, wxyZ)
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Function Hazards

@ If f does not change monotonically during a multiple-input change, f has
a function hazard for that transition.

@ A function f contains a function hazard during a transition from my to my if
there exists an ms and m4 such that:

@ ms # my and my # me.
Q mg € [my,my] and my € [mg, my).
© 1(my) # f(mg) and f(my) # f(my).

o If f(my) = f(my), itis a static function hazard.
o If f(my) # f(my), itis a dynamic function hazard.

Chris J. Myers (Lecture 5: Huffman Circuits) Asynchronous Circuit Design 174 /234



Function Hazards: Example

WX

00 |01 |11 ] 10

00| 1 1 1 1

yz 01] 0 1 1 1
11 ] 0 1 1 0

10| O 1 0 0

[WXYZ, WXy Z]
Wxyz,wxyZz|
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Function Hazards

@ If a transition has a function hazard, there is no implementation of the
function which avoids the hazard during the transition.

@ Fortunately, the synthesis method never produces a design with a
transition that has a function hazard.

176 /234

Chris J. Myers (Lecture 5: Huffman Circuits) Asynchronous Circuit Design



Combinational Hazards for State Variables

@ A minimum transition time state assignment has MIC hazards.

@ Multiple changing next state variables may be fed back to the input of the
FSM.

@ The circuit moves from one minterm my to another minterm ms, but
multiple state variables may be changing concurrently.

@ For normal flow tables with outputs that change only in unstable states
then only static transitions possible.
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MIC Static Hazards

@ There can be no static 0-hazards.

@ Since multiple variables may be changing concurrently, the cover may
pass through other minterms between m; and mo.

@ To be free of static 1-hazards, it is necessary that a single product in the
cover include all these minterms.

@ Each [my, my] where f(my) = f(mo) = 1, must be contained in some
product in the cover to eliminate static 1-hazards.
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MIC Static Hazards: Example

y |
7 —
W]
y —
W—]
X —

X —
7 —

WX
00| 01| 1110
f 00 | CLlfnf1 ] i
yz 01 o [t 1)
11 0 [l 1] o
10/ 0l1J o]o

Wxyz, wxyZ]
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MIC Static Hazards: Example

yi

—_

W]

YDL WX

w—] 00|01 11/ 10

A 00 (L[ v
X — r A

Zjﬁ yz 011 o |l
. 1] o1l U o
37— 10] ol o]o

[Wxyz, wxyZ]
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MIC Dynamic Hazards

@ For each 1 — 0 transition, [my, m.], if a product in the cover intersects
[m1, my], then it must include the start point, m;.

@ For each 0 — 1 transition, [my, m], if a product in the cover intersects
[my, mo], then it must include the end point, m..
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MIC Dynamic Hazards: Example

yi

— ]

W]

YDL WX

w—] 00|01 11/ 10

o 00 | (L[] 1
X — r N

Zjﬁ yz 01| o [l o
1] 0|l U] o
35— 10/ 0l o] o0

[Wxyz,wXyz]
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MIC Dynamic Hazards: Example

S

WX
f 00| 01| 11|10
00 | (1INl 1y
yz o] o [fll)l U
11| 0| @lDn|o
10/ 0l J] o]o

[Wxyz,wXyz]

Chris J. Myers (Lecture 5: Huffman Circuits)

Asynchronous Circuit Design

181/234



MIC Dynamic Hazards: Example

S

WX
f 00| 01| 11|10
00 | (1INl 1y
yz o] o [fll)l U
11| 0| @lDn|o
10/ 0l J] o]o

[Wxyz,wXyz]
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MIC Dynamic Hazards: Example

S

WX
f 00| 01| 11|10
00 | (1INl 1y
yz o] o [fll)l U
11| 0| @lDn|o
10/ 0l J] o]o

[Wxyz,wxyz]
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Burst-Mode Transitions

@ In legal BM machines, types of transitions are restricted.

@ A function may only change value after every transition in the input burst
has occurred.

® [my, mo] for a function f is a burst-mode transition if for every minterm
mj € [my,my), f(my) = f(m).

@ The result is that if a function f only has burst-mode transitions, then it is
free of function hazards.

@ Also, any dynamic 0 — 1 transition is free of dynamic hazards.

@ For any legal BM machine, there exists a hazard-free cover for each
output and next state variable before state minimization.
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Example Burst-Mode Transitions

X X X X
01 01 0 0
y 0]0]o0 1[1] o]0 1
100 1[1] 170 1
X X X X
01 01 0 0
y 0]0]1 10| 0o 1
1(0]0 11 11 0

183 /234

Chris J. Myers (Lecture 5: Huffman Circuits)

Asynchronous Circuit Design



Burst-Mode Machine to Flow Table

a+,b+/
c+

sO
s

ab
00 01 11 10
s0,0 | s0,0 | s1,1 | s0,0
s1,1

Xy
01
10
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Burst-Mode Machine to Flow Table

a+,b+/
c+

ab
00 01 11 10
sO | s0,0 | s0,0 | s1,1 | s0,0
s si,1
[@abXy,abxy]

Xy
01
10
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Burst-Mode Machine to Flow Table

ab
a+ b+ 00 01 11 10
c+ sO | s0,0 | s0,0 | s1,1 | s0,0
s si,1
[@abXy,abxy]

Xy
01
10

Dynamic 0 — 1 transition for output ¢ and next-state variable X
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Burst-Mode Machine to Flow Table

ab
a+,b+/ 00 01 11 10 xy
c+ sO | s0,0 | s0,0 | s1,1 | s0,0 | 01
s si,1 10

[@abXy,abxy]

Dynamic 0 — 1 transition for output ¢ and next-state variable X
Dynamic 1 — 0 transition for next-state variable Y
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Burst-Mode Machine to Flow Table

a+.,b+/ 00 01 11 10
c+ sO | s0,0 | s0,0 | s1,1 | s0,0
s si,1
[@abXy,abxy]

Xy
01
10

Dynamic 0 — 1 transition for output ¢ and next-state variable X

Dynamic 1 — 0 transition for next-state variable Y

[abxy, abxy]
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Burst-Mode Machine to Flow Table

ab
a+.b+/ 00 o1 11 10 «xy
c+ sO | s0,0 | s0,0 | s1,1 | s0,0 | Of
s s1,1 10

[@abXy,abxy]

Dynamic 0 — 1 transition for output ¢ and next-state variable X
Dynamic 1 — 0 transition for next-state variable Y
[abxy, abxy]

Static 1 — 1 transition for output ¢ and next-state variable X
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Burst-Mode Machine to Flow Table

ab
a+.b+/ 00 o1 11 10 «xy
c+ sO | s0,0 | s0,0 | s1,1 | s0,0 | Of
s s1,1 10

[@abXy,abxy]

Dynamic 0 — 1 transition for output ¢ and next-state variable X
Dynamic 1 — 0 transition for next-state variable Y
[abxy, abxy]

Static 1 — 1 transition for output ¢ and next-state variable X
Static 0 — 0 transition for next-state variable Y

Chris J. Myers (Lecture 5: Huffman Circuits) Asynchronous Circuit Design 184 /234



State Minimization: Burst-Mode

@ After state minimization, it is possible that no hazard-free cover exists for
some variable in the design.

