Asynchronous Circuit Design

Chris J. Myers

Lecture 5: Huffman Circuits Chapter 5

Huffman Circuit

Huffman Circuit Design Method

- State minimization
- State assignment
- Logic minimization

Circuit Delay Model

- Uses the bounded gate and wire delay model.
- Environment must also be constrained:
 - Single-input change (SIC) each input change must be separated by a minimum time interval.
 - SIC fundamental mode the time interval is the maximum delay for circuit to stabilize.
 - MIC allow multiple inputs to change.
 - MIC fundamental mode waits for circuit to stabilize.
 - Extended burst mode limited form of MIC operation.

Solving Covering Problems

- The last step of state minimization, state assignment, and logic synthesis is to solve a *covering problem*.
- A covering problem exists whenever you must select a set of choices with minimum cost which satisfy a set of constraints.
- Classic example: selection of the minimum number of prime implicants to cover all the minterms of a given function.

Formal Derivation of Covering Problem

- Each choice is represented with a Boolean variable x_i .
- $x_i = 1$ implies choice has been included in the solution.
- $x_i = 0$ implies choice has not been included in the solution.
- Covering problem is expressed as a product-of-sums, F.
- Each product (or clause) represents a constraint.
- Each clause is sum of choices that satisfy the constraint.
- Goal: find x_i 's which satisfy all constraints with minimum cost.

$$cost = \min \sum_{i=1}^{t} w_i x_i \tag{1}$$

Example Covering Problem

$$f = x_1 \overline{x_2} (\overline{x_3} + x_4) (\overline{x_3} + x_4 + x_5 + x_6) (\overline{x_1} + x_4 + x_5 + x_6) (\overline{x_4} + x_1 + x_6) (\overline{x_5} + x_6)$$

Unate versus Binate

- Unate covering problem choices appear only in their positive form (i.e., uncomplemented).
- Binate covering problem choices appear in both positive and negative form (i.e., complemented).
- Algorithm presented here considers the more general case of the binate covering problem, but solution applies to both.

Constraint Matrix

- f is represented using a constraint matrix, A.
- Includes a column for each x_i variable.
- Includes a row for every clause.
- Each entry of the matrix a_{ii} is:
 - '-' if the variable x_i does not appear in the clause,
 - '0' if the variable appears complemented, and
 - '1' otherwise.
- ith row of A is denoted a_i.
- j^{th} column is denoted by A_j .

Constraint Matrix Example

$$f = x_1 \overline{x_2} (\overline{x_3} + x_4) (\overline{x_3} + x_4 + x_5 + x_6) (\overline{x_1} + x_4 + x_5 + x_6) (\overline{x_4} + x_1 + x_6) (\overline{x_5} + x_6)$$

$$\mathbf{A} = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\ 1 & - & - & - & - & - \\ - & 0 & - & - & - & - \\ - & - & 0 & 1 & - & - \\ - & - & 0 & 1 & 1 & 1 \\ 0 & - & - & 1 & 1 & 1 \\ 1 & - & - & 0 & - & 1 \\ - & - & - & - & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{bmatrix}$$

Binate Covering Problem

 The binate covering problem is to find an assignment to x of minimum cost such that for every row a; either

 ∃*j* .
$$(a_{ij} = 1) \land (x_j = 1)$$
; or

②
$$\exists j . (a_{ij} = 0) \land (x_j = 0).$$

BCP Algorithm

```
bcp(A, x, b)
   (\mathbf{A}, \mathbf{x}) = \text{reduce}(\mathbf{A}, \mathbf{x});
  L = lower\_bound(\mathbf{A}, \mathbf{x});
  if (L > cost(b)) then return(b);
  if (terminalCase(A)) then
      if (A has no rows) return(x); else return(b);
   c = \text{choose column}(A);
  x_c = 1; A^1 = \text{select column}(A, c); x^1 = \text{bcp}(A^1, x, b)
  if (\cos t(x^1) < \cot (b)) then
     b = x^1:
      if (cost(b) = L) return(b);
  x_c = 0; \mathbf{A}^0 = \text{remove\_column}(\mathbf{A}, c); \mathbf{x}^0 = \text{bcp}(\mathbf{A}^0, \mathbf{x}, \mathbf{b})
  if (\cos t(x^0) < \cos t(b)) then b = x^0:
  return(b);
```

Reduce Algorithm

```
\label{eq:continuous_continuous} \begin{array}{l} \text{reduce}\,(\textbf{A},\textbf{x}) \\ \text{do} \\ \textbf{A}' = \textbf{A}; \\ (\textbf{A},\textbf{x}) &= \text{find\_essential\_rows}\,(\textbf{A},\textbf{x})\,; \\ \textbf{A} &= \text{delete\_dominating\_rows}\,(\textbf{A})\,; \\ (\textbf{A},\textbf{x}) &= \text{delete\_dominated\_columns}\,(\textbf{A},\textbf{x})\,; \\ \text{while} &\; (\textbf{A} \neq \emptyset \;\; \text{and} \;\; \textbf{A} \neq \textbf{A}')\,; \\ \text{return}\,(\textbf{A},\textbf{x})\,; \end{array}
```

Essential Rows

- A row a_i of A is essential when there exists exactly one j such that a_{ij} is not equal to '-'.
- This cooresponds to clause consisting of a single literal.
- If the literal is x_i (i.e., $a_{ii} = 1$), the variable is *essential*.
- If the literal is $\overline{x_i}$ (i.e., $a_{ij} = 0$), the variable is *unacceptable*.
- The matrix A is reduced with respect to the essential literal.
- This variable is set to value of literal, column is removed, and any row where variable has same value is removed.

Essential Rows Example

$$f = x_1 \overline{x_2} (\overline{x_3} + x_4) (\overline{x_3} + x_4 + x_5 + x_6) (\overline{x_1} + x_4 + x_5 + x_6) (\overline{x_4} + x_1 + x_6) (\overline{x_5} + x_6)$$

$$\mathbf{A} = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\ 1 & - & - & - & - & - \\ - & 0 & - & - & - & - \\ - & - & 0 & 1 & - & - \\ - & - & 0 & 1 & 1 & 1 \\ 0 & - & - & 1 & 1 & 1 \\ 1 & - & - & 0 & - & 1 \\ - & - & - & - & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{bmatrix}$$

Essential Rows Example

$$f = \overline{x_2}(\overline{x_3} + x_4)(\overline{x_3} + x_4 + x_5 + x_6)(x_4 + x_5 + x_6)(\overline{x_5} + x_6)$$

$$\mathbf{A} = \begin{bmatrix} x_2 & x_3 & x_4 & x_5 & x_6 \\ 0 & - & - & - & - \\ - & 0 & 1 & - & - & - \\ - & 0 & 1 & 1 & 1 \\ - & - & 1 & 1 & 1 \\ - & - & 0 & 1 & 1 \\ - & - & 0 & 1 & 1 \\ - & - & 0 & 1 & 1 \\ - & - & 1 & 1 & 1 \\ - & 1 & 1 & 1 \\ -$$

Essential Rows Example

$$\mathbf{A} = (\overline{x_3} + x_4)(\overline{x_3} + x_4 + x_5 + x_6)(x_4 + x_5 + x_6)(\overline{x_5} + x_6)$$

$$\mathbf{A} = \begin{bmatrix} x_3 & x_4 & x_5 & x_6 \\ 0 & 1 & - & - \\ 0 & 1 & 1 & 1 \\ - & 1 & 1 & 1 \\ - & - & 0 & 1 \end{bmatrix} \quad \begin{array}{c} 3 \\ 4 \\ 5 \\ 7 \\ x_1 = 1, x_2 = 0 \end{array}$$

Row Dominance

- A row a_k dominates another row a_i if it has all 1's and 0's of a_i .
- Row a_k dominates another row a_i if for each column A_j of **A**, one of the following is true:
 - a_{ii} = −
 - $a_{ij} = a_{kj}$
- Removing dominating rows does not affect set of solutions.

Row Dominance Example

$$f = (\overline{x_3} + x_4)(\overline{x_3} + x_4 + x_5 + x_6)(x_4 + x_5 + x_6)(\overline{x_5} + x_6)$$

$$\mathbf{A} = \begin{bmatrix} x_3 & x_4 & x_5 & x_6 \\ 0 & 1 & - & - \\ 0 & 1 & 1 & 1 \\ - & 1 & 1 & 1 \\ - & - & 0 & 1 \end{bmatrix} \quad \begin{matrix} 3 \\ 4 \\ 5 \\ 7 \\ x_1 = 1, x_2 = 0 \end{matrix}$$

Row Dominance Example

$$f = (\overline{x_3} + x_4)(x_4 + x_5 + x_6)(\overline{x_5} + x_6)$$

$$\mathbf{A} = \begin{bmatrix} x_3 & x_4 & x_5 & x_6 \\ 0 & 1 & - & - \\ - & 1 & 1 & 1 \\ - & - & 0 & 1 \end{bmatrix} \quad \begin{array}{c} 3 \\ 5 \\ 7 \\ x_1 = 1, x_2 = 0 \end{array}$$

Column Dominance

- A column A_j dominates another column A_k if for each clause a_i of A, one of the following is true:
 - $a_{ii} = 1$;
 - $a_{ii} = -$ and $a_{ik} \neq 1$;
 - $a_{ii} = 0$ and $a_{ik} = 0$.
- Dominated columns can be removed without affecting the existence of a solution.
- When removing a column, the variable is set to 0 which means any rows including that column with a 0 entry can be removed.

Column Dominance Example

$$f = (\overline{x_3} + x_4)(x_4 + x_5 + x_6)(\overline{x_5} + x_6)$$

$$\mathbf{A} = \begin{bmatrix} x_3 & x_4 & x_5 & x_6 \\ 0 & 1 & - & - \\ - & 1 & 1 & 1 \\ - & - & 0 & 1 \end{bmatrix} \quad \begin{array}{c} 3 \\ 5 \\ 7 \\ x_1 = 1, x_2 = 0 \end{array}$$

Column Dominance Example

$$f = (x_4 + x_6)$$

$$\mathbf{A} = \begin{bmatrix} x_4 & x_6 \\ 1 & 1 \end{bmatrix} \quad 5$$

$$x_1 = 1, x_2 = 0, x_3 = 0, x_5 = 0$$

Checking Weights

- If weights are not equal, it is necessary to also check the weights of the columns before removing dominated columns.
- If weight of dominating column, w_j , is greater than weight of dominated column, w_k , then x_k should not be removed.
- Assume $w_1 = 3$, $w_2 = 1$, and $w_3 = 1$.

$$\mathbf{A} = \begin{bmatrix} x_1 & x_2 & x_3 \\ 1 & 1 & - \\ - & 0 & 1 \end{bmatrix} \quad \frac{1}{2}$$

BCP Algorithm

```
bcp(A, x, b)
   (\mathbf{A}, \mathbf{x}) = \text{reduce}(\mathbf{A}, \mathbf{x});
  L = lower\_bound(\mathbf{A}, \mathbf{x});
  if (L > cost(b)) then return(b);
  if (terminalCase(A)) then
      if (A has no rows) return(x); else return(b);
   c = \text{choose column}(A);
  x_c = 1; A^1 = \text{select column}(A, c); x^1 = \text{bcp}(A^1, x, b)
  if (\cos t(x^1) < \cot (b)) then
     b = x^1:
      if (cost(b) = L) return(b);
  x_c = 0; \mathbf{A}^0 = \text{remove\_column}(\mathbf{A}, c); \mathbf{x}^0 = \text{bcp}(\mathbf{A}^0, \mathbf{x}, \mathbf{b})
  if (\cos t(x^0) < \cos t(b)) then b = x^0:
  return(b);
```

Bounding

- If solved, cost of solution can be determined by Equation 1.
- Reduced matrix may have a cyclic core.
- Must test whether or not a good solution can be derived from partial solution found up to this point.
- Determine a lower bound, *L*, on the final cost, starting with the current partial solution.
- If L is greater than or equal to the cost of the best solution found, the previous best solution is returned.

Maximal Independent Set

- Finding exact lower bound is as difficult as solving the covering problem.
- Satisfactory heuristic method is to find a maximal independent set (MIS)
 of rows.
- Two rows are independent when it is not possible to satisfy both by setting a single variable to 1.
- Any row which contains a complemented variable is dependent on any other clause, so we must ignore these rows.