Inputs ab c

000 | 001 | 011 | 010 | 110 | 111 | 101 | 100

A [A1|co] — [A1]Bo| — | = | A1

R N I I B e S M S
Reduce to:

AD[A1]CO] — [A1|BO]| — |E1]AT1]

Static 1 — 1 transition [ab¢, abc]
Dynamic 1 — 0 transition [ab€, abc]
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DHF-Compatibles

@ Two states sy and s, are dhf-compatible when they are compatible and
for each output z and transition [my, my] of sy and for each transition
[ms3, my4] of s,:

@ If zhas a1 — 0 transition in [my, m,] and a 1 — 1 transition in [mg, my],
then [my, mp] N [m3, my] = 0 or M) € [m3z, my].

Q If zhas a 1 — 0 transition in [my,m,] and a 1 — 0 transition in [mg, M4,
then [my, mp] N [ms, mg] = 0, my = ms, [my, ma] C [mg, my], or
[I’)’737 m4] - [m1 s m2].
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Required Cubes

@ Transition cubes for each 1 — 1 transition are required cubes.

@ The end point of the transition cube for a 0 — 1 transition is a required
cube.

@ Transition subcubes for each 1 — 0 transition are required cubes.

@ The transition subcubes for 1 — 0 transition [my, mo] are all cubes of the
form [my, m3] such that f(mz) = 1.

@ Can eliminate any subcube contained in another.
@ The union of the required cubes forms the ON-set.

@ Each of the required cubes must be contained in some product of the
cover to insure hazard-freedom.
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Required Cubes: BM Example

cd

ab
00 | 01 | 11| 10
00 | 1 1 1 1
01 0 1 1 1
11 1 1 1 0
10 | 1 1 0| O
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Required Cubes: BM Example

cd

ab
00 | 01 | 11 |10
00 | 1 1 1 1
01| 0 1 1 1
11 1 1 1 0
10 | 1 1 0 0
1—1
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Required Cubes: BM Example

ab
00 | 01|11 ] 10
00 | 1 1 1 1
cd 01 0 1 1 1
11 1 1 1 0
10 | 1 1 0 0
ty = [abcd,abcd] 1—1 ac
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Required Cubes: BM Example

cd

ab

00 |01 |11 |10
00 | 1 1 1 1
01| O 1 1 1
11 | 1 1 1 0
10 | 1 1 0 0
] 1—1 ac
d 0-—0
d]
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Required Cubes: BM Example

cd

ab
00 | 01 | 11| 10
00 | 1 1 1 1
01 0 1 1 1
11 1 1 1 0
10 | 1 1 0| O

1—1 ac

]
d] 0—0 no required cubes
]
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Required Cubes: BM Example

ab

00 |01 | 11| 10
00 | 1 1 1 1
cd 01| 0 1 1 1

11 1 1 1 0

10 | 1 1 0 0
ty = [abcd,abcd] 1—1 ac
tr =[abcd,abcd] 0— 0 no required cubes
t3 = [abcd,abcd] 1—0
ty = [abcd,abcd]
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Required Cubes: BM Example

ab

00 | 01 |11 ] 10

00 | 1 1 1 1

cd 01]0 1 1 1
11 | 1 1 1 0

10 | 1 1 0| O

abcd] 1—1 ac
abcd,abcd] 0— 0 no required cubes
| 1—0 acd,abc
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Required Cubes: BM Example

cd

ab
00 | 01 | 11| 10
00 | 1 1 1 1
01 0 1 1 1
11 1 1 1 0
10 | 1 1 0| O

1—1 ac

]
d] 0—0 no required cubes
| 1—0 acd,abc

Chris J. Myers (Lecture 5: Huffman Circuits)

Asynchronous Circuit Design

188 /234



Required Cubes: BM Example

cd
t = [abcd,a
t=|abcd,a

ab

00

01

11

10

S| | |

ol
o|lo|| =

ac

no required cubes
acd,abc

bed, ac
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Required Cubes: BM Example

ab
00 |01 |11 |10
00 | 1 1 1 1
cd 01| 0 1 1 1
11 1 1 1 0
10 | 1 1 0 0
ty = [abcd,abcd] 1—1 ac
tr =[abcd,abcd] 0— 0 no required cubes
t3 = [abcd,abcd] 1—0 acd,abc
t4 = [@abcd,abcd] 1—0 bcd,ac

{ac,acd,abc, bed,ac}
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Prime Implicants: Example

f(a,b,c,d) = ac+acd+abc+bcd+ac
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Prime Implicants: Example

f(a,b,c,d) = ac+acd+abc+bcd+ac
f(a,b,0,d) =
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Prime Implicants: Example

f(a,b,c,d) = ac+acd+abc+bcd+ac
f(a,b,0,d) = a+ad+ab
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Prime Implicants: Example

f(a,b,c,d) = ac+acd+abc+bcd+ac
f(a,b,0,d) = a+ad+ab
£(0,b,0,d) =
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Prime Implicants: Example

f(a,b,c,d) = ac+acd+abc+bcd+ac
f(a,b,0,d) = a+ad+ab
f(0,b,0,d) = d-+b
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Prime Implicants: Example

f(a,b,c,d) = ac+acd+abc+bcd+ac
f(a,b,0,d) = a+ad+ab

f(0,b,0,d) = d+b

f(1,b,0,d) =
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Prime Implicants: Example

f(a,b,c,d) = ac+acd+abc+bcd+ac
f(a,b,0,d) = a+ad+ab

f(0,b,0,d) = d+b

f(1,b,0,d) = 1
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Prime Implicants: Example

f(a,b,c,d) = ac+acd-+abc+bcd+ac
f(a,b,0,d) = a+ad-+ab
f(0,b,0,d) = d+b
f(1,b,0,d) = 1
cs(f(a,b,0,d)) =
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Prime Implicants: Example

f(a,b,c,d) = ac+acd-+abc+bcd+ac
f(a,b,0,d) = a+ad-+ab
f(0,b,0,d) = d+b
f(1,b,0,d) = 1
cs(f(a,b,0,d)) = abs((a+d+b)(@a+1))=a+d+b
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Prime Implicants: Example

f(a,b,c,d) = ac+acd+abc+bcd+ac
f(a,b,0,d) = a+ad+ab

f(0,b,0,d) = d+b

f(1,b,0,d) = 1

cs(f(a,b,0,d)) = abs((a+d+b)(a+1))=a+d+b
f(a,b,1,d) =
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Prime Implicants: Example

f(a,b,c,d
f(a,b,0,d
£(0,b,0,d

cs(f(a,b,0,d)
f(a,b,1,d

)

)

)
f(1,0,0,d) =

)