Lower Bound Algorithm

```
lower_bound (A, x)
    MIS = 0
    A = delete_rows_with_complemented_variables (A);
    do
        i = choose_shortest_row (A);
        MIS = MIS \cup {i};
        A = delete_intersecting_rows (A, i);
    while (A \neq 0);
    return(|MIS| + cost(x));
```

$$\mathbf{A} = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 & x_9 \\ 1 & 1 & - & - & - & - & - & - & - \\ 1 & - & 1 & - & - & - & - & - & - \\ - & - & - & 1 & 1 & - & - & - & - \\ - & - & 1 & - & 1 & 1 & - & - & - \\ - & - & 1 & - & - & - & 1 & - & - \\ - & 1 & - & - & - & 1 & 1 & - & - \\ - & - & 1 & - & - & - & 1 & 1 & - \\ - & - & - & 1 & - & - & - & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 & x_9 \\ 2 & 3 & 3 & 3 & 3 & 3 \\ 3 & 4 & 5 & 5 & 3 & 3 \\ 4 & 5 & 5 & 6 & 7 & 3 \\ 6 & 7 & 7 & 8 & 3 & 9 & 10 \\ 2 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 & x_9 \\ - & - & - & 1 & 1 & - & - & - & - \\ - & - & 1 & - & 1 & - & - & - & - \\ - & - & 1 & - & 1 & 1 & - & - & - \\ - & - & 1 & - & - & - & 1 & - & - \\ - & - & - & 1 & - & - & - & 1 & - \\ - & - & - & 1 & - & - & - & 1 & 1 \end{bmatrix} \quad \begin{array}{c} 3 \\ 4 \\ 5 \\ 6 \\ 8 \\ 9 \\ \end{array}$$

$$MIS = \{1\}$$

$$\mathbf{A} = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 & x_9 \\ - & - & 1 & - & - & - & 1 & - & - \end{bmatrix} \qquad \mathbf{6}$$

$$MIS = \{1,3\}$$

$$\mathbf{A} = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 & x_9 \\ 1 & 1 & - & - & - & - & - & - & - \\ 1 & - & 1 & - & - & - & - & - & - \\ - & - & - & 1 & 1 & - & - & - & - \\ - & - & 1 & - & 1 & 1 & - & - & - \\ - & - & 1 & - & 1 & 1 & - & - & - \\ - & - & 1 & - & - & - & 1 & - & - \\ - & 1 & - & - & - & 1 & 1 & - & - \\ - & - & - & 1 & - & - & - & 1 \\ - & - & - & 1 & - & - & - & 1 & 1 \end{bmatrix}$$

$$MIS = \{1, 3, 6\}$$

BCP Algorithm

```
bcp(A, x, b)
   (\mathbf{A}, \mathbf{x}) = \text{reduce}(\mathbf{A}, \mathbf{x});
  L = lower\_bound(\mathbf{A}, \mathbf{x});
  if (L > cost(b)) then return(b);
  if (terminalCase(A)) then
      if (A has no rows) return(x); else return(b);
   c = \text{choose column}(A);
  x_c = 1; A^1 = \text{select column}(A, c); x^1 = \text{bcp}(A^1, x, b)
  if (\cos t(x^1) < \cot (b)) then
     b = x^1:
      if (cost(b) = L) return(b);
  x_c = 0; \mathbf{A}^0 = \text{remove\_column}(\mathbf{A}, c); \mathbf{x}^0 = \text{bcp}(\mathbf{A}^0, \mathbf{x}, \mathbf{b})
  if (\cos t(x^0) < \cos t(b)) then b = x^0:
  return(b);
```

Termination

- If A has no more rows, then all the constraints have been satisfied by x, and it is a terminal case.
- If no solution exists, it is also a terminal case.

Infeasible Problems

$$f = (x_1 + x_2)(\overline{x_1} + x_2)(x_1 + \overline{x_2})(\overline{x_1} + \overline{x_2})$$

$$\mathbf{A} = \begin{bmatrix} x_1 & x_2 \\ 1 & 1 \\ 0 & 1 \\ 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} x_1 & x_2 \\ 2 & 3 \\ 4 & 4 \end{bmatrix}$$

BCP Algorithm

```
bcp(A, x, b)
   (\mathbf{A}, \mathbf{x}) = \text{reduce}(\mathbf{A}, \mathbf{x});
  L = lower\_bound(\mathbf{A}, \mathbf{x});
  if (L > cost(b)) then return(b);
  if (terminalCase(A)) then
      if (A has no rows) return(x); else return(b);
   c = \text{choose column}(A);
  x_c = 1; A^1 = \text{select column}(A, c); x^1 = \text{bcp}(A^1, x, b)
  if (\cos t(x^1) < \cot (b)) then
     b = x^1:
      if (cost(b) = L) return(b);
  x_c = 0; \mathbf{A}^0 = \text{remove\_column}(\mathbf{A}, c); \mathbf{x}^0 = \text{bcp}(\mathbf{A}^0, \mathbf{x}, \mathbf{b})
  if (\cos t(x^0) < \cos t(b)) then b = x^0:
  return(b);
```

Branching

- If A is not a terminal case, matrix is cyclic.
- To find minimal solution, must determine column to branch on.
- A column intersecting short rows is preferred for branching.
- Assign a weight to each row that is inverse of row length.
- Sum the weights of all the rows covered by a column.
- Column x_c with highest value is chosen for case splitting.

	.,	.,	.,		.,	.,	.,		,					
	<i>X</i> ₁	<i>X</i> ₂	X		<i>X</i> ₄	<i>X</i> ₅	-		(7		X 9			
	1.0	1.3	1.3	3 2	2.0	8.0	8.0	3 1	.0	8.0	8.0			
	Γ	1	1	_	_	_	_	_	_		1	1	1/2	2
		1	_	1	_	_	_	_	_	_		2	1/2	2
	į	_	_	_	1	1	_	_	_	_	İ	3	1/2	2
	İ	_	_	_	1	_	1	_	_	_	İ	4	1/2	2
^	İ	_	_	1	_	1	1	_	_	_		5	1/3	}
$\mathbf{A} =$	İ	_	_	1	_	_	_	1	_	_	İ	6	1/2	2
	-	_	1	_	_	_	_	1	_	_		7	1/2	2
		_	_	_	1	_	_	_	1	_		8	1/2	2
	ŀ	_	_	_	1	_	_	_	_	1		9	1/2	2
		_	1	_	_	_	_	_	1	1		10	1/3	}

Branching

- x_c is added to the solution and constraint matrix is reduced.
- bcp is called recursively and result assigned to x¹.
- If x¹ better than best, record it.
- If \mathbf{x}^1 meets lower bound L, it is minimal.
- If not, remove x_c from solution and call bcp.
- If \mathbf{x}^0 better than best, return it.

BCP Algorithm

```
bcp(A, x, b)
   (\mathbf{A}, \mathbf{x}) = \text{reduce}(\mathbf{A}, \mathbf{x});
  L = lower\_bound(\mathbf{A}, \mathbf{x});
  if (L > cost(b)) then return(b);
  if (terminalCase(A)) then
      if (A has no rows) return(x); else return(b);
   c = \text{choose column}(A);
  x_c = 1; A^1 = \text{select column}(A, c); x^1 = \text{bcp}(A^1, x, b)
  if (\cos t(x^1) < \cot (b)) then
     b = x^1:
      if (cost(b) = L) return(b);
  x_c = 0; \mathbf{A}^0 = \text{remove\_column}(\mathbf{A}, c); \mathbf{x}^0 = \text{bcp}(\mathbf{A}^0, \mathbf{x}, \mathbf{b})
  if (\cos t(x^0) < \cos t(b)) then b = x^0:
  return(b);
```

$$\mathbf{A} = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 & x_9 \\ 1 & 1 & - & - & - & - & - & - & - \\ 1 & - & 1 & - & - & - & - & - & - \\ - & - & - & 1 & 1 & - & - & - & - \\ - & - & 1 & - & 1 & 1 & - & - & - \\ - & - & 1 & - & - & - & 1 & - & - \\ - & 1 & - & - & - & 1 & 1 & - & - \\ - & - & - & 1 & - & - & - & 1 & 1 \\ - & - & - & 1 & - & - & - & 1 & 1 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} x_1 & x_2 & x_3 & x_5 & x_6 & x_7 & x_8 & x_9 \\ 1 & 1 & - & - & - & - & - & - \\ 1 & - & 1 & - & - & - & - & - \\ - & - & 1 & 1 & 1 & - & - & - \\ - & - & 1 & - & - & 1 & - & - \\ - & 1 & - & - & - & 1 & 1 & 1 \end{bmatrix} \quad \begin{array}{c} 1 \\ 2 \\ 5 \\ 6 \\ 7 \\ - & 1 & - & - & - & 1 & 1 \end{array}$$

$$\mathbf{A} = \begin{bmatrix} x_1 & x_2 & x_3 & x_7 \\ 1 & 1 & - & - \\ 1 & - & 1 & - \\ - & - & 1 & - \\ - & - & 1 & 1 \\ - & 1 & - & 1 \\ - & 1 & - & - \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 5 \\ 6 \\ 7 \\ 10 \end{bmatrix}$$

$$x_4 = 1, x_5 = 0, x_6 = 0, x_8 = 0, x_9 = 0$$

$$x_2 = 1, x_3 = 1, x_4 = 1, x_5 = 0, x_6 = 0, x_8 = 0, x_9 = 0$$

$$cost(\mathbf{x}^1) = 3$$
 Recall that $L = 3$

Therefore, we are done.

$$\mathbf{A} = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 & x_9 \\ 1 & 1 & - & - & - & - & - & - & - \\ 1 & - & 1 & - & - & - & - & - & - \\ - & - & - & 1 & 1 & - & - & - & - \\ - & - & 1 & - & 1 & 1 & - & - & - \\ - & - & 1 & - & - & - & 1 & - & - \\ - & 1 & - & - & - & 1 & 1 & - & - \\ - & - & - & 1 & - & - & - & 1 & 1 \\ - & - & - & 1 & - & - & - & 1 & 1 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} x_1 & x_2 & x_3 & x_5 & x_6 & x_7 & x_8 & x_9 \\ 1 & 1 & - & - & - & - & - & - \\ 1 & - & 1 & - & - & - & - & - \\ - & - & - & 1 & - & - & - & - \\ - & - & 1 & 1 & 1 & - & - & - \\ - & - & 1 & - & - & 1 & - & - \\ - & 1 & - & - & - & 1 & - & - \\ - & 1 & - & - & - & 1 & 1 & - \\ - & - & - & - & - & - & 1 & 1 \\ - & 1 & - & - & - & - & 1 & 1 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} x_1 & x_2 & x_3 & x_7 \\ 1 & 1 & - & - \\ 1 & - & 1 & - \\ - & - & 1 & 1 \\ - & 1 & - & 1 \end{bmatrix} \quad \begin{array}{c} 1 \\ 2 \\ 6 \\ 7 \end{array}$$

State Minimization Overview

- Original flow table may contain redundant rows, or states.
- Reducing number of states, reduces number of state variables.
- State minimization procedure:
 - Identify all compatible pairs of states.
 - Finds all maximal compatibles.
 - Find set of prime compatibles.
 - Setup a covering problem where prime compatibles are the solutions, and states are what needs to be covered.
- For SIC fundamental mode, same as for synchronous FSMs.

Example Huffman Flow Table

<i>X</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> 5	<i>x</i> ₆	<i>X</i> ₇
a,0	_	d,0	e,1	b,0	а,-	_
b,0	d,1	а,-	_	а,-	a,1	_
b,0	d,1	a,1	_	_	_	g,0
-	е,-	_	b,-	b,0	_	а,-
b,-	е,-	а,-	-	b,-	е,-	a,1
b,0	с,-	-,1	h,1	f,1	g,0	-
_	c,1	_	e,1	1	g,0	f,0
a,1	e,0	d,1	b,0	b,-	е,-	a,1
	a,0 b,0 b,0 - b,- b,0	a,0 - b,0 d,1 b,0 d,1 - e,- b,- e,- b,0 c, c,1	a,0 - d,0 b,0 d,1 a,- b,0 d,1 a,1 - e,- - b,- e,- a,- b,0 c,- -,1 - c,1 -	a,0 - d,0 e,1 b,0 d,1 a,- - b,0 d,1 a,1 - - e,- - b,- b,- e,- a,- - b,0 c,- -,1 h,1 - c,1 - e,1	a,0 - d,0 e,1 b,0 b,0 d,1 a,- - a,- b,0 d,1 a,1 - - - e,- - b,- b,0 b,- e,- a,- - b,- b,0 c,- -,1 h,1 f,1 - c,1 - e,1 -	a,0 - d,0 e,1 b,0 a,- b,0 d,1 a,- - a,1 b,0 d,1 a,1 - - - - e,- - b,- b,0 - b,- e,- a,- - b,- e,- b,0 c,- -,1 h,1 f,1 g,0 - c,1 - e,1 - g,0

Pair Chart

Unconditionally Compatible

- Two states *u* and *v* are *output compatible* when for each input in which both are specified, they produce the same output.
- Two states u and v are unconditionally compatible when output compatible and go to the same next states.
- When two states u and v are unconditionally compatible, the (u,v) entry is marked with the symbol \sim .

Example Huffman Flow Table

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> ₅	<i>x</i> ₆	<i>X</i> ₇
а	a,0	-	d,0	e,1	b,0	а,-	_
b	b,0	d,1	а,-	-	а,-	a,1	-
С	b,0	d,1	a,1	-	_	_	g,0
d	_	е,-	_	b,-	b,0	_	а,-
е	b,-	е,-	а,-	_	b,-	е,-	a,1
f	b,0	с,-	-,1	h,1	f,1	g,0	_
g	_	c,1	_	e,1	_	g,0	f,0
h	a,1	e,0	d,1	b,0	b,-	е,-	a,1

Example after Marking Unconditional Compatibles

Incompatibles

- When two states u and v are not output compatible, the states are incompatible.
- When two states u and v are incompatible, the (u,v) entry is marked with the symbol x.

Example Huffman Flow Table

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> ₅	<i>x</i> ₆	<i>X</i> ₇
а	a,0	-	d,0	e,1	b,0	а,-	_
b	b,0	d,1	а,-	-	а,-	a,1	-
С	b,0	d,1	a,1	-	_	_	g,0
d	_	е,-	_	b,-	b,0	_	а,-
е	b,-	е,-	а,-	_	b,-	е,-	a,1
f	b,0	с,-	-,1	h,1	f,1	g,0	_
g	_	c,1	_	e,1	_	g,0	f,0
h	a,1	e,0	d,1	b,0	b,-	е,-	a,1

Example after Marking Incompatibles

Conditionally Compatible

- Two states are conditionally compatible when there exists differences in their next state entries.
- If differing next states are merged, they become compatible.
- When two states u and v are compatible only when states s and t are merged then the (u,v) entry is marked with s,t.

Example Huffman Flow Table

<i>X</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> 5	<i>x</i> ₆	<i>X</i> ₇
a,0	_	d,0	e,1	b,0	а,-	_
b,0	d,1	а,-	_	а,-	a,1	_
b,0	d,1	a,1	_	_	_	g,0
-	е,-	_	b,-	b,0	_	а,-
b,-	е,-	а,-	-	b,-	е,-	a,1
b,0	с,-	-,1	h,1	f,1	g,0	-
_	c,1	_	e,1	1	g,0	f,0
a,1	e,0	d,1	b,0	b,-	е,-	a,1
	a,0 b,0 b,0 - b,- b,0	a,0 - b,0 d,1 b,0 d,1 - e,- b,- e,- b,0 c, c,1	a,0 - d,0 b,0 d,1 a,- b,0 d,1 a,1 - e,- - b,- e,- a,- b,0 c,- -,1 - c,1 -	a,0 - d,0 e,1 b,0 d,1 a,- - b,0 d,1 a,1 - - e,- - b,- b,- e,- a,- - b,0 c,- -,1 h,1 - c,1 - e,1	a,0 - d,0 e,1 b,0 b,0 d,1 a,- - a,- b,0 d,1 a,1 - - - e,- - b,- b,0 b,- e,- a,- - b,- b,0 c,- -,1 h,1 f,1 - c,1 - e,1 -	a,0 - d,0 e,1 b,0 a,- b,0 d,1 a,- - a,1 b,0 d,1 a,1 - - - - e,- - b,- b,0 - b,- e,- a,- - b,- e,- b,0 c,- -,1 h,1 f,1 g,0 - c,1 - e,1 - g,0

Example after Marking Conditional Compatibles

b	a,d						
С	×	~					
d	b,e	a,b d,e	d,e a,g				
е	a,b a,d	d,e a,b a,e	×	~			
f	×	×	c,d	×	c,e b,f e,g		
g	~	×	c,d f,g	c,e b,e a,f	×	e,h	
h	×	×	×	~	a,b a,d	×	×
	а	b	С	d	е	f	g

Final Check

- The final step is to check each pair of conditional compatibles.
- If any pair of next states are known to be incompatible, then the states are are also incompatible.
- In this case, the (u,v) entry is marked with the symbol \times .

Example after Marking Conditional Compatibles

b	a,d						
С	×	~					
d	b,e	a,b d,e	d,e a,g				
е	a,b a,d	d,e a,b a,e	×	~			
f	×	×	c,d	×	c,e b,f e,g		
g	~	×	c,d f,g	c,e b,e a,f	×	e,h	
h	×	×	×	~	a,b a,d	×	×
	а	b	С	d	е	f	g

Final Pair Chart

b	a,d						
С	×	~					
d	b,e	a,b d,e	d,e a,g				
е	a,b a,d	d,e a,b a,e	×	7			
f	×	×	c,d	×	×		
g	~	×	c,d f,g	×	×	e,h	
h	×	×	×	~	a,b a,d	×	×
	а	b	С	d	е	f	g

Maximal Compatibles

- Next need to find larger sets of compatible states.
- If *S* is compatible, then any subset of *S* is also compatible.
- A maximal compatible is a compatible that is not a subset of any larger compatible.
- From maximal compatibles, can determine all other compatibles.

Approach One

- Initialize compatible list (c-list) with compatible pairs in rightmost column of pair chart having at least one non-x entry.
- Examine the columns from right to left.
- Set S_i to states in column *i* which do not contain \times .
- Intersect S_i with each member of the current c-list.
- If the intersection has more than one member, add to the c-list an entry composed of the intersection unioned with i.
- Remove duplicate entries and those that are subset of others.
- Add pairs which consist of i and any members of S_i that did not appear in any of the intersections.
- c-list plus states not contained in c-list are maximal compatibles.

b	a,d						
С	×	~					
d	b,e	a,b d,e	d,e a,g				
е	a,b a,d	d,e a,b a,e	×	2			
f	×	×	c,d	×	×		
g	~	×	c,d f,g	×	×	e,h	
h	×	×	×	7	a,b a,d	×	×
	а	b	С	d	е	f	g

Initialize compatible list (c-list) with compatible pairs in rightmost column of pair chart having at least one non- \times entry.

b	a,d						
С	×	~					
d	b,e	a,b d,e	d,e a,g				
е	a,b a,d	d,e a,b a,e	×	2			
f	×	×	c,d	×	×		
g	~	×	c,d f,g	×	×	e,h	
h	×	×	×	7	a,b a,d	×	×
	а	b	С	d	е	f	g
	First	step: <i>c</i> =	$=\{\mathit{fg}\}$				

Initialize compatible list (c-list) with compatible pairs in rightmost column of pair chart having at least one non- \times entry.

b	a,d						
С	×	~					
d	b,e	a,b d,e	d,e a,g				
е	a,b a,d	d,e a,b a,e	×	2			
f	×	×	c,d	×	×		
g	~	×	c,d f,g	×	×	e,h	
h	×	×	×	7	a,b a,d	×	×
	а	b	С	d	е	f	g
	First	step: <i>c</i> =	$=\{\mathit{fg}\}$				

Examine the columns from right to left.

b	a,d						
С	×	~					
d	b,e	a,b d,e	d,e a,g				
е	a,b a,d	d,e a,b a,e	×	2			
f	×	×	c,d	×	×		
g	~	×	c,d f,g	×	×	e,h	
h	×	×	×	7	a,b a,d	×	×
	а	b	С	d	е	f	g
	First	step: $c =$	$=\{\mathit{fg}\}$				
	S_e =	=					

Set S_i to states in column i which do not contain \times .

		,					
b	a,d						
С	×	~					
d	b,e	a,b d,e	d,e a,g				
е	a,b a,d	d,e a,b a,e	×	~			
f	×	×	c,d	×	×		
g	~	×	c,d f,g	×	×	e,h	
h	×	×	×	~	a,b a,d	×	×
	а	b	С	d	е	f	g
First step: $c = \{fg\}$							
$S_{e}=h$:							

Set S_i to states in column i which do not contain \times .

b	a,d						
С	×	~					
d	b,e	a,b d,e	d,e a,g				
е	a,b a,d	d,e a,b a,e	×	?			
f	×	×	c,d	×	×		
g	~	×	c,d f,g	×	×	e,h	
h	×	×	×	7	a,b a,d	×	×
	а	b	С	d	е	f	g
	First	step: $c =$					
	$S_e =$	= h:					

Intersect S_i with each member of the current c-list, add to the c-list an entry composed of the intersection unioned with i.

b	a,d						
С	×	~					
d	b,e	a,b d,e	d,e a,g				
е	a,b a,d	d,e a,b a,e	×	7			
f	×	×	c,d	×	×		
g	~	×	c,d f,g	×	×	e,h	
h	×	×	×	7	a,b a,d	×	×
	а	b	С	d	е	f	g
	First	step: $c =$	$=\{\mathit{fg}\}$				
	$S_e =$	= h:					

Add pairs which consist of i and any members of S_i that did not appear in any of the intersections.

b	a,d						
С	×	~					
d	b,e	a,b d,e	d,e a,g				
е	a,b a,d	d,e a,b a,e	×	>			
f	×	×	c,d	×	×		
g	~	×	c,d f,g	×	×	e,h	
h	×	×	×	>	a,b a,d	×	×
	а	b	С	d	е	f	g
	First	step: $c =$	$=\{\mathit{fg}\}$				
	\mathcal{S}_e =	= h: c =	$=\{fg,eh\}$				

Add pairs which consist of i and any members of S_i that did not appear in any of the intersections.

b	a,d						
С	×	~					
d	b,e	a,b d,e	d,e a,g				
е	a,b a,d	d,e a,b a,e	×	>			
f	×	×	c,d	×	×		
g	~	×	c,d f,g	×	×	e,h	
h	×	×	×	>	a,b a,d	×	×
	а	b	С	d	е	f	g
	First	step: $c =$	$=\{\mathit{fg}\}$				
	$S_e = S_d = S_d$	= h: c =	$= \{ fg, eh \}$				
	$S_d =$	=					

Set S_i to states in column i which do not contain \times .

b	a,d						
С	×	~					
d	b,e	a,b d,e	d,e a,g				
е	a,b a,d	d,e a,b a,e	×	7			
f	×	×	c,d	×	×		
g	~	×	c,d f,g	×	×	e,h	
h	×	×	×	7	a,b a,d	×	×
	а	b	С	d	е	f	g
	First	step: $c =$	$=\{\mathit{fg}\}$				
	$S_e =$	= h :	$= \{ \textit{fg}, \textit{eh} \}$				
	$S_d =$	eh :					

Set S_i to states in column i which do not contain \times .

b	a,d						
С	×	~					
d	b,e	a,b d,e	d,e a,g				
е	a,b a,d	d,e a,b a,e	×	>			
f	×	×	c,d	×	×		
g	~	×	c,d f,g	×	×	e,h	
h	×	×	×	>	a,b a,d	×	×
	а	b	С	d	е	f	g
	First		$=\{\mathit{fg}\}$				
	S_e =	= h :	$= \{ \textit{fg}, \textit{eh} \}$				
	$S_d =$	= eh :					

Intersect S_i with each member of the current c-list, add to the c-list an entry composed of the intersection unioned with i.

b	a,d						
С	×	2					
d	b,e	a,b d,e	d,e a,g				
е	a,b a,d	d,e a,b a,e	×	7			
f	×	×	c,d	×	×		
g	>	×	c,d f,g	×	×	e,h	
h	×	×	×	?	a,b a,d	×	×
	а	b	С	d	е	f	g
	First	step: $c =$	$=\{\mathit{fg}\}$				
	$S_e = S_d = S_d$: h: c=	$= \{ \textit{fg}, \textit{eh} \}$				
	$S_d =$	eh: c=	$=\{\mathit{fg}, \mathit{eh},$	deh}			

		1					
b	a,d						
С	×	~					
d	b,e	a,b d,e	d,e a,g				
е	a,b a,d	d,e a,b a,e	×	2			
f	×	×	c,d	×	×		
g	~	×	c,d f,g	×	×	e,h	
h	×	×	×	7	a,b a,d	×	×
	а	b	С	d	е	f	g
	First	step: $c =$	$=\{\mathit{fg}\}$				
	$S_e = S_d = S_d$: h: c=	$=\{\mathit{fg},\mathit{eh}\}$				
	$S_d =$	eh: c=	$=\{\mathit{fg}, \mathit{eh},$	deh}			

Remove duplicate entries and those that are subset of others.

b	a,d						
С	×	2					
d	b,e	a,b d,e	d,e a,g				
е	a,b a,d	d,e a,b a,e	×	7			
f	×	×	c,d	×	×		
g	?	×	c,d f,g	×	×	e,h	
h	×	×	×	?	a,b a,d	×	×
	а	b	С	d	е	f	g
	First	step: $c =$	$=\{\mathit{fg}\}$				
	\mathcal{S}_e $=$	= h: c =	$=\{\mathit{fg},\mathit{eh}\}$				
	$\mathcal{S}_d =$	eh: c	$=\{\mathit{fg},\mathit{def}$	1}			

b	a,d						
С	×	~					
d	b,e	a,b d,e	d,e a,g				
е	a,b a,d	d,e a,b a,e	×	7			
f	×	×	c,d	×	×		
g	~	×	c,d f,g	×	×	e,h	
h	×	×	×	7	a,b a,d	×	×
	а	b	С	d	е	f	g
	First	step: $c =$	$=\{\mathit{fg}\}$				
	$S_e = h$: $c = \{fg, eh\}$						
	$S_d =$	eh: c	$=\{\mathit{fg},\mathit{deh}\}$	1}			
	$S_c =$	=					

b	a,d						
С	×	~					
d	b,e	a,b d,e	d,e a,g				
е	a,b a,d	d,e a,b a,e	×	>			
f	×	×	c,d	×	×		
g	~	×	c,d f,g	×	×	e,h	
h	×	×	×	>	a,b a,d	×	×
	а	b	С	d	е	f	g
	First	step: c =	$=\{\mathit{fg}\}$				
	$S_e = h$: $c = \{fg, eh\}$						
	$S_d =$	eh: c	$=\{\mathit{fg},\mathit{deh}\}$	1}			
	$S_c =$	∍ dfg :					