)

ac+acd+abc+bcd+ac
at+ad+ab

d+b

1

abs((a+d+b)(a+1))=a+d+b
bd+a
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Prime Implicants: Example

f(a,b,c,d) = ac+acd+abc+bcd+ac
f(a,b,0,d) = a+ad+ab
f(0,b,0,d) = d+b
f(1,b,0,d) = 1
cs(f(a,b,0,d)) = abs((a+d+b)(a+1))=a+d+b
f(a,b,1,d) = bd+a
£(0,b,1,d) =
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Prime Implicants: Example

f(a,b,c,d) =
f(a,b,0,d) =
£(0,b,0,d) =
f(1,b,0,d) =

cs(f(a,b,0,d)

f(
£(0,b,1,d

)
a,b,1,d) =
)

ac+acd+abc+bcd+ac
at+ad+ab

d+b

1
abs((a+d+b)(a+1))=a+d+b
bd+a

1
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Prime Implicants: Example

ac+acd+ab

abs((a+d+b)(a+1))=a+d+b

bd+a
1

c

+bcd+ac
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Prime Implicants: Example

f(a,b,c,d) = ac+acd-+abc+bcd+ac
f(a,b,0,d) = a+ad+ab
f(0,b,0,d) = d+b
f(1,6,0,d) = 1
cs(f(a,b,0,d)) = abs((a+d+b)(a+1))=a+d+b
f(a,b,1,d) = bd+a
£(0,b,1,d) = 1
f(1,b,1,d) = bd
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Prime Implicants: Example

f(a,b,c,d) = ac+acd-+abc+bcd+ac
f(a,b,0,d) = a+ad+ab
f(0,b,0,d) = d+b
f(1,6,0,d) = 1
cs(f(a,b,0,d)) = abs((a+d+b)(a+1))=a+d+b
f(a,b,1,d) = bd+a
£(0,b,1,d) = 1
f(1,b,1,d) = bd
cs(f(a,b,1,d)) =
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Prime Implicants: Example

ac+acd+abc+bcd+ac

abs((a+d+b)(a+1))=a+d+b
bd+a

1

bd

abs((a+1)(a+bd)) =a+bd
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f(a,b,c,d
f(a,b,0,d
£(0,b,0,d
f(1,b,0,d

)
)
)
)
)
f(a,b,1,d) =
)
)
)
)

Chris J. Myers (Lecture 5: Huffman Circuits)

ac+acd+abc+bcd+ac

abs((a+d+b)(a+1))=a+d+b
bd+a

1

bd

abs((a+1)(a+bd)) =a+bd
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Prime Implicants: Example

f(a,b,c,d) = ac+acd+abc+bcd+ac
f(a,b,0,d) = a+ad+ab
f(0,b,0,d) = d+b
f(1,b,0,d) = 1
cs(f(a,b,0,d)) = abs((a+d+b)(a+1))=a+d+b
f(a,b,1,d) = bd+a
£(0,b,1,d) = 1
f(1,b,1,d) = bd
cs(f(a,b,1,d)) = abs((a+1)(a+bd))=a+bd
cs(f(a,b,c,d)) = abs((c+a+d+b)(c+a+bd))
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f(a,b,c,d
f(a,b,0,d
£(0,b,0,d
f(1 b,0,d

)
)
)
)
)
f(ab1d) =
)
)
)
)
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ac+acd+abc+bcd+ac
at+ad+ab

d+b

1

abs((a+d+b)(a+1))=a+d+b

bd+a

1

bd

abs((a+1)(a+bd)) =a+bd
abs((c+a+d+b)(c+a+bd))
abs(ac+bcd+ac+abd+cd+ad+bc+
ab+bd)

Asynchronous Circuit Design

Prime Implicants: Example

189 /234



Prime Implicants: Example

f(a,b,c,d) = ac+acd+abc+bcd+ac
f(a,b,0,d) = a+ad+ab
f(0,b,0,d) = d+b
f(1,b,0,d) = 1
cs(f(a,b,0,d)) = abs((a+d+b)(a+1))=a+d+b
f(a,b,1,d) = bd+a
£(0,b,1,d) = 1
f(1,b,1,d) = bd
cs(f(a,b,1,d)) = abs((a+1)(a+bd))=a+bd
cs(f(a,b,c,d)) = abs((c+a+d+b)(c+a+bd))

= abs(ac+bcd+ac+abd+cd+ad+bc+
ab+bd)
= ac+ac+cd+ad+bc+ab+bd

Chris J. Myers (Lecture 5: Huffman Circuits) Asynchronous Circuit Design 189 /234



Privileged Cubes

@ The transition cubes for each dynamic 1 — 0 or 0 — 1 transition are
called priveleged cubes.

@ They cannot be intersected unless the intersecting product also includes
its start subcube (1 — 0) or end subcube (0 — 1).

@ If a cover includes a product that intersects a priveleged cube without
including its start subcube (or end subcube), then the cover is not
hazard-free.
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Privileged Cubes: BM Example
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Privileged Cubes: BM Example

ab

00 |01 |11 |10

00 | 1 1 1 1

cd 01| 0 1 1 1

11 1 1 1 0

10 | 1 1 0 0

ty = [abcd,abcd] 1—1 No privileged cubes

tr =[abcd,abcd] 0—0
t3 = [abcd,abcd] 1—0
ty=[abcd,abcd] 1—0
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Privileged Cubes: BM Example

ab
00 |01 |11 |10
00 | 1 1 1 1
cd 01| 0 1 1 1
11 1 1 1 0
10 | 1 1 0 0
ty = [abcd,abcd] 1—1 No privileged cubes
tr =[abcd,abcd] 0— 0 No privileged cubes
t3 = [abcd,abcd] 1—0
ty=[abcd,abcd] 1—0
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Privileged Cubes: BM Example

ab
00 |01 |11 |10
00 | 1 1 1 1
cd 01| 0 1 1 1
11 1 1 1 0
10 | 1 1 0 0
ty = [abcd,abcd] 1—1 No privileged cubes
tr =[abcd,abcd] 0— 0 No privileged cubes
ty=[abcd,abcd] 1—0 ac
ty=[abcd,abcd] 1—0
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Privileged Cubes: BM Example

ab
00 |01 |11 |10
00 | 1 1 1 1
cd 01| 0 1 1 1
11 1 1 1 0
10 | 1 1 0 0
ty = [abcd,abcd] 1—1 No privileged cubes
tr =[abcd,abcd] 0— 0 No privileged cubes
ty=[abcd,abcd] 1—0 ac
ts=[abcd,abcd] 1—0 c
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ab
00 |01 |11 |10
00 | 1 1 1 1
cd 01| 0 1 1 1
11 1 1 1 0
10 | 1 1 0 0
ty = [abcd,abcd] 1—1 No privileged cubes
tr =[abcd,abcd] 0— 0 No privileged cubes
t; =[abcd,abcd] 1—0 ac
ts=[abcd,abcd] 1—0 c
priv-set = {ac,c}

Asynchronous Circuit Design
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DHF-Prime Implicants

@ We may not be able to produce a SOP cover that is free of dynamic
hazards using only prime implicants.

@ A dhf-implicantis an implicant which does not illegally intersect any
privileged cube.

@ A dhf-prime implicant is a dhf-implicant that is contained in no other
dhf-implicant.
@ A dhf-prime implicant may not be a prime implicant.