		1					
b	a,d						
С	×	7					
d	b,e	a,b d,e	d,e a,g				
е	a,b a,d	d,e a,b a,e	×	\sim			
f	×	×	c,d	×	×		
g	>	×	c,d f,g	×	×	e,h	
h	×	×	×	\sim	a,b a,d	×	×
	а	b	С	d	е	f	g
	First	step: $c =$	$=\{\mathit{fg}\}$				
	\mathcal{S}_e =	= h: c =	$= \{ fg, eh \}$				
	$S_d =$	eh: c:	$=\{\mathit{fg},\mathit{deh}\}$	n }			
	$\mathcal{S}_c =$	= dfg : c =	$=\{\mathit{cfg},\mathit{de}\}$	h, cd	}		

b	a,d						
С	X	\sim]				
d	b,e	a,b d,e	d,e a,g				
е	a,b a,d	d,e a,b a,e	×	\sim			
f	×	×	c,d	×	×		
g	~	×	c,d f,g	×	×	e,h	
h	×	×	×	\sim	a,b a,d	×	×
	a	b	С	d	е	f	g
	First	step: $c =$	$= \{ fg \}$				
	\mathcal{S}_e =	= h: c=	$=\{fg,eh\}$				
	$S_d =$	eh: c	$= \{ fg, deh \}$	n }			
	$S_c =$		$= \{cfg, de\}$		}		
	$\mathcal{S}_b =$	=	-		-		

b	a,d									
С	×	~								
d	b,e	a,b d,e	d,e a,g							
е	a,b a,d	d,e a,b a,e	×	\sim						
f	×	×	c,d	×	×					
g	~	×	c,d f,g	×	×	e,h				
h	×	×	×	\sim	a,b a,d	×	×			
	а	b	С	d	е	f	g			
	First	step: $c =$	$=\{\mathit{fg}\}$							
	\mathcal{S}_e =	= h: c =	$=\{\mathit{fg},\mathit{eh}\}$							
$S_d = eh$: $c = \{fg, deh\}$										
	$S_c =$	= dfg :	$= \{ \textit{cfg}, \textit{de} \}$	h, cd	}					
$\mathcal{S}_b = \mathit{cde}$:										

b	a,d								
С	×	~							
d	b,e	a,b d,e	d,e a,g						
е	a,b a,d	d,e a,b a,e	×	~					
f	×	×	c,d	×	×				
g	~	×	c,d f,g	×	×	e,h			
h	×	×	×	~	a,b a,d	×	×		
	а	b	С	d	е	f	g		
	First	step: $c=$	$=\{\mathit{fg}\}$						
	$S_e =$	= h: c =	$= \{ \textit{fg}, \textit{eh} \}$						
	$S_d =$	eh: c	$c = \{fg, deh\}$						
	$S_c =$	= dfg :	$c = \{cfg, deh, cd\}$						
	$S_b =$	= cde :	$c = \{cfg, deh, bcd, bde\}$						

b	a,d											
С	×	\sim										
d	b,e	a,b d,e	d,e a,g									
е	a,b a,d	d,e a,b a,e	×	~								
f	×	×	c,d	×	×							
g	~	×	c,d f,g	×	×	e,h						
h	×	×	×	~	a,b a,d	×	×					
	а	b	С	d	е	f	g					
	First	step: <i>c</i> =	$=\{\mathit{fg}\}$									
	$S_e =$	= h: c =	$= \{ fg, eh \}$									
	$S_d =$	eh: c	$= \{ \textit{fg}, \textit{def} \}$	n }								
	$S_c =$	= dfg :	$= \{ \textit{cfg}, \textit{de} \}$	h, cd	}							
	$S_b =$	= cde :	$= \{ \textit{cfg}, \textit{de} \}$	h, bc	d, bde							
	$S_a =$											

a,d						
×	\sim					
b,e	a,b d,e	d,e a,g				
a,b a,d	d,e a,b a,e	×	2			
×	×	c,d	×	×		
~	×	c,d f,g	×	×	e,h	
×	×	×	~	a,b a,d	×	×
а	b	С	d	е	f	g
First	step: <i>c</i> =	$=\{\mathit{fg}\}$				
\mathcal{S}_e =	= h: c =	$= \{ fg, eh \}$				
$S_d =$	eh: c	$= \{ \textit{fg}, \textit{def} \}$	1}			
$\mathcal{S}_c =$	= dfg :	$= \{ cfg, deg$	h, cd	}		
\mathcal{S}_b $=$	= cde :	$= \{ cfg, deg \}$	h, bc	d,bde}		
$S_a =$	bdeg: c=	$= \{ cfg, deg$	h, bc	d, abde, a	$g\}$	
	$egin{array}{c} \times & & \\ & b,e \\ & a,b \ a,d \\ & \times & \\ & \sim & \\ & \times & \\ & a \\ & First \\ & S_e = & \\ & S_d = & \\ & S_c = & \\ & S_b = & \\ & S_b = & \\ \end{array}$	$egin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

b	a,d											
С	×	\sim										
d	b,e	a,b d,e	d,e a,g									
е	a,b a,d	d,e a,b a,e	×	7								
f \times \times c,d \times \times												
g	~	×	c,d f,g	×	×	e,h						
h	×	×	×	7	a,b a,d	×	×					
	a b c d e f											
	First	step: <i>c</i> =	$=\{\mathit{fg}\}$									
	$S_e =$	= h : c =	$= \{ \textit{fg}, \textit{eh} \}$									
	$S_d =$	eh: c	$= \{ \textit{fg}, \textit{def} \}$	1}								
	$S_c =$	= dfg :	$=\{\mathit{cfg},\mathit{de}\}$	h, cd	}							
	$S_b =$	= cde :	$= \{ \textit{cfg}, \textit{de} \}$	h, bc	d, bde							
	$S_a = bdeg: c = \{cfg, deh, bcd, abde, ag\}$											
-list	plus state	s not contain	ed in c -list	are	maximal c	omna	tibles					

c-list plus states not contained in *c*-list are maximal compatibles.

Approach Two

- If s_i and s_j have been found to be incompatible, we know that no maximal compatible can include both.
- Write a Boolean formula that gives the conditions for a set of states to be compatible.
- For each state s_i , $x_i = 1$ means that s_i is in the set.
- States s_i , s_i incompatible implies clause $(\overline{x_i} + \overline{x_i})$ is included.
- Form conjunction of clauses for each incompatible pair.

Example for Approach Two

b	a,d						
С	×	~					
d	b,e	a,b d,e	d,e a,g				
е	a,b a,d	d,e a,b a,e	×	~			
f	×	×	c,d	×	×		
g	~	×	c,d f,g	×	×	e,h	
h	×	×	×	~	a,b a,d	×	×
	а	b	С	d	е	f	g

Example for Approach Two

b	a,d						
С	×	2					
d	b,e	a,b d,e	d,e a,g				
е	a,b a,d	d,e a,b a,e	×	2			
f	×	×	c,d	×	×		
g	\sim	×	c,d f,g	×	×	e,h	
h	×	×	×	2	a,b a,d	×	×
	а	b	С	d	е	f	g

$$(\overline{a}+\overline{c})(\overline{a}+\overline{f})(\overline{a}+\overline{h})(\overline{b}+\overline{f})(\overline{b}+\overline{g})(\overline{b}+\overline{h})(\overline{c}+\overline{e})$$
$$(\overline{c}+\overline{h})(\overline{d}+\overline{f})(\overline{d}+\overline{g})(\overline{e}+\overline{f})(\overline{e}+\overline{g})(\overline{f}+\overline{h})(\overline{g}+\overline{h})$$

Example for Approach Two

Initial Boolean formula for incompatibles:

$$\begin{split} &(\overline{a}+\overline{c})(\overline{a}+\overline{f})(\overline{a}+\overline{h})(\overline{b}+\overline{f})(\overline{b}+\overline{g})(\overline{b}+\overline{h})(\overline{c}+\overline{e}) \\ &(\overline{c}+\overline{h})(\overline{d}+\overline{f})(\overline{d}+\overline{g})(\overline{e}+\overline{f})(\overline{e}+\overline{g})(\overline{f}+\overline{h})(\overline{g}+\overline{h}) \end{split}$$

Convert to sum-of-products:

$$\overline{a}\overline{b}\overline{d}\overline{e}\overline{h} + \overline{a}\overline{b}\overline{c}\overline{f}\overline{g} + \overline{a}\overline{e}\overline{f}\overline{g}\overline{h} + \overline{c}\overline{f}\overline{g}\overline{h} + \overline{b}\overline{c}\overline{d}\overline{e}\overline{f}\overline{h}$$

 Each term defines a maximal compatible set where states that do not occur make up the maximal compatible.

Prime Compatibles

- Some states are compatible only if other pairs are merged.
- The implied state set for each compatible is called its class set.
- The implied compatibles must be selected to guarantee closure.
- C_1 and C_2 are compatibles and Γ_1 and Γ_2 are their class sets.
- If $C_1 \subset C_2$ then it may appear that C_2 is better, but if $\Gamma_1 \subset \Gamma_2$ then C_1 may be better.
- The best compatibles may not be maximal.
- A compatible C_1 is *prime* iff there does not exist $C_2 \supset C_1$ such that $\Gamma_2 \subseteq \Gamma_1$.
- An optimum solution always uses only prime compatibles.

Prime Compatible Algorithm

```
prime compatibles(C, M) done = \emptyset
    for(k = |largest(M)|; k > 1; k - -)
         foreach(q \in M; |q| = k) enqueue(P, q)
         foreach(p \in P; |p| = k)
             if(class set(CM, p) = \emptyset) continue
             foreach(s \in max \ subsets(p))
                  if (s \in done) continue
                  \Gamma_s = class \ set(CM, s)
                  prime = true
                  foreach(q \in P; |q| > k)
                      if (s \subset q)
                           \Gamma_q = class \ set(CM,q)
                           if (\Gamma_s \supseteq \Gamma_a)
                               prime = false; break
                  if(prime = 1) enqueue(P, s)
                  done = done \cup \{s\}
```

Example for Prime Compatibles

b	a,d										
С	×	~									
d	b,e	a,b d,e	d,e a,g								
е	a,b a,d	d,e a,b a,e	×	7							
f	×	×	c,d	×	×						
g	\sim	×	c,d f,g	×	×	e,h					
h	×	×	×	7	a,b a,d	×	×				
	а	b	С	d	е	f	g				
	Maximal compatiables = $\{abde, bcd, cfg, deh, ag\}$										

Prime Compatibles

	Prime compatibles	Class set
1	abde	0
2	bcd	$\{(a,b),(a,g),(d,e)\}$
3	cfg	$\{(c,d),(e,h)\}$
4	deh	{(a,b),(a,d)}
5	bc	0
6	cd	$\{(a,g),(d,e)\}$
7	cf	{(<i>c</i> , <i>d</i>)}
8	cg	$\{(c,d),(f,g)\}$
9	fg	{(e,h)}
10	dh	0
11	ag	0
12	f	0

Setting up the Covering Problem

- A collection of prime compatibles forms a valid solution when it is a closed cover.
- A collection of compatibles is a cover when all states are contained in some compatible in the set.
- A collection is closed when all implied states are contained in some other compatible.
- $c_i = 1$ when the i^{th} prime compatible is in the solution.
- Using c_i variables, can write a Boolean formula that represents the conditions for a solution to be a closed cover.
- The formula is a product-of-sums where each product is a covering or closure constraint.