@ A minimal hazard-free cover includes only dhf-prime implicants.
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DHF-Prime Implicants: Example

Privileged Cube  Start Subcube

ac abcd

c

abed

Primes

DHF-Prime

ac
cd
bc
ac
ab
ad
bd
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DHF-Prime Implicants: Example

Privileged Cube  Start Subcube

ac abcd

c

abed

Primes

DHF-Prime

ac
cd
bc
ac
ab
ad
bd

Yes
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DHF-Prime Implicants: Example

Privileged Cube  Start Subcube

ac abcd
c abcd
Primes DHF-Prime

ac Yes
cd Yes, legally intersects ac
bc
ac
ab
ad
bd
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DHF-Prime Implicants: Example

Privileged Cube  Start Subcube

ac abcd
c abcd
Primes DHF-Prime

ac Yes
cd Yes, legally intersects ac
bc Yes, legally intersects ac
ac
ab
ad
bd
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DHF-Prime Implicants: Example

Privileged Cube  Start Subcube

ac abcd
c abcd
Primes DHF-Prime

ac Yes
cd Yes, legally intersects ac
bc Yes, legally intersects ac
ac Yes, legally intersects ¢
ab
ad
bd
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DHF-Prime Implicants: Example

Privileged Cube  Start Subcube

ac abcd
c abcd
Primes DHF-Prime

ac Yes
cd Yes, legally intersects ac
bc Yes, legally intersects ac
ac Yes, legally intersects ¢
ab Yes, legally intersects both
ad
bd
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DHF-Prime Implicants: Example

Privileged Cube  Start Subcube

ac abcd
c abcd
Primes DHF-Prime

ac Yes
cd Yes, legally intersects ac
bc Yes, legally intersects ac
ac Yes, legally intersects ¢
ab Yes, legally intersects both
ad No, illegally intersects ¢
bd
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DHF-Prime Implicants: Example

Privileged Cube  Start Subcube

ac abcd
c abcd
Primes DHF-Prime

ac Yes
cd Yes, legally intersects ac
bc Yes, legally intersects ac
ac Yes, legally intersects ¢
ab Yes, legally intersects both
ad No, illegally intersects ¢
bd No, illegally intersects ac
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DHF-Prime Implicants: Example

Privileged Cube  Start Subcube

ac abcd
c abcd
Primes DHF-Prime
ac Yes
cd Yes, legally intersects ac
bc Yes, legally intersects ac
ac Yes, legally intersects ¢
ab Yes, legally intersects both
ad No, illegally intersects ¢
bd No, illegally intersects ac
acd
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DHF-Prime Implicants: Example

Privileged Cube  Start Subcube

ac abcd
c abcd
Primes DHF-Prime
ac Yes
cd Yes, legally intersects ac
bc Yes, legally intersects ac
ac Yes, legally intersects ¢
ab Yes, legally intersects both
ad No, illegally intersects ¢
bd No, illegally intersects ac
acd No, subset of ¢d
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DHF-Prime Implicants: Example

Privileged Cube  Start Subcube

ac abcd
c abcd
Primes DHF-Prime
ac Yes
cd Yes, legally intersects ac
bc Yes, legally intersects ac
ac Yes, legally intersects ¢
ab Yes, legally intersects both
ad No, illegally intersects ¢
bd No, illegally intersects ac
acd No, subset of ¢d

abd
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DHF-Prime Implicants: Example

Privileged Cube  Start Subcube

ac abcd
c abcd
Primes DHF-Prime
ac Yes
cd Yes, legally intersects ac
bc Yes, legally intersects ac
ac Yes, legally intersects ¢
ab Yes, legally intersects both
ad No, illegally intersects ¢
bd No, illegally intersects ac
acd No, subset of ¢d
abd No, illegally intersects ¢
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DHF-Prime Implicants: Example

Privileged Cube  Start Subcube

ac abcd
c abcd
Primes DHF-Prime
ac Yes
cd Yes, legally intersects ac
bc Yes, legally intersects ac
ac Yes, legally intersects ¢
ab Yes, legally intersects both
ad No, illegally intersects ¢
bd No, illegally intersects ac
acd No, subset of ¢d
abd No, illegally intersects ¢
abcd
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DHF-Prime Implicants: Example

Privileged Cube  Start Subcube

ac abcd
c abcd
Primes DHF-Prime
ac Yes
cd Yes, legally intersects ac
bc Yes, legally intersects ac
ac Yes, legally intersects ¢
ab Yes, legally intersects both
ad No, illegally intersects ¢
bd No, illegally intersects ac
acd No, subset of ¢d
abd No, illegally intersects ¢
abcd No, subset of ac
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DHF-Prime Implicants: Example

Privileged Cube  Start Subcube

ac abcd
c abcd
Primes DHF-Prime
ac Yes
cd Yes, legally intersects ac
bc Yes, legally intersects ac
ac Yes, legally intersects ¢
ab Yes, legally intersects both
ad No, illegally intersects ¢
bd No, illegally intersects ac
acd No, subset of ¢d
abd No, illegally intersects ¢
abcd No, subset of ac
bed

Chris J. Myers (Lecture 5: Huffman Circuits)

Asynchronous Circuit Design

193/234



DHF-Prime Implicants: Example

Privileged Cube  Start Subcube

ac abcd
c abcd
Primes DHF-Prime
ac Yes
cd Yes, legally intersects ac
bc Yes, legally intersects ac
ac Yes, legally intersects ¢
ab Yes, legally intersects both
ad No, illegally intersects ¢
bd No, illegally intersects ac
acd No, subset of ¢d
abd No, illegally intersects ¢
abcd No, subset of ac
bed Yes

Chris J. Myers (Lecture 5: Huffman Circuits)

Asynchronous Circuit Design

193/234






Setting up the Covering Problem

Chris J. Myers (Lecture 5: Huffman Circuits)

f=ac+ac+cd+ bc+ bed
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Generalized Transition Cube

@ Generalized transition cube allows start and end points to be cubes rather
than simply minterms.

@ In the generalized transition cube [c1, ¢2], the cube ¢ is called the start
cube and ¢, is called the end cube.

@ The open generalized transition cube, [c1, c,), is all minterms in [c1, ]
excluding those in ¢ (i.e., [c1,¢2) = [c1, o] — €2).

195/234
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Extended Burst-Mode Transitions

@ In XBM machine, some signals are rising, some are falling, and others
are levels which can change nonmonotonically.

@ Rising and falling signals change monotonically.

@ Level signals must hold the same value in ¢; and ¢,, where the value is
either a constant (0 or 1) or a don’t care (—).

@ Level signals may change nonmonotonically.

@ Transitions are restricted such that each function may change value only
after the completion of an input burst.

@ [c1,co] for a function f is an extended burst-mode transition if for every
minterm m; € [cy,¢2), f(m;) = f(c1) and for every minterm m; € c»,
f(m,) = f(Cg).

@ If a function has only extended burst-mode transitions, then it is function
hazard-free.
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Extended Burst-Mode Transitions: Example

x/
00 | 01| 11 ] 10
00 | 1 1 1 1
yz 01 1 1 1 1
11 ] 1 1 0 0
10 | 1 1 0 0

[Y—y—,X—y—]
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Extended Burst-Mode Transitions: Example

x/
00| 01| 11 |10
00 | 1 1 1 1
yz 01| 1 1 1 1
11| 1 1 0] O
10 | 1 1 0] O

[Y - .V_a X—Yy _]
Extended burst-mode transition
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Extended Burst-Mode Transitions: Example

x/
00 | 01| 11 ] 10
00 | 1 1 1 1
yz 01 1 1 1 1
11 ] 1 1 0 0
10 | 1 1 0 0

[Y_y_ax_yz]
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Extended Burst-Mode Transitions: Example

x/
00| 01| 11 |10
00 | 1 1 1 1
yz 01| 1 1 1 1
11| 1 1 0] O
10 | 1 1 0] O

[Y - .V_a X — yZ]
Not an extended burst-mode transition
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Extended Burst-Mode to Flow Table

a+,b*/
Cc+ sO

O

ab
00 01 11 10
s0,0 | s0,0 | s1,1 | s1,1
s1,1 | s1,1

Xy
01
10

Chris J. Myers (Lecture 5: Huffman Circuits)
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Extended Burst-Mode to Flow Table

ab
a+.,b*/ 00 01 11 10  xy
c+ s0 | s0,0 | s0,0 | s1,1 | s1,1 | O1
s s1,1 | s1,1 | 10
[a—Xy,a— Xxy]

Chris J. Myers (Lecture 5: Huffman Circuits)
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Extended Burst-Mode to Flow Table

a+,b*/
Cc+ sO

O

[a—Xy,a— Xxy]

ab
00 01 11 10
s0,0 | s0,0 | s1,1 | s1,1
s1,1 | s1,1

Xy
01
10

Dynamic 0 — 1 transition for output ¢ and next-state variable X
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Extended Burst-Mode to Flow Table

ab
a+.,b*/ 00 01 11 10 xy
c+ s0 | s0,0 | s0,0 | s1,1 | s1,1 | O1
s s1,1 | s1,1 | 10

[a—Xy,a— Xxy]

Dynamic 0 — 1 transition for output ¢ and next-state variable X
Dynamic 1 — 0 transition for next-state variable Y
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Extended Burst-Mode to Flow Table

ab
a+,b*/ 00 01 11 10 Xy
c+ s0 | s0,0 | s0,0 | s1,1 | s1,1 | O1
s s1,1 | s1,1 | 10
[a—Xy,a— Xxy]

Dynamic 0 — 1 transition for output ¢ and next-state variable X
Dynamic 1 — 0 transition for next-state variable Y
[a - Yya a— Xy]
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Extended Burst-Mode to Flow Table

ab
a+,b*/ 00 01 11 10 Xy
c+ s0 | s0,0 | s0,0 | s1,1 | s1,1 | O1
s s1,1 | s1,1 | 10
[a—Xy,a— Xxy]

Dynamic 0 — 1 transition for output ¢ and next-state variable X
Dynamic 1 — 0 transition for next-state variable Y
[a - Yya a— Xy]
Static 1 — 1 transition for output ¢ and next-state variable X
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Extended Burst-Mode to Flow Table

ab
a+.,b*/ 00 01 11 10  xy
c+ s0 | s0,0 | s0,0 | s1,1 | s1,1 | O1
s s1,1 | s1,1 | 10
[a—Xy,a— Xxy]

Dynamic 0 — 1 transition for output ¢ and next-state variable X
Dynamic 1 — 0 transition for next-state variable Y
[a - Yya a— Xy]
Static 1 — 1 transition for output ¢ and next-state variable X
Static 0 — 0 transition for next-state variable Y
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Start and End Subcubes

@ Start subcube, c}, is maximal subcube of ¢; where signals having
directed don’t-care transitions are set to initial value.

@ End subcube, ¢}, is maximal subcube of ¢, where signals having directed
don’t-care transitions are set to final value.
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Start and End Subcube: Example

x/
00| 01|11 |10
00 | 1 1 1 1
yz 01 1 1 1 1
11| 1 1 0 0
10 | 1 1 0 0

[Y - yia X — yi]
Assume that z is a rising directed don’t care transition.
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Start and End Subcube: Example

x/
00| 01|11 |10
00 | 1 1 1 1
yz 01 1 1 1 1
11| 1 1 0 0
10 | 1 1 0 0

[Y - yia X — yi]
Assume that z is a rising directed don’t care transition.
X — yzis the start subcube.
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Start and End Subcube: Example

x/
00| 01|11 |10
00 | 1 1 1 1
yz 01 1 1 1 1
11| 1 1 0 0
10 | 1 1 0 0

[Yiyiaxiyi]

Assume that z is a rising directed don’t care transition.

X — yzis the start subcube.
Xx — yz is the end subcube.
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Hazard Issues

@ Considering [c}, c5], hazard considerations are same.

@ If a static 1 — 1 transition the entire transition cube must be included in
some product term in the cover.

@ If adynamic 1 — 0 transition, any product that intersects this transition
cube must contain the start subcube, cf.

@ Must also consider dynamic 0 — 1 transitions.

@ Any product that intersects transition cube for a dynamic 0 — 1 transition
must contain the end subcube, c}.
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XBM Hazard Issues: Example

xl
00 | 01| 11|10
6oy 0|0]0]|O
yz 01| 0| O 1 1
111 0| 0 | 1 0
10| 0| 0] 0] O

Chris J. Myers (Lecture 5: Huffman Circuits)
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XBM Hazard Issues: Example

xl
00 | 01| 11|10
oo 0| O0O|0]O
yz 01} 0] 0| 1 1
1110 | 0|1 0
10/ 0| 0] 01O

[7 - }72, X — }72]
Dynamic 0 — 1 transition
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XBM Hazard Issues: Example

xl
00 | 01| 11|10
oo 0| O0O|0]O
yz 01} 0] 0| 1 1
1110 | 0|1 0
10/ 0| 0] 01O

[7 - }72, X — }72]
Dynamic 0 — 1 transition
[XlyZ,xlyz]
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XBM Hazard Issues: Example

xl
00 | 01| 11|10
oo 0| O0O|0]O
yz 01} 0] 0| 1 1
1110 | 0|1 0
10/ 0| 0] 01O

X —yzZ,x —yZ]
Dynamic 0 — 1 transition
[XlyZ,xlyz]
Dynamic 0 — 1 transition
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XBM Hazard Issues: Example

xl
00 | 01| 11|10
oo 0| O0O|0]O
yz 01} 0] 0| 1 1
1110 | 0|1 0
10/ 0| 0] 01O

X —yzZ,x —yZ]
Dynamic 0 — 1 transition
[XlyZ,xlyz]
Dynamic 0 — 1 transition
f=xyz+xlz
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XBM Hazard Issues: Example

xl
00 | 01| 11|10
oo 0| O0O|0]O
yz 01} 0] 0| 1 1
1110 | 0|1 0
10/ 0| 0] 01O

X —yzZ,x —yZ]
Dynamic 0 — 1 transition
[XlyZ,xlyz]
Dynamic 0 — 1 transition
f=xyz+xlz
xlz illegally intersects [x — yZ,x — y Z]
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XBM Hazard Issues: Example

xl
00 | 01| 11|10
6oy 0|0]0]|O
yz 01| 0| O 1 1
111 0| 0 | 1 0
10| 0| 0] 0] O

X —yzZ,x —yZ]
Dynamic 0 — 1 transition
[XlyZ,xlyz]
Dynamic 0 — 1 transition
f=xyz+xlz
xlz illegally intersects [x — yZ,x — y Z]
Must reduce to: f = xyz + xlyz