Covering Constraints

- There is one covering constraint for each state.
- The product is simply a disjunction of the prime compatibles that include the state.
- In other words, for the covering constraint to yield 1, one of the primes that includes the state must be in the solution. For example, the covering constraint for state a is:

$$(c_1 + c_{11})$$

Closure Constraints

- There is a closure constraint for each implied compatible for each prime compatible.
- For example, the prime *bcd* requires the following states to be merged: (*a*,*b*), (*a*,*g*), (*d*,*e*).
- Therefore, if we include *bcd* in the cover (i.e., *c*₂), then we must also select compatibles which will merge these other state pairs.
- abde is the only prime compatible that merges a and b.
- Therefore, we have a closure constraint of the form:

$$c_2 \Rightarrow c_1$$

Closure Constraints

 The prime ag is the only one that merges states a and g, so we also need a closure constraint of the form:

$$c_2 \Rightarrow c_{11}$$

 Finally, primes abde and deh both merge states d and e, so the resulting closure constraint is:

$$c_2 \Rightarrow (c_1 + c_4)$$

 Converting the implication into disjunctions, we can express the complete set of closure constraints for bcd as follows:

$$(\overline{c_2}+c_1)(\overline{c_2}+c_{11})(\overline{c_2}+c_1+c_4)$$

Prime Compatibles

	Prime compatibles	Class set
1	abde	0
2	bcd	$\{(a,b),(a,g),(d,e)\}$
3	cfg	$\{(c,d),(e,h)\}$
4	deh	{(a,b),(a,d)}
5	bc	0
6	cd	$\{(a,g),(d,e)\}$
7	cf	{(<i>c</i> , <i>d</i>)}
8	cg	$\{(c,d),(f,g)\}$
9	fg	{(e,h)}
10	dh	0
11	ag	0
12	f	0

Product-of-Sums Formulation

$$(c_{1}+c_{11})(c_{1}+c_{2}+c_{5})(c_{2}+c_{3}+c_{5}+c_{6}+c_{7}+c_{8})$$

$$\cdot(c_{1}+c_{2}+c_{4}+c_{6}+c_{10})(c_{1}+c_{4})(c_{3}+c_{7}+c_{9}+c_{12})$$

$$\cdot(c_{3}+c_{8}+c_{9}+c_{11})(c_{4}+c_{10})(\overline{c_{2}}+c_{1})(\overline{c_{2}}+c_{11})(\overline{c_{2}}+c_{1}+c_{4})$$

$$\cdot(\overline{c_{3}}+c_{2}+c_{6})(\overline{c_{3}}+c_{4})(\overline{c_{4}}+c_{1})(\overline{c_{4}}+c_{1})(\overline{c_{6}}+c_{11})(\overline{c_{6}}+c_{1}+c_{4})$$

$$\cdot(\overline{c_{7}}+c_{2}+c_{6})(\overline{c_{8}}+c_{2}+c_{6})(\overline{c_{8}}+c_{3}+c_{9})(\overline{c_{9}}+c_{4}) = 1$$

	c_1	<i>c</i> ₂	0	3 (24	c ₅	<i>c</i> ₆	C7	<i>c</i> ₈	<i>c</i> ₉	C ₁₀	C ₁₁	C ₁
	Ē	1	_	_	_	_	_	_	_	_	_	1	- 1
		1	1	_	_	1	_	_	_	_	_	_	_
	-	_	1	1	_	1	1	1	1	_	_	_	_
	-	1	1	_	1	_	1	_	_	_	1	_	_
		1	_	_	1	_	_	_	_	_	_	_	_
		_	_	1	_	_	_	1	_	1	_	_	1
		_	_	1	_	_	_	_	1	1	_	1	_
		_	_	_	1	_	_	_	_	_	1	_	_
	ı	1	0	_	_	_	_	_	_	_	_	_	_
		_	Ō	_	_	_	_	_	_	_	_	1	_
=		1	ō	_	1	_	_	_	_	_	_	_	_
		_	1	0	_	_	1	_	_	_	_	_	_
		_	_	Ö	1	_		_	_	_	_	_	_
	-	1	_	_	0	_	_	_	_	_	_	_	_
	- 1	1	_	_	0	_	_	_	_	_	_	_	_
		_	_	_	_	_	0	_	_	_	_	1	_
		1	_	_	1	_	0	_	_	_	_	_	_
		_	1	_		_	1	0	_	_	_	_	_
	- 1	_	1	_			1	_	0	_	_	_	_
	i	_		1	_	_		_	0	1	_	_	_
		_	_		1				_	'n	_	_	_

21

Α

Rows 4, 11, and 17 dominate row 5, Row 14 dominates row 15.

	c ₁		<u></u>	0		C.	Cr	Co	C7	Co	Co	Can	C.		•
	٠1		c_2	<i>c</i> ₃		C4	c_5	c ₆	C/	c ₈	<i>C</i> 9	c ₁₀	C11	_ c ₁	2
		1		-	_	_		_	_	_	_	_		_	
		1		1	_	_	1	_	_	_	_	_	-	-	2
		_		1	1	_	1	1	1	1	_	_	_	-	3
		1		1	_	1	_	1	_	_	_	1	_	-	4
		1		_	_	1	_	_	_	_	_	_	_	-	5
		_		_	1	_	_	_	1	_	1	_	_	1	6
		_		_	1	_	_	_	_	1	1	_	1	-	7
	-	_		_	_	1	_	_	_	_	_	1	_	-	8
	- 1	1		0	_	_	_	_	_	_	_	_	_	-	9
		_		0	_	_	_	_	_	_	_	_	1	-	10
A =	-	1		0	_	1	_	_	_	_	_	_	_	-	11
		_		1	0	_	_	1	_	_	_	_	_	-	12
		_		_	0	1	_	_	_	_	_	_	_	- 1	13
	- 1	1		_	_	0	_	_	_	_	_	_	_	-	14
	- 1	1		_	_	0	_	_	_	_	_	_	_	-	15
	- 1	_		_	_	_	_	0	_	_	_	_	1	-	16
		1		_	_	1	_	0	_	_	_	_	_	-	17
	- 1	_		1	_	_	_	1	0	_	_	_	_	-	18
		_		1	_	_	_	1	_	0	_	_	_	-	19
		_		_	1	_	_	_	_	0	1	_	_	-	20
	L	_		_	_	1	_	_	_	_	0	_	_		21

Rows 4, 11, and 17 dominate row 5, Row 14 dominates row 15.

	C ₁	C	2 C	3 (24	C ₅	<i>c</i> ₆	C 7	<i>c</i> ₈	<i>C</i> 9	c ₁₀	C ₁₁	<i>C</i> ₁	2
	Γ	1	_	_	_	_	_	_	_	_	_	1	- 7	1
		1	1	_	_	1	_	_	_	_	_	_	_	2
		_	1	1	_	1	1	1	1	_	_	_	_	3
		1	_	_	1	_	_	_	_	_	_	_	_	5
	İ	_	_	1	_	_	_	1	_	1	_	_	1	6
		_	_	1	_	_	_	_	1	1	_	1	_	7
	ı	_	_	_	1	_	_	_	_	_	1	_	_	8
	İ	1	0	_	_	_	_	_	_	_	_	_	_	9
A =	İ	_	0	_	_	_	_	_	_	_	_	1	_	10
	-	_	1	0	_	_	1	_	_	_	_	_	_	12
	-	_	_	0	1	_	_	_	_	_	_	_	_	13
		1	_	_	0	_	_	_	_	_	_	_	_	15
	-	_	_	_	_	_	0	_	_	_	_	1	_	16
		_	1	_	_	_	1	0	_	_	_	_	-	18
		_	1	_	_	_	1	_	0	_	_	_	-	19
		_	_	1	_	_	_	_	0	1	_	_	_	20
	L	_	_	_	1	_	_	_	_	0	_	_	_	21

Cyclic

MIS =
$$\{1, 6, 8\}$$
, so $L = 3$

A =

 c_1 has a branching weight of 1.33 which is best.

C ₁ C ₂	2 0	3 (4 (C ₅	<i>c</i> ₆	C 7	<i>c</i> ₈	<i>c</i> ₉	<i>c</i> ₁₀	C ₁₁	c ₁₂
Γ1	_	_	_	_	_	_	_	_	_	1	- 7
1	1	_	_	1	_	_	_	_	_	_	-
-	1	1	_	1	1	1	1	_	_	_	-
1	_	_	1	_	_	_	_	_	_	_	_
_	_	1	_	_	_	1	_	1	_	_	1
_	_	1	_	_	_	_	1	1	_	1	-
_	_	_	1	_	_	_	_	_	1	_	_
1	0	_	_	_	_	_	_	_	_	_	_
_	0	_	_	_	_	_	_	_	_	1	_
_	1	0	_	_	1	_	_	_	_	_	_
_	_	0	1	_	_	_	_	_	_	_	_
1	_	_	0	_	_	_	_	_	_	_	_
_	_	_	_	_	0	_	_	_	_	1	_ İ
_	1	_	_	_	1	0	_	_	_	_	_
_	1	_	_	_	1	_	0	_	_	_	_
_	_	1	_	_	_	_	0	1	_	_	_
L –	_	_	1	_	_	_	_	0	_	_	_]

 $\mathbf{A} =$

$$c_1 = 1$$

Column c_4 dominates c_{10} .

$$c_1 = 1$$

$$\mathbf{A} = \begin{bmatrix} c_2 & c_3 & c_4 & c_5 & c_6 & c_7 & c_8 & c_9 & c_{11} & c_{12} \\ 1 & 1 & - & 1 & 1 & 1 & 1 & - & - & - \\ - & 1 & - & - & - & 1 & - & 1 & - & 1 \\ - & 1 & - & - & - & - & 1 & 1 & 1 & - \\ - & - & 1 & - & - & - & - & - & - & - \\ 0 & - & - & - & - & - & - & - & - & - \\ 1 & 0 & - & - & 1 & - & - & - & - & - \\ - & 0 & 1 & - & - & - & - & - & - & - \\ 1 & - & - & - & 1 & 0 & - & - & - & - \\ 1 & - & - & - & 1 & 0 & - & - & - & - \\ 1 & - & - & - & 1 & - & 0 & - & - & - \\ 1 & - & - & - & 0 & 1 & - & - & - & 20 \\ - & 1 & - & - & - & - & 0 & 1 & - & - & 20 \\ - & - & 1 & - & - & - & - & 0 & - & - & - \end{bmatrix} \quad 20$$

$$c_1=1, c_{10}=0$$

 c_4 essential.

$$\mathbf{A} = \begin{bmatrix} c_2 & c_3 & c_4 & c_5 & c_6 & c_7 & c_8 & c_9 & c_{11} & c_{12} \\ 1 & 1 & - & 1 & 1 & 1 & 1 & - & - & - \\ - & 1 & - & - & - & 1 & - & 1 & - & 1 \\ - & 1 & - & - & - & - & 1 & 1 & 1 & - \\ - & - & 1 & - & - & - & - & - & - & - \\ 0 & - & - & - & - & - & - & - & - & - \\ 1 & 0 & - & - & 1 & - & - & - & - & - \\ - & 0 & 1 & - & - & - & - & - & - & - \\ 1 & - & - & - & 0 & - & - & - & 1 & - \\ 1 & - & - & - & 1 & 0 & - & - & - & - \\ 1 & - & - & - & 1 & - & 0 & - & - & - \\ 1 & - & - & - & 0 & 1 & - & - & - & 20 \\ - & - & 1 & - & - & - & 0 & 1 & - & - & 20 \\ 21 & - & - & 1 & - & - & - & 0 & - & - & 1 \end{bmatrix}$$

$$c_1=1, c_{10}=0$$

$$\mathbf{A} = \begin{bmatrix} c_2 & c_3 & c_5 & c_6 & c_7 & c_8 & c_9 & c_{11} & c_{12} \\ 1 & 1 & 1 & 1 & 1 & 1 & - & - & - \\ - & 1 & - & - & 1 & - & 1 & - & 1 \\ - & 1 & - & - & - & 1 & 1 & 1 & - \\ 0 & - & - & - & - & - & 1 & - \\ 1 & 0 & - & 1 & - & - & - & - & - \\ - & - & - & 0 & - & - & - & 1 & - \\ 1 & - & - & 1 & 0 & - & - & - & - \\ 1 & - & - & 1 & - & 0 & - & - & - \\ - & 1 & - & - & - & 0 & 1 & - & - \end{bmatrix} \quad \begin{array}{c} 3 \\ 6 \\ 7 \\ 10 \\ 12 \\ 16 \\ 18 \\ 19 \\ 20 \\ \end{array}$$

 $c_1 = 1, c_4 = 1, c_{10} = 0$

 c_9 dominates c_{12} .

$$\mathbf{A} = \begin{bmatrix} c_2 & c_3 & c_5 & c_6 & c_7 & c_8 & c_9 & c_{11} & c_{12} \\ 1 & 1 & 1 & 1 & 1 & 1 & - & - & - \\ - & 1 & - & - & 1 & - & 1 & - & 1 \\ - & 1 & - & - & - & 1 & 1 & 1 & - \\ 0 & - & - & - & - & - & 1 & - \\ 1 & 0 & - & 1 & - & - & - & - & - \\ - & - & - & 0 & - & - & - & 1 & - \\ 1 & - & - & 1 & 0 & - & - & - & - \\ 1 & - & - & 1 & - & 0 & - & - & - \\ 1 & - & - & 1 & - & 0 & - & - & - \\ - & 1 & - & - & 0 & 1 & - & - \end{bmatrix} \quad \begin{array}{c} 3 \\ 6 \\ 7 \\ 10 \\ 12 \\ 13 \\ 14 \\ 20 \\ 20 \\ \end{array}$$

$$c_1 = 1, c_4 = 1, c_{10} = 0$$

$$\mathbf{A} = \begin{bmatrix} c_2 & c_3 & c_5 & c_6 & c_7 & c_8 & c_9 & c_{11} \\ 1 & 1 & 1 & 1 & 1 & 1 & - & - \\ - & 1 & - & - & 1 & - & 1 & - \\ - & 1 & - & - & - & 1 & 1 & 1 \\ 0 & - & - & - & - & - & 1 \\ 1 & 0 & - & 1 & - & - & - & - \\ - & - & 0 & - & - & - & 1 \\ 1 & - & - & 1 & 0 & - & - & - \\ 1 & - & - & 1 & - & 0 & - & - \\ - & 1 & - & - & 0 & 1 & - \end{bmatrix} \begin{bmatrix} 16 \\ 18 \\ 19 \\ 20 \end{bmatrix}$$

$$c_1 = 1, c_4 = 1, c_{10} = 0, c_{12} = 0$$

Cyclic

$$\mathbf{A} = \begin{bmatrix} c_2 & c_3 & c_5 & c_6 & c_7 & c_8 & c_9 & c_{11} \\ 1 & 1 & 1 & 1 & 1 & 1 & - & - \\ - & 1 & - & - & 1 & - & 1 & - \\ - & 1 & - & - & - & 1 & 1 & 1 \\ 0 & - & - & - & - & - & - & 1 \\ 1 & 0 & - & 1 & - & - & - & - & 1 \\ - & - & - & 0 & - & - & - & 1 \\ 1 & - & - & 1 & 0 & - & - & - & 1 \\ 1 & - & - & 1 & - & 0 & - & - & 1 \\ 1 & - & - & 1 & - & 0 & - & - & 1 \\ 1 & - & - & 1 & - & 0 & - & - & 1 \\ 1 & - & - & 1 & - & 0 & - & - & 1 \\ 20 & - & - & - & 0 & 1 & - & 1 \end{bmatrix}$$

$$c_1 = 1, c_4 = 1, c_{10} = 0, c_{12} = 0$$

$$MIS = { 3 }, L = 3$$

$$c_1 = 1, c_4 = 1, c_{10} = 0, c_{12} = 0$$

 c_3 has best branching value of 0.75.

$$\mathbf{A} = \begin{bmatrix} c_2 & c_3 & c_5 & c_6 & c_7 & c_8 & c_9 & c_{11} \\ 1 & 1 & 1 & 1 & 1 & 1 & - & - \\ - & 1 & - & - & 1 & - & 1 & - \\ - & 1 & - & - & - & 1 & 1 & 1 \\ 0 & - & - & - & - & - & - & 1 \\ 1 & 0 & - & 1 & - & - & - & - & 1 \\ - & - & - & 0 & - & - & - & 1 \\ 1 & - & - & 1 & 0 & - & - & - & 1 \\ 1 & - & - & 1 & - & 0 & - & - & 1 \\ 1 & - & - & 1 & - & 0 & - & - & 1 \\ - & 1 & - & - & - & 0 & 1 & - & 1 \end{bmatrix}$$

$$c_1 = 1, c_4 = 1, c_{10} = 0, c_{12} = 0$$

$$\mathbf{A} = \begin{bmatrix} c_2 & c_5 & c_6 & c_7 & c_8 & c_9 & c_{11} \\ 0 & - & - & - & - & - & 1 \\ 1 & - & 1 & - & - & - & - \\ - & - & 0 & - & - & - & 1 \\ 1 & - & 1 & 0 & - & - & - \\ 1 & - & 1 & - & 0 & - & - \end{bmatrix} \begin{bmatrix} 10 \\ 12 \\ 16 \\ 18 \\ 19 \end{bmatrix}$$

 $c_1 = 1, c_3 = 1, c_4 = 1, c_{10} = 0, c_{12} = 0$

Rows 18 and 19 dominate row 12.

$$\mathbf{A} = \begin{bmatrix} c_2 & c_5 & c_6 & c_7 & c_8 & c_9 & c_{11} \\ 0 & - & - & - & - & - & 1 \\ 1 & - & 1 & - & - & - & - \\ - & - & 0 & - & - & - & 1 \\ 1 & - & 1 & 0 & - & - & - \\ 1 & - & 1 & - & 0 & - & - \end{bmatrix} \begin{bmatrix} 10 \\ 12 \\ 16 \\ 18 \\ 19 \end{bmatrix}$$

$$c_1 = 1, c_3 = 1, c_4 = 1, c_{10} = 0, c_{12} = 0$$

$$\mathbf{A} = \begin{bmatrix} c_2 & c_5 & c_6 & c_7 & c_8 & c_9 & c_{11} \\ 0 & - & - & - & - & 1 \\ 1 & - & 1 & - & - & - & - \\ - & - & 0 & - & - & - & 1 \end{bmatrix} \quad \begin{matrix} 10 \\ 12 \\ 16 \\ \end{matrix}$$

$$c_1 = 1, c_3 = 1, c_4 = 1, c_{10} = 0, c_{12} = 0$$

Column c_{11} dominates c_5 , c_7 , c_8 , and c_9 .

$$\mathbf{A} = \begin{bmatrix} c_2 & c_5 & c_6 & c_7 & c_8 & c_9 & c_{11} \\ 0 & - & - & - & - & - & 1 \\ 1 & - & 1 & - & - & - & - \\ - & - & 0 & - & - & - & 1 \end{bmatrix} \quad \begin{array}{c} 10 \\ 12 \\ 16 \\ \end{array}$$

$$c_1 = 1, c_3 = 1, c_4 = 1, c_{10} = 0, c_{12} = 0$$

$$\mathbf{A} = \begin{bmatrix} c_2 & c_6 & c_{11} \\ 0 & - & 1 \\ 1 & 1 & - \\ - & 0 & 1 \end{bmatrix} \quad \begin{array}{c} 10 \\ 12 \\ 16 \end{array}$$

$$c_1 = 1, c_3 = 1, c_4 = 1, c_5 = 0, c_7 = 0, c_8 = 0, c_9 = 0, c_{10} = 0, c_{12} = 0$$

Cyclic

$$\mathbf{A} = \begin{bmatrix} c_2 & c_6 & c_{11} \\ 0 & - & 1 \\ 1 & 1 & - \\ - & 0 & 1 \end{bmatrix} \quad \begin{array}{c} 10 \\ 12 \\ 16 \end{array}$$

$$c_1 = 1, c_3 = 1, c_4 = 1, c_5 = 0, c_7 = 0, c_8 = 0, c_9 = 0, c_{10} = 0, c_{12} = 0$$

$$MIS = \{ 12 \}, L = 4.$$

$$\mathbf{A} = \begin{bmatrix} c_2 & c_6 & c_{11} \\ 0 & - & 1 \\ 1 & 1 & - \\ - & 0 & 1 \end{bmatrix} \quad \begin{array}{c} 10 \\ 12 \\ 16 \end{array}$$

$$c_1 = 1, c_3 = 1, c_4 = 1, c_5 = 0, c_7 = 0, c_8 = 0, c_9 = 0, c_{10} = 0, c_{12} = 0$$

Branch on c_2 .

$$\mathbf{A} = \begin{bmatrix} c_2 & c_6 & c_{11} \\ 0 & - & 1 \\ 1 & 1 & - \\ - & 0 & 1 \end{bmatrix} \quad \begin{array}{c} 10 \\ 12 \\ 16 \end{array}$$

$$c_1 = 1, c_3 = 1, c_4 = 1, c_5 = 0, c_7 = 0, c_8 = 0, c_9 = 0, c_{10} = 0, c_{12} = 0$$

$$\mathbf{A} = \begin{bmatrix} c_6 & c_{11} \\ - & 1 \\ 0 & 1 \end{bmatrix} \quad \begin{array}{c} 10 \\ 16 \end{array}$$

$$c_1 = 1, c_2 = 1, c_3 = 1, c_4 = 1, c_5 = 0, c_7 = 0, c_8 = 0, c_9 = 0, c_{10} = 0, c_{12} = 0$$

 c_{11} is essential.

$$\mathbf{A} = \begin{bmatrix} c_6 & c_{11} \\ - & 1 \\ 0 & 1 \end{bmatrix} \quad \begin{array}{c} 10 \\ 16 \end{array}$$

$$c_1 = 1, c_2 = 1, c_3 = 1, c_4 = 1, c_5 = 0, c_7 = 0, c_8 = 0, c_9 = 0, c_{10} = 0, c_{12} = 0$$

Solution is
$$\{c_1, c_2, c_3, c_4, c_{11}\}$$
.

This is best solution so far, but cost of 5 is greater than lower bound of 4.

$$\mathbf{A} = \begin{bmatrix} c_6 & c_{11} \\ - & 1 \\ 0 & 1 \end{bmatrix} \quad \begin{array}{c} 10 \\ 16 \end{array}$$

$$c_1=1, c_2=1, c_3=1, c_4=1, c_5=0, c_7=0, c_8=0, c_9=0, c_{10}=0, c_{12}=0$$

Let's try
$$c_2 = 0$$
.

$$\mathbf{A} = \begin{bmatrix} c_2 & c_6 & c_{11} \\ 0 & - & 1 \\ 1 & 1 & - \\ - & 0 & 1 \end{bmatrix} \quad \begin{array}{c} 10 \\ 12 \\ 16 \end{array}$$

$$c_1 = 1, c_3 = 1, c_4 = 1, c_5 = 0, c_7 = 0, c_8 = 0, c_9 = 0, c_{10} = 0, c_{12} = 0$$

$$\mathbf{A} = \begin{bmatrix} c_6 & c_{11} \\ 1 & - \\ 0 & 1 \end{bmatrix} \quad \begin{array}{c} 12 \\ 16 \end{array}$$

$$c_1 = 1, c_2 = 0, c_3 = 1, c_4 = 1, c_5 = 0, c_7 = 0, c_8 = 0, c_9 = 0, c_{10} = 0, c_{12} = 0$$

Now must select both c_6 and c_{11} , so another solution of cost 5.

$$\mathbf{A} = \begin{bmatrix} c_6 & c_{11} \\ 1 & - \\ 0 & 1 \end{bmatrix} \quad \begin{array}{c} 12 \\ 16 \end{array}$$

$$c_1 = 1, c_2 = 0, c_3 = 1, c_4 = 1, c_5 = 0, c_7 = 0, c_8 = 0, c_9 = 0, c_{10} = 0, c_{12} = 0$$

Let's go back and try c_3 equal to 0.

$$\mathbf{A} = \begin{bmatrix} c_2 & c_3 & c_5 & c_6 & c_7 & c_8 & c_9 & c_{11} \\ 1 & 1 & 1 & 1 & 1 & 1 & - & - \\ - & 1 & - & - & 1 & - & 1 & - \\ - & 1 & - & - & - & 1 & 1 & 1 \\ 0 & - & - & - & - & - & - & 1 \\ 1 & 0 & - & 1 & - & - & - & - & 1 \\ 1 & - & - & 1 & 0 & - & - & - & 1 \\ 1 & - & - & 1 & 0 & - & - & - & 1 \\ 1 & - & - & 1 & - & 0 & - & - & - & 1 \\ 1 & - & - & 1 & - & 0 & - & - & - & 1 \\ 1 & - & - & 1 & - & 0 & - & - & - & 1 \\ 20 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$c_1 = 1, c_4 = 1, c_{10} = 0, c_{12} = 0$$

$$\mathbf{A} = \begin{bmatrix} c_2 & c_5 & c_6 & c_7 & c_8 & c_9 & c_{11} \\ 1 & 1 & 1 & 1 & 1 & - & - \\ - & - & - & 1 & - & 1 & - \\ - & - & - & - & 1 & 1 & 1 \\ 0 & - & - & - & - & - & 1 \\ - & - & 0 & - & - & - & 1 \\ 1 & - & 1 & 0 & - & - & - \\ 1 & - & 1 & - & 0 & - & - \\ - & - & - & - & 0 & 1 & - \end{bmatrix} \quad \begin{array}{c} 3 \\ 6 \\ 7 \\ 10 \\ 16 \\ 18 \\ 19 \\ 20 \\ \end{array}$$

$$c_1 = 1, c_3 = 0, c_4 = 1, c_{10} = 0, c_{12} = 0$$

Cyclic

$$\mathbf{A} = \begin{bmatrix} c_2 & c_5 & c_6 & c_7 & c_8 & c_9 & c_{11} \\ 1 & 1 & 1 & 1 & 1 & - & - \\ - & - & - & 1 & - & 1 & - \\ - & - & - & - & 1 & 1 & 1 \\ 0 & - & - & - & - & - & 1 \\ - & - & 0 & - & - & - & 1 \\ 1 & - & 1 & 0 & - & - & - \\ 1 & - & 1 & - & 0 & - & - \\ - & - & - & - & 0 & 1 & - \end{bmatrix} \begin{bmatrix} c_1 & c_2 & c_3 & c_4 & c_5 & c_5 \\ c_1 & c_2 & c_3 & c_4 & c_5 & c_5 \\ c_2 & c_5 & c_6 & c_7 & c_8 & c_9 & c_{11} \\ c_2 & c_3 & c_4 & c_5 & c_5 \\ c_4 & c_5 & c_5 & c_6 & c_7 & c_8 & c_9 & c_{11} \\ c_5 & c_6 & c_7 & c_8 & c_9 & c_{11} \\ c_6 & c_7 & c_8 & c_9 & c_{11} \\ c_7 & c_8 & c_9 & c_{11} \\ c_9 & c_{11} \\ c_9 & c_{11} \\ c_9 & c_{11} \\ c_9 & c_{11} \\ c_9 & c_{11} \\ c_9 &$$

$$c_1 = 1, c_3 = 0, c_4 = 1, c_{10} = 0, c_{12} = 0$$

Branch on c_9 .