Chris J. Myers (Lecture 5: Huffman Circuits) Asynchronous Circuit Design
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DHF-Compatibles

@ Two states sy and s, are dhf-compatible when they are compatible and
for each output z and transition [cy, ;] of sy and for each transition
[c3, Ca) Of s2:
@ If zhas a1 — 0 transition in [c1, ] and a 1 — 1 transition in [c3, ¢4], then
[c1, 2] N [es, 4] =0 0r ¢ € [c3, 4.
@ If zhas a1 — 0 transition in [c1,ce] and a 1 — 0 transition in [c3, ¢4], then
[c1, 2] Nes, ca] =0, ¢1 = c3, [c1, 2] C [c3, 4], Or [c3, €] C [c1, €2
@ If zhas a0 — 1 transition in [c1, ] and a 1 — 1 transition in [c3, ¢4], then
[c1,c2]N[es,ca] =0 or c € [c3, Cal.
© If zhas a0 — 1 transition in [c1, cp] and a 0 — 1 transition in [cs, ¢4], then
[c1,c2] N[cs, ca] =0, c2 = ¢, [c1, 02] C 03, ¢4], Or [c3,€4] C [c1, Ca)-
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State Minimization: Extended Burst-Mode
@ <b+>a+/c+ 7< B > a+/c+ ( : >

Inputs a b
00 | O1 11 | 10
A0 | A0 | B,1 | D0

State g — | — [BA1 B
clco|cCo|B1]B,1
Inputs a b

00 | Ot 11 10
State A A0 | A0 | B,1 | D0
BC | B0 | B0 | B,1| B,1

For input 11, static 1 — 1 transition when transition from A to B.
In state BC, dynamic 0 — 1 transition.
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Further Restrictions

@ 51 and sp must also satisfy the following further restriction for each sz,
which can transition to sy in [c3, ¢4] and another transition [c1, ¢o] of s:
@ If zhas a1 — 0 transition in [c1,ce] and a 1 — 1 transition in [c3, ¢4], then
[c1,c2]Nes,ca) =0 or ¢ € [c3,Cal.
@ If zhas a0 — 1 transition in [c1,cp] and a 1 — 1 transition in [c3, ¢4], then
[c1,c2]N[cs,ca) =0 or ¢ € [c3,Cal.
@ For each s3 which can transition to s, in [03, 04] and another transition
[c1,c2) of sy
@ If zhas a1 — 0 transition in [c1,cp] and a 1 — 1 transition in [c3, ¢4], then
[c1,c2]N[cs,ca) =0 or C € [c3,Cal.
@ If zhas a0 — 1 transition in [c1, ] and a 1 — 1 transition in [c3, ¢4], then
[c1, 2] N [es,c4) =0 01 ¢ € [c3,Ca).
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Extended Burst-Mode Dynamic Hazard Problem

dc
4 00 | 01| 1110
y ] o0 o]0 (U)o
C{ x x O1|o[o0]o0]0
= S
X 100Q&o

Static 1 — 1 transition [dcxy, dexy]
Dynamic 1 — 0 transition [—cxYy, —Cxy]
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State Assignment

dc dc
00 | 01 |11 | 10 00 | 01 |11 |10
60| 0O |0 ]| O 000 | 0| O | 1|0
0ot | — | —| — | — 001 | — | — | — | —
O e e e oMt | — | =1 - | —
pxy 010 | — | — | — | — pxy 010 | — | — | — | —
110 | 0 | 1 110 110 0 | 1 110
M| - - = | - L e B B
101 | — | — | — | — 101 | — | — | — | —
100 | 0 | 1 110 100 | 0 | 1 110
X P
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Hazard-free dff Circuit
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XBM Example

abc

000 | 001 | 011 | 010 | 110 | 111 | 101 0

00 0 0 0 0 0 0 0 0

de 01 0 0 0 0 0 0 0 0

10 0 0 1 1 1 1 1 1

11 0 0 1 1 0 0 1 1

Transition Cube Type Required Cube Privileged Cube Subcube

[abd,abd]
[abcde,abcde]
[abd,abd|
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XBM Example

abc
000 | 001 | 011 | 010 | 110 | 111 | 101 0
00 0 0 0 0 0 0 0 0
de 01 0 0 0 0 0 0 0 0
10 0 0 1 1 1 1 1 1
11 0 0 1 1 0 0 1 1
Transition Cube Type Required Cube Privileged Cube Subcube
[abd,abd] 0—1
[abcde,abcde]
[abd,abd|
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XBM Example

abc

000 | 001 | 011 | 010 | 11 1 0 0

00| O 0 0 0 0 0 0 0

de 01 0 0 0 0 0 0 0 0

10| O 0 1 1 1 1 1 1

11 0 0 1 1 0 0 1 1

Transition Cube Type Required Cube Privileged Cube
[abd,abd] 0—1 abd

[abcde,abcde]

[abd,abd|
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XBM Example

abc
000 | 001 | 011 | 010 | 110 | 111 | 101 0
00 0 0 0 0 0 0 0 0
de 01 0 0 0 0 0 0 0 0
10 0 0 1 1 1 1 1 1
11 0 0 1 1 0 0 1 1
Transition Cube Type Required Cube Privileged Cube Subcube
[abd,abd] 0—1 abd a
[abcde,abcde]
[abd,abd|
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XBM Example

abc

000 | 001 | 011 | 010 | 11 1 0 0

00| O 0 0 0 0 0 0 0

de 01 0 0 0 0 0 0 0 0

10| O 0 1 1 1 1 1 1

11 0 0 1 1 0 0 1 1

Transition Cube Type Required Cube Privileged Cube
[abd,abd] 0—1 abd a

[abcde,abcde]

[abd,abd|
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XBM Example

abcd (end)

abc

000 | 001 | 011 | 010 | 11 1 0 0
00| O 0 0 0 0 0 0 0
de 01 0 0 0 0 0 0 0 0
10| O 0 1 1 1 1 1 1
11 0 0 1 1 0 0 1 1

Transition Cube Type Required Cube Privileged Cube

[abd,abd] 0—1 abd a
[abcde,abcde] 1—1

[abd,abd|

Chris J. Myers (Lecture 5: Huffman Circuits)

Asynchronous Circuit Design




XBM Example

abc
000 | 001 | 011 | 010 | 110 | 111 | 101 | 100
00 0 0 0 0 0 0 0 0
de 01 0 0 0 0 0 0 0 0
10 0 0 1 1 1 1 1 1
11 0 0 1 1 0 0 1 1
Transition Cube Type Required Cube Privileged Cube Subcube
[abd,abd] 0—1 abd a abcd (end)
[abcde,abcde] 1—1 abde
[abd,abd|
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XBM Example

abc
000 | 001 | 011 | 010 | 110 | 111 | 101 | 100
00| O 0 0 0 0 0 0 0
de 01 0 0 0 0 0 0 0 0
10 0 0 1 1 1 1 1 1
11 0 0 1 1 0 0 1 1
Transition Cube Type Required Cube Privileged Cube Subcube
[abd,abd] 0—1 abd a abcd (end)
[abcde,abcde] 1—1 abde none
[abd,abd|
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XBM Example

abc
000 | 001 | 011 | 010 | 110 | 111 | 101 | 100
00| O 0 0 0 0 0 0 0
de 01 0 0 0 0 0 0 0 0
10 0 0 1 1 1 1 1 1
11 0 0 1 1 0 0 1 1
Transition Cube Type Required Cube Privileged Cube Subcube
[abd,abd] 0—1 abd a abcd (end)
[abcde,abcde] 1—1 abde none none
[abd,abd|
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XBM Example

abcd (end)

abc
000 | 001 | 011 | 010 | 11 1 0 0
00| O 0 0 0 0 0 0 0
de 01 0 0 0 0 0 0 0 0
10| O 0 1 1 1 1 1 1
11 0 0 1 1 0 0 1 1
Transition Cube Type Required Cube Privileged Cube
[abd,abd] 0—1 abd a
[abcde,abcde] 1—1 abde none
[abd,abd| 1—0

Chris J. Myers (Lecture 5: Huffman Circuits)

Asynchronous Circuit Design




XBM Example

abcd (end)

abc
000 | 001 | 011 | 010 | 11 1 0 0
00| O 0 0 0 0 0 0 0
de 01 0 0 0 0 0 0 0 0
10 0 0 1 1 1 1 1 1
11 0 0 1 1 0 0 1 1
Transition Cube Type Required Cube Privileged Cube
[abd,abd] 0—1 abd a
[abcde,abcde] 1—1 abde none
[abd,abd| 1—0 abd
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XBM Example

abc
000 | 001 | 011 | 010 | 110 | 111 | 101 | 100
00| O 0 0 0 0 0 0 0
de 01 0 0 0 0 0 0 0 0
10 0 0 1 1 1 1 1 1
11 0 0 1 1 0 0 1 1
Transition Cube Type Required Cube Privileged Cube Subcube
[abd,abd] 0—1 abd a abcd (end)
[abcde,abcde] 1—1 abde none none
[abd,abd| 1—0 abd ab
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XBM Example

abc
000 | 001 | 011 | 010 | 11 11 0 00
00| O 0 0 0 0 0 0 0
de 01 0 0 0 0 0 0 0 0
10 0 0 1 1 1 1 1 1
11 0 0 1 1 0 0 1 1
Transition Cube Type Required Cube Privileged Cube Subcube
[abd,abd] 0—1 abd a abcd (end)
[abcde,abcde] 1—1 abde none none
[abd,abd| 1—0 abd ab abcd (start)
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XBM Example

abc
000 | 001 | 011 | 010 1 11 0 00
00| O 0 0 0 0 0 0 0
de 01 0 0 0 0 0 0 0 0
10 0 0 1 1 1 1 1 1
11 0 0 1 1 0 0 1 1
Transition Cube Type Required Cube Privileged Cube Subcube
[abd,abd] 0—1 abd a abcd (end)
[abcde,abcde] 1—1 abde none none
[abd,abd| 1—0 abd ab abcd (start)

primes = {abd,abd,ade,bde}
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XBM Example

abc
000 | 001 | 011 | 010 1 11 0 00
00| O 0 0 0 0 0 0 0
de 01 0 0 0 0 0 0 0 0
10 0 0 1 1 1 1 1 1
11 0 0 1 1 0 0 1 1
Transition Cube Type Required Cube Privileged Cube Subcube
[abd,abd] 0—1 abd a abcd (end)
[abcde,abcde] 1—1 abde none none
[abd,abd| 1—0 abd ab abcd (start)

primes = {abd,abd,ade,bde}
DHF-primes = {@bd,abd,abde}
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XBM Example

abc
000 | 001 | 011 | 010 | 110 | 111 | 101 00
00| O 0 0 0 0 0 0 0
de 01 0 0 0 0 0 0 0 0
10 0 0 1 1 1 1 1 1
11 0 0 1 1 0 0 1 1
Transition Cube Type Required Cube Privileged Cube Subcube
[abd,abd] 0—1 abd a abcd (end)
[abcde,abcde] 1—1 abde none none
[abd,abd| 1—0 abd ab abcd (start)

primes = {abd,abd,ade,bde}
DHF-primes = {@bd,abd,abde}
f=abd+abd+abde
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Multi-Level Logic Synthesis

@ Two-level SOP implementations cannot be realized directly for most
technologies.

@ AND or OR stages of arbitrarily large fan-in not practical.
@ In CMOS, gates with more than 3 or 4 inputs are too slow.

@ Two-level SOP implementations must be decomposed using Boolean
algebra laws into multi-level implementations.

@ Care must be taken not to introduce hazards.
@ We present a number of hazard-preserving transformations.

@ If we begin with a hazard-free SOP implementation and only apply
hazard-preserving transformations than the resulting multi-level
implementation is also hazard-free.
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Hazard-Preserving Transformations

@ Theorem 5.19 (Unger, 1969) Given any expression fi, if we transform it
into another expression, f, using the following laws:

A+ (B+ C) & A+ B+ C (associative law)

A(BC) < ABC (associative law)

(A+ B) < AB (DeMorgan'’s theorem)

(AB) < A+ B (DeMorgan’s theorem)

AB+ AC = A(B+ C) (distributive law)

A+ AB = A (absorptive law)

o A+AB= A+B

then a circuit corresponding to £ will have no combinational hazards not
present in circuits corresponding to f;.

©

¢ ¢ ¢ ¢ ¢
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More Hazard-Preserving Transformations

@ Hazard exchanges:
@ Insertion or deletion of inverters at the output of a circuit only interchanges

0 and 1-hazards.

@ Insertion or deletion of inverters at the inputs only relocates hazards to
duals of original transition.

@ The dual of a circuit (exchange AND and OR gates) produces dual function
with dual hazards.
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Multilevel Logic Synthesis: Example

©

el ao o alo]

£)
=
i

ac+ac+cd+bcd+bc

Chris J. Myers (Lecture 5: Huffman Circuits)

Asynchronous Circuit Design

213 /234



Multilevel Logic Synthesis: Example

f = c¢(at+tb+d)+c(a+bd)
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Technology Mapping

@ Technology mapping step takes as input a set of technology-independent
logic equations and a library of cells, and it produces a netlist of cells.
@ Broken up into three major steps:

e Decomposition,
@ Partitioning, and
@ Matching/covering.
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@ Decomposition transforms logic equations into equivalent network using
only two-input/one-output base functions.

@ A typical choice of base function is two-input NAND gates.

@ Decomposition performed using recursive applications of DeMorgan’s
theorem and the associative law.

@ These operations are hazard-preserving.