$$\mathbf{A} = \begin{bmatrix} c_2 & c_5 & c_6 & c_7 & c_8 & c_9 & c_{11} \\ 1 & 1 & 1 & 1 & 1 & - & - \\ - & - & - & 1 & - & 1 & - \\ - & - & - & - & 1 & 1 & 1 \\ 0 & - & - & - & - & - & 1 \\ 1 & - & 1 & 0 & - & - & - \\ 1 & - & 1 & - & 0 & - & - \\ - & - & - & - & 0 & 1 & - \end{bmatrix} \begin{bmatrix} 3 \\ 6 \\ 7 \\ 10 \\ 16 \\ 18 \\ 19 \\ 20 \end{bmatrix}$$

$$c_1 = 1, c_3 = 0, c_4 = 1, c_{10} = 0, c_{12} = 0$$

$$\mathbf{A} = \begin{bmatrix} c_2 & c_5 & c_6 & c_7 & c_8 & c_{11} \\ 1 & 1 & 1 & 1 & 1 & - \\ 0 & - & - & - & - & 1 \\ - & - & 0 & - & - & 1 \\ 1 & - & 1 & 0 & - & - \\ 1 & - & 1 & - & 0 & - \end{bmatrix} \begin{bmatrix} 10 \\ 18 \\ 19 \end{bmatrix}$$

$$c_1 = 1, c_3 = 0, c_4 = 1, c_9 = 1, c_{10} = 0, c_{12} = 0$$

Column c_5 dominates c_7 and c_8 .

$$\mathbf{A} = \begin{bmatrix} c_2 & c_5 & c_6 & c_7 & c_8 & c_{11} \\ 1 & 1 & 1 & 1 & 1 & - \\ 0 & - & - & - & - & 1 \\ - & - & 0 & - & - & 1 \\ 1 & - & 1 & 0 & - & - \\ 1 & - & 1 & - & 0 & - \end{bmatrix} \begin{bmatrix} 3 \\ 10 \\ 16 \\ 18 \\ 19 \end{bmatrix}$$

$$c_1 = 1, c_3 = 0, c_4 = 1, c_9 = 1, c_{10} = 0, c_{12} = 0$$

$$\mathbf{A} = \begin{bmatrix} c_2 & c_5 & c_6 & c_{11} \\ 1 & 1 & 1 & - \\ 0 & - & - & 1 \\ - & - & 0 & 1 \end{bmatrix} \quad \begin{array}{c} 3 \\ 10 \\ 16 \end{array}$$

$$c_1 = 1, c_3 = 0, c_4 = 1, c_7 = 0, c_8 = 0, c_9 = 1, c_{10} = 0, c_{12} = 0$$

Column c_5 dominates c_2 and c_6 .

$$\mathbf{A} = \begin{bmatrix} c_2 & c_5 & c_6 & c_{11} \\ 1 & 1 & 1 & - \\ 0 & - & - & 1 \\ - & - & 0 & 1 \end{bmatrix} \quad \begin{matrix} 3 \\ 10 \\ 16 \end{matrix}$$

$$c_1 = 1, c_3 = 0, c_4 = 1, c_7 = 0, c_8 = 0, c_9 = 1, c_{10} = 0, c_{12} = 0$$

$$\mathbf{A} = \begin{bmatrix} c_5 & c_{11} \\ 1 & - \end{bmatrix} \quad 3$$

$$c_1 = 1, c_3 = 0, c_4 = 1, c_7 = 0, c_8 = 0, c_9 = 1, c_{10} = 0, c_{12} = 0$$

 c_5 is essential.

$$A = \begin{bmatrix} c_5 & c_{11} \\ 1 & - \end{bmatrix} \quad 3$$

$$c_1 = 1, c_3 = 0, c_4 = 1, c_7 = 0, c_8 = 0, c_9 = 1, c_{10} = 0, c_{12} = 0$$

 $\begin{array}{c} \text{Found solution } \{c_1,c_4,c_5,c_9\} \text{ with cost 4.} \\ \text{Not as good as lower bound of 3.} \\ \text{Continue with } c_9=0 \text{ to obtain solution } \{c_1,c_2,c_4,c_7,c_{11}\}. \end{array}$

$$\mathbf{A} = \begin{bmatrix} c_5 & c_{11} \\ 1 & - \end{bmatrix} \quad 3$$

$$c_1 = 1, c_3 = 0, c_4 = 1, c_7 = 0, c_8 = 0, c_9 = 1, c_{10} = 0, c_{12} = 0$$

Let's try $c_1 = 0$.

(C ₁ C ₂	2 C	3 (24 (C ₅	<i>c</i> ₆	C 7	<i>c</i> ₈	<i>C</i> 9	c ₁₀	C ₁	1 C ₁	2
•	л Г 1	_	_	— ·	- -	_	_	_	_	—	1	_ <u>-</u>	_ l 1
	1	1	_	_	1	_	_	_	_	_	_	_	2
	_	1	1	_	1	1	1	1	_	_	_	_	3
	1	_	_	1	_	_	_	_	_	_	_	_	5
	_	_	1	_	_	_	1	_	1	_	_	1	6
	_	_	1	_	_	_	_	1	1	_	1	_	7
	_	_	_	1	_	_	_	_	_	1	_	_	8
	1	0	_	_	_	_	_	_	_	_	_	_	9
	_	0	_	_	_	_	_	_	_	_	1	_	10
	_	1	0	_	_	1	_	_	_	_	_	_	12
	-	_	0	1	_	_	_	_	_	_	_	_	13
	1	_	_	0	_	_	_	_	_	_	_	_	15
	_	_	_	_	_	0	_	_	_	_	1	_	16
	–	1	_	_	_	1	0	_	_	_	_	_	18
	-	1	_	_	_	1	_	0	_	_	_	_	19
	-	_	1	_	_	_	_	0	1	_	_	_	20
	_	_	_	1	_	_	_	_	0	_	_	_	21

 $\mathbf{A} =$

 c_{11} is essential and c_2 and c_4 are unacceptable.

'2 C	3 6	4 (25	<i>c</i> ₆	C 7	<i>c</i> ₈	<i>c</i> ₉	C ₁₀	C ₁₁	C ₁₂
Γ –	_	_	_	_	_	_	_	_	1	- 1
1	_	_	1	_	_	_	_	_	_	-
1	1	_	1	1	1	1	_	_	_	-
_	_	1	_	_	_	_	_	_	_	-
_	1	_	_	_	1	_	1	_	_	1
_	1	_	_	_	_	1	1	_	1	-
_	_	1	_	_	_	_	_	1	_	-
0	_	_	_	_	_	_	_	_	_	-
0	_	_	_	_	_	_	_	_	1	-
1	0	_	_	1	_	_	_	_	_	-
_	0	1	_	_	_	_	_	_	_	-
_	_	0	_	_	_	_	_	_	_	-
_	_	_	_	0	_	_	_	_	1	-
1	_	_	_	1	0	_	_	_	_	-
1	_	_	_	1	_	0	_	_	_	-
_	1	_	_	_	_	0	1	_	_	-
	_	1	_	_	_	_	0	_	_	_]

 $\mathbf{A} =$

$$c_2=0, c_4=0, c_{11}=1$$

All rows dominate row 5.

$$\mathbf{A} = \begin{bmatrix} c_3 & c_5 & c_6 & c_7 & c_8 & c_9 & c_{10} & c_{12} \\ -1 & --- & --- & --- \\ 1 & 1 & 1 & 1 & 1 & --- \\ --- & --- & --- & --- \\ 1 & --- & 1 & --1 & --- \\ 0 & --1 & --- & --- & --- \\ --- & 1 & 0 & --- & --- \\ 10 & --- & --- & --- & --- \\ --- & 1 & --- & 0 & 1 & --- \\ 10 & --- & --- & 0 & 1 & --- \\ 20 & --- & --- & 0 & --- & --- \\ 21 & --- & --- & 0 & --- & --- \\ 21 & --- & --- & 0 & --- & --- \\ 21 & --- & --- & 0 & --- & --- \\ 21 & --- & --- & 0 & --- & --- \\ 21 & --- & --- & --- & 0 & --- & --- \\ 21 & --- & --- & --- & 0 & --- & --- \\ 21 & --- & --- & --- & 0 & --- & --- \\ 21 & --- & --- & --- & 0 & --- & --- \\ 21 & --- & --- & --- & 0 & --- & --- \\ 21 & --- & --- & --- & 0 & --- & --- \\ 21 & --- & --- & --- & 0 & --- & --- \\ 21 & --- & --- & --- & --- & --- & --- \\ 22 & --- & --- & --- & --- & --- & --- \\ 23 & --- & --- & --- & --- & --- \\ 24 & --- & --- & --- & --- & --- & --- \\ 25 & --- & --- & --- & --- & --- & --- \\ 26 & --- & --- & --- & --- & --- & --- \\ 27 & --- & --- & --- & --- & --- & --- \\ 27 & --- & --- & --- & --- & --- & --- & --- \\ 27 & --- & --- & --- & --- & --- & --- & --- \\ 27 & --- & --- & --- & --- & --- & --- & --- \\ 27 & --- & --- & --- & --- & --- & --- & --- \\ 27 & --- & --- & --- & --- & --- & --- & --- \\ 27 & --- & --- & --- & --- & --- & --- & --- \\ 27 & --- & --- & --- & --- & --- & --- & --- \\ 27 & --- & --- & --- & --- & --- & --- & --- \\ 27 & --- & --- & --- & --- & --- & --- \\ 27 & --- & --- & --- & --- & --- & --- \\ 27 & --- & --- & --- & --- & --- & --- \\ 27 & --- & --- & --- & --- & --- & --- \\ 27 & --- & --- & --- & --- & --- & --- \\ 27 & --- & --- & --- & --- & --- & --- \\ 27 & --- & --- & --- & --- & --- & --- \\ 27 & --- & --- & --- & --- & --- & --- \\ 27 & --- & --- & --- & --- & --- & --- \\ 27 & --- & --- & --- & --- & --- & --- \\ 27 & --- & --- & --- & --- & --- & --- \\ 27 & --- & --- & --- & --- & --- & --- \\ 27 & --- & --- & --- & --- & --- & --- \\ 27 & --- & --- & --- & --- & --- & --- \\ 27 & --- & --- & --- & --- & --- & --- \\ 27 & --- & --- & --- & --- &$$

$$c_2=0, c_4=0, c_{11}=1$$

$$\mathbf{A} = \begin{bmatrix} c_3 & c_5 & c_6 & c_7 & c_8 & c_9 & c_{10} & c_{12} \\ - & - & - & - & - & - & - \end{bmatrix} \qquad 5$$

$$c_1 = c_2 = c_4 = 0, c_{11} = 1$$

All columns mutually dominate.

$$\mathbf{A} = \begin{bmatrix} c_3 \\ - \end{bmatrix} \quad 5$$

$$c_1 = c_2 = c_4 = c_5 = c_6 = c_7 = c_8 = c_9 = c_{10} = 0, c_{11} = 1, c_{12} = 0$$

No solution, so *bcp* returns best solution of $\{c_1, c_4, c_5, c_9\}$.

$$\mathbf{A} = \begin{bmatrix} c_3 \\ - \end{bmatrix} \quad 5$$

$$c_1 = c_2 = c_4 = c_5 = c_6 = c_7 = c_8 = c_9 = c_{10} = 0, c_{11} = 1, c_{12} = 0$$

Final Solution

	Prime compatibles	Class set
1	abde	0
4	deh	$\{(a,b),(a,d)\}$
5	bc	Ø
9	fg	{(e,h)}

Example Huffman Flow Table

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> ₅	<i>x</i> ₆	<i>X</i> ₇
а	a,0	-	d,0	e,1	b,0	а,-	_
b	b,0	d,1	а,-	-	а,-	a,1	-
С	b,0	d,1	a,1	-	_	_	g,0
d	_	е,-	_	b,-	b,0	_	а,-
е	b,-	е,-	а,-	_	b,-	е,-	a,1
f	b,0	с,-	-,1	h,1	f,1	g,0	_
g	_	c,1	_	e,1	_	g,0	f,0
h	a,1	e,0	d,1	b,0	b,-	е,-	a,1

Reduced Flow Table

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>x</i> ₆	<i>X</i> ₇
1	1,0	{1,4},1	1,0	1,1	1,0	1,1	1,1
4	1,1	{1,4},0	1,1	{1,5},0	{1,5},0	{1,4},-	1,1
5	{1,5},0	{1,4},1	1,1	_	1,-	1,1	9,0
9	{1,5},0	5,1	-,1	4,1	9,1	9,0	9,0

Final Reduced Flow Table

	<i>x</i> ₁	<i>X</i> ₂	<i>X</i> ₃	X_4	<i>X</i> ₅	<i>x</i> ₆	<i>X</i> ₇
1	1,0	1,1	1,0	1,1	1,0	1,1	1,1
		1,0					
		1,1	1,1	_	1,-	1,1	9,0
9	1,0	5,1	-,1	4,1	9,1	9,0	9,0

State Assignment

- Each row must be encoded using a unique binary code.
- In synchronous design, a correct encoding can be assigned arbitrarily using n bits for a flow table with 2ⁿ rows or less.
- In asynchronous design, more care must be taken to ensure that a circuit can be built that is independent of signal delays.