@ Simplification during this step may remove redundant logic added to
eliminate hazards, so must be avoided.
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Decomposition Example

f = c(atb+d)+c(a+bd)
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Decomposition Example

(a+b+d)+c(a+bd)

C
¢((a+b)+d)+c(a+ bd) (associative law)
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Decomposition Example

(a+b+d)+c(a+bd)
((a+b)+d)+c(a+ bd) (associative law)

((@ab) +d) +c(a+ bd) (DeMorgan’s theorem)

ol ol

“
|
Ol
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c(a+b+d)+c(a+bd)
c((a+b)+d)+c(a+bd) (associative law)
¢((@b) + d) + ¢ (a+ bd) (DeMorgan’s theorem)

¢((ab)d) +c(a(bd)) (DeMorgan’s theorem)
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c(a+b+d)+c(a+bd)
c((a+b)+d)+c(a+bd) (associative law)
c((ab)+d)+c(a+bd) (DeMorgan’s theorem)

c((ab)d)+c(a(bd)) (DeMorgan’s theorem)

(¢((ab)d))(c(a(bd))) (DeMorgan’s theorem)
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Decomposition Example
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Partitioning

@ Partitioning breaks up decomposed network at points of multiple fanout
into single output cones of logic.

@ Since partitioning step does not change the topology of the network, it
does not affect the hazard behavior of the network.

218/234
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Matching and Covering

@ Matching and covering examines each cone of logic and finds cells in the
library to implement subnetworks within the cone.

@ Can be implemented either using structural pattern-matching or Boolean
matching techniques.

@ In the structural techniques, each library element is also decomposed into
base functions.

@ Library elements are then compared against portions of the network to be
mapped using pattern matching.

@ Assuming that the decomposed logic and library gates are hazard-free,
the resulting mapped logic is also hazard-free.
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Gate Library

oo @%

Inv(Cost = 1) 2NAND(Cost = 3NAND(Cost =

oD %

2NOR(Cost = 2) AOI1(Cost = 3) AOI2(Cost =
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Matching and Covering Example

.y @%

Inv(C 2NAND(Cost = 3NAND(Cost =
2NOR(Cost = AQOI1(Cost = AOI2(Cost =
a d n4
b
¢ f
a
b
d
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Final Mapped Circuit
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Boolean Matching

‘C’} "

cb cb
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Boolean Matching

‘C’} "

cb cb

00 | 01 | 11| 10 00 | 01 ] 11|10
d 0|d /N 0o o|l@i1)o0]o
1] o0 W@ o 10|10
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Boolean Matching

b— 0
c —
d — f
cb cb
00| 01|11 ] 10 00| 01111 | 10

d o|ldj/molo ol@ 1o
1o [\WW[m o tloldafi)o

Dynamic 1 — 0 transition [abcd,abcd]
Multiplexor has a dynamic 1 — 0 hazard.

o
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Boolean Matching

b— 0
c —
d — f
cb cb
00| 01|11 ] 10 00| 01111 | 10

d o|ldj/molo ol@ 1o
1o [\WW[m o tloldafi)o

Dynamic 1 — 0 transition [abcd,abcd]
Multiplexor has a dynamic 1 — 0 hazard.
If original implementation was f = ©d + bd then multiplexor would be okay.

o
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Generalized C-Elements

0

o

s00
s01

s10 set

sl

100

101
f;

reset

E —o‘
E fo‘

rl0
rll

‘o— s10 ‘o—sll

{

R —o‘
il fo‘

‘o— 500

\"DO—\ ¢

}—1

‘o— s01

s00 4{

s01 —{ sl —{

sOO—E s10 —E
ot —[ g1
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Generalized C-Element Hazard Issues

@ Static hazards cannot manifest on the output of a gC gate.
@ Prolonged short-circuit current should be avoided.

@ Decomposition of trigger signals which during a transition both enable
and disable a P and N stack is not allowed.

@ By avoiding short circuits, product terms intersecting a dynamic transition
no longer must include the start subcube.

@ The problems with conditionals and dynamic hazards are also not present
in gC implementations.
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Hazard Requirements

@ The hazard-free cover requirements for the set function, f5gt, in an
extended burst-mode gC become:

1. Each set cube of fggt must not include OFF-set minterms.

2. For every dynamic 0 — 1 transition [cy,¢p] in fget, the end cube, ¢,
must be covered by some product term.

3. Any product of fget intersecting ¢ of a dynamic 0 — 1 transition
[c1,c2] must also contain the end subcube cé.

@ Hazard-freedom requirements for fgget are analogous to fget.
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Generalized C-Element Example

abcd (end)

abc
000 | 001 | 011 | 010 | 11 1 101 | 10
00| O 0 0 0 0 0 0 0
de 01 0 0 0 0 0 0 0 0
10 0 0 1 1 1 1 1 1
11 0 0 1 1 0 0 1 1
Transition Cube Type Required Cube Privileged Cube
[abd,abd] 0—1 abd a
[abcde,abcde] 1—1 abde none
[abd,abd| 1—-0 abd b

Chris J. Myers (Lecture 5: Huffman Circuits)
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Generalized C-Element Example

abc
000 | 001 | 011 | 010 | 110 | 111 | 101 | 100
00 0 0 0 0 0 0 0 0
de 01 0 0 0 0 0 0 0 0
10 0 0 1 1 1 1 1 1
11 0 0 1 1 0 0 1 1

Transition Cube Type Required Cube Privileged Cube Subcube

[abd,abd]  0—1 abd a abcd (end)
[abcde,abcde] 1—1 abde none none
[abd,abd| 1—0 abd ab abcd (start)

Only need to consider the two dynamic transitions.
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Generalized C-Element Example

freset = abd
W
( ¢
A

il
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Sequential Hazards

@ Huffman circuits require that outputs and state variables stabilize before
either new inputs or fed-back state variables arrive.

@ A violation of this assumption can result in a sequential hazard.

@ Presence of a sequential hazard is dependent on timing of the
environment, circuit, and feedback delays.
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Essential Hazard

X
0| 1
1Mo | 2,0
231 |@0
3 (@1 | ki

Chris J. Myers (Lecture 5: Huffman Circuits) Asynchronous Circuit Design 230/ 234



Feedback Delay Requirement

@ To eliminate essential hazards, there is a feedback delay requirement
D > dmax — 9min

where D is the feedback delay, dmax is the maximum delay in the
combinational logic, and dpyjp, is the minimum delay through the
combinational logic.
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Fundamental-Mode Constraint

@ Sequential hazards can also result if the environment reacts too quickly.

@ Fundamental-mode environmental constraint says inputs are not allowed
to change until the circuit stabilizes.

@ To satisfy this constraint, a conservative separation time needed between
inputs can be expressed as follows:

di > 2dmax+ Dy

where d; is the separation time needed between input bursts.

@ Separation needs a 2dmax term since the circuit must respond to the
input change followed by the subsequent state change.
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Setup and Hold Time Constraint

@ XBM machines require a setup time and hold time for conditional signals.

@ Conditional signals must stabilize a setup time before the compulsory
signal transition which samples them.

@ It must remain stable a hold time after the output and state changes
complete.

@ Outside this window of time, the conditional signals are free to change
arbitrarily.
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Summ

Binate covering problems

State minimization

State assignment

Hazard-free logic synthesis

Extensions for MIC operation

Multilevel logic synthesis

Technology mapping

Generalized C-element implementation

¢ ¢ 6 6 6 ¢ ¢ ¢ ¢

Sequential hazards

Chris J. Myers (Lecture 5: Huffman Circuits) Asynchronous Circuit Design 234 /234