Critical Races

- When present state equals next state, circuit is stable.
- When codes differ in one bit, the circuit is in transition.
- When the codes differ in multiple bits, the circuit is racing.
- A race is critical when differences in delay can cause it to reach different stable states.
- A state assignment is correct when it is free of critical races.

Minimum Transition Time State Assignment

- A transition from state s_i to state s_j is *direct* (denoted $[s_i, s_j]$) when all state variables are excited to change at the same time.
- $[s_i, s_j]$ races critically with $[s_k, s_l]$ when unequal delays can cause these transitions to pass through a common state.
- When all state transitions are direct, the state assignment is called a minimum transition time state assignment.
- A flow table in which each unstable state leads directly to a stable state is called a normal flow table.

A Simple Huffman Flow Table

	<i>X</i> ₁	X_2	<i>X</i> ₃	X_4
а	а	b	d	С
b	С	b	b	b
С	С	d	b	С
d	а	d	d	b

	<i>y</i> ₁ <i>y</i> ₂	<i>y</i> 1 <i>y</i> 2 <i>y</i> 3
а	00	000
b	01	011
С	10	110
d	11	101

Partition Theory

- A partition π on a set S is a set of subsets of S such that their pairwise intersection is empty.
- The disjoint subsets of π are called *blocks*.
- A partition is completely specified if union of subsets is S.
- Otherwise, the partition is incompletely specified.
- Elements of S which do not appear in π are *unspecified*.

Partition Theory and State Assignment

- *n* state variables y_1, \ldots, y_n induce τ -partitions τ_1, \ldots, τ_n .
- States with $y_1 = 0$ are in one block of τ_1 while those with $y_1 = 1$ are in the other block.
- Each partition is composed of only one or two blocks.
- Order blocks appear or which is assigned a 0 or 1 is arbitrary.
- Once we find one valid assignment, others can be found by complementing or reordering variables.

Partition Example

	$y_1 y_2$	<i>y</i> ₁ <i>y</i> ₂ <i>y</i> ₃
а	00	000
b	01	011
С	10	110
d	11	101

Partition Example

	<i>y</i> ₁ <i>y</i> ₂	<i>y</i> ₁ <i>y</i> ₂ <i>y</i> ₃
а	00	000
b	01	011
С	10	110
d	11	101

$$\tau_1 = \{ab; cd\}$$
 $\tau_2 = \{ac; bd\}$
 $\tau_1 = \{ab; cd\}$
 $\tau_2 = \{ad; bc\}$
 $\tau_3 = \{ac; bd\}$

Partition List

- $\pi_2 \le \pi_1$ iff all elements specified in π_2 are specified in π_1 and each block of π_2 appears in a unique block of π_1 .
- A partition list is a collection of partitions of the form:
 - $\{s_p, s_q; s_r, s_s\}$ where $[s_p, s_q]$ and $[s_r, s_s]$ are transitions in the same column.
 - { s_p, s_q ; s_t } where [s_p, s_q] and is a transition in the same column as the stable state s_t .
- A state assignment for a normal flow table is a minimum transition time assignment free of critical races iff each partition in the partition list is ≤ some τ_i.

Tracey's Theorem

Theorem 5.2 (Tracey, 1966) A row assignment allotting one *y*-state per row can be used for direct transition realization of normal flow tables without critical races if, and only if, for every transition $[s_i, s_j]$:

- If $[s_m, s_n]$ is another transition in the same column, then at least one y-variable partitions the pair $\{s_i, s_j\}$ and the pair $\{s_m, s_n\}$ into separate blocks.
- ② If s_k is a stable state in the same column then at least one y-variable partitions the pair $\{s_i, s_i\}$ and the state s_k into separate blocks.
- **⑤** For $i \neq j$, s_i and s_j are in separate blocks of at least one *y*-variable partition.

Partition List Example

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄
а	а	b	d	С
b	С	b	b	b
С	С	d	b	С
d	а	d	d	b

Partition List Example

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄
а	а	b	d	С
b	С	b	b	b
С	С	d	b	С
d	а	d	d	b

$$\begin{array}{rcl} \pi_1 & = & \{ad;bc\} \\ \pi_2 & = & \{ab;cd\} \\ \pi_3 & = & \{ad;bc\} \\ \pi_4 & = & \{ac;bd\} \end{array}$$

Partition List Example

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄
а	а	b	d	С
b	С	b	b	b
С	С	d	b	С
d	а	d	d	b

	<i>y</i> ₁ <i>y</i> ₂	<i>y</i> 1 <i>y</i> 2 <i>y</i> 3
а	00	000
b	01	011
С	10	110
d	11	101
		101

$$\pi_1 = \{ad; bc\}$$
 $\pi_2 = \{ab; cd\}$
 $\pi_3 = \{ad; bc\}$
 $\pi_4 = \{ac; bd\}$

$$\tau_1 = \{ab; cd\}$$
 $\tau_2 = \{ac; bd\}$
 $\tau_1 = \{ab; cd\}$
 $\tau_2 = \{ad; bc\}$

$$\tau_2 = \{aa; bc\}$$
 $\tau_3 = \{ac; bd\}$

Larger Example

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄
а	a,0	с,1	d,0	c,1
b	a,0	f,1	c,1	b,0
С	f,1	c,1	c,1	c,1
d	-,-	d,0	d,0	b,0
е	a,0	d,0	c,1	e,1
f	f,1	f,1	-,-	e,1

Larger Example

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄
а	a,0	c,1	d,0	c,1
b	a,0	f,1	c,1	b,0
С	f,1	c,1	c,1	c,1
d	-,-	d,0	d,0	b,0
е	a,0	d,0	c,1	e,1
f	f,1	f,1	-,-	e,1

π_{1}	=	$\{ab; cf\}$
π_2	=	$\{ae; cf\}$
π_3	=	{ ac; de}
π_{4}	=	$\{ac; bf\}$
π_{5}	=	$\{bf; de\}$
π_6	=	$\{ad;bc\}$
π_{7}	=	{ ad; ce}
π_8	=	$\{ac;bd\}$
π_9	=	{ac;ef}
π_{10}	=	$\{bd;ef\}$

Boolean Matrix Example

```
{ab;cf}
                                  \pi_1
              { ae; cf }
                                  \pi_2
              {ac;de}
\pi_3
                                  \pi_3
              {ac;bf}
\pi_4
                                  \pi_4
       = \{bf; de\}
\pi_5
                                  \pi_5
             { ad; bc}
\pi_6
                                                           0
                                  \pi_6
\pi_7
              { ad; ce }
                                  \pi_7
              { ac; bd }
\pi_8
                                  \pi_8
\pi_9 = \{ac; ef\}
                                  \pi_9
              {bd;ef}
\pi_{10}
                                 \pi_{10} \\
```

Boolean Matrix and State Assignment

- State assignment problem is to find a Boolean matrix C with a minimum number of rows such that each row in the original partition list matrix is covered by some row of C.
- The rows of this reduced matrix represent the τ -partitions.
- The columns of this matrix represent a state assignment.
- Number of rows is the same as the number of state variables.

Intersection

- Two rows of a Boolean matrix, R_i and R_j, have an intersection if R_i and R_j agree wherever both R_i and R_j are specified.
- The intersection is formed by creating a row which has specified values taken from either R_i or R_i.
- Entries where neither R_i or R_i are specified are left unspecified.
- A row, R_i, includes another row, R_j, when R_j agrees with R_i wherever R_i is specified.
- A row, R_i, covers another row, R_j, if R_j includes R_i or R_j includes the complement of R_i.
- The complement of R_i is denoted $\overline{R_i}$.

```
d
                         С
\pi_1
\pi_2
 \pi_3
                         0
\pi_4
 \pi_5
                                              0
                                0
\pi_6
                                0
 \pi_7
                         0
\pi_8
\pi_9
                                0
\pi_{10}
```

Boolean Matrix Reduction

Boolean Matrix Reduction

Boolean Matrix Reduction

	<i>Y</i> 1 <i>Y</i> 2 <i>Y</i> 3 <i>Y</i> 4
а	0000
b	0110
С	1011
d	-100
е	0101
f	1111

Minimal Boolean Matrix

	а	b	С	d	е	f
(π_1,π_7,π_{10})	0	0	1	0	1	1
$(\pi_2,\overline{\pi_5},\pi_6)$	0	1	1	0	0	1
$(\pi_3,\pi_4,\pi_8,\pi_9)$	0	1	0	1	1	1

	<i>y</i> ₁ <i>y</i> ₂ <i>y</i> ₃
а	000
b	011
С	110
d	001
е	101
f	111

Intersectables

- If a set of rows, π_i , π_j , ..., π_k , have an intersection, they are called an *intersectable*.
- An intersectable may be enlarged by adding a row π_l iff π_l has an intersection with every element in the set.
- An intersectable which cannot be enlarged further is called a maximal intersectable.

- For each pair for rows, R_i and R_j , check whether R_i and R_j have an intersection.
- Also must check whether R_i and $\overline{R_i}$ have an intersection.
- If there are n partitions to cover, this implies the need to consider 2n ordered partitions.

Theorem 5.3 (Unger, 1969) Let D be a set of ordered partitions derived from some set of unordered partitions. For some state s, label as p_1 , p_2 , etc. the members of D having s in their left sets, and label as q_1 , q_2 , etc. the members of D that do not contain s in either set. Then a minimal set of maximal intersectibles covering each member of D or its complement can be found by considering only the ordered partitions labeled as p's or q's. (The complements of the p's can be ignored.)

```
\pi_1
 \pi_2
 \pi_3
 \pi_4
 \pi_5
 \pi_6
 \pi_7
                            0
 \pi_8
 \pi_9
\pi_{10}
```


$$\begin{split} &(\pi_1,\pi_2)(\pi_1,\pi_7)(\pi_1,\pi_{10})(\pi_2,\pi_6)(\pi_2,\overline{\pi_5})(\pi_3,\pi_4)(\pi_3,\pi_5)(\pi_3,\pi_8)(\pi_3,\pi_9)\\ &(\pi_4,\pi_8)(\pi_4,\pi_9)(\pi_4,\overline{\pi_5})(\pi_6,\pi_7)(\pi_6,\overline{\pi_5})(\pi_7,\pi_{10})(\pi_8,\pi_9)(\pi_8,\overline{\pi_{10}})(\pi_9,\pi_{10})\\ &\text{First step:} \qquad c = \{(\pi_9,\pi_{10})\}\\ &S_{\pi_8} = \\ &S_{\pi_7} = \\ &S_{\pi_7} = \\ &S_{\pi_6} = \\ &S_{\pi_6} = \\ &S_{\pi_4} = \\ &S_{\pi_3} = \end{split}$$

$$\begin{split} &(\pi_1,\pi_2)(\pi_1,\pi_7)(\pi_1,\pi_{10})(\pi_2,\pi_6)(\pi_2,\overline{\pi_5})(\pi_3,\pi_4)(\pi_3,\pi_5)(\pi_3,\pi_8)(\pi_3,\pi_9)\\ &(\pi_4,\pi_8)(\pi_4,\pi_9)(\pi_4,\overline{\pi_5})(\pi_6,\pi_7)(\pi_6,\overline{\pi_5})(\pi_7,\pi_{10})(\pi_8,\pi_9)(\pi_8,\overline{\pi_{10}})(\pi_9,\pi_{10})\\ &\text{First step:} \qquad c = \{(\pi_9,\pi_{10})\}\\ &S_{\pi_8} = \pi_9,\overline{\pi_{10}}:\\ &S_{\pi_7} =\\ &S_{\pi_6} =\\ &S_{\pi_6} =\\ &S_{\pi_4} =\\ &S_{\pi_3} =\\ \end{split}$$

$$\begin{split} &(\pi_1,\pi_2)(\pi_1,\pi_7)(\pi_1,\pi_{10})(\pi_2,\pi_6)(\pi_2,\overline{\pi_5})(\pi_3,\pi_4)(\pi_3,\pi_5)(\pi_3,\pi_8)(\pi_3,\pi_9)\\ &(\pi_4,\pi_8)(\pi_4,\pi_9)(\pi_4,\overline{\pi_5})(\pi_6,\pi_7)(\pi_6,\overline{\pi_5})(\pi_7,\pi_{10})(\pi_8,\pi_9)(\pi_8,\overline{\pi_{10}})(\pi_9,\pi_{10})\\ &\text{First step:} \qquad c = \{(\pi_9,\pi_{10})\}\\ &S_{\pi_8} = \pi_9,\overline{\pi_{10}}: \qquad c = \{(\pi_9,\pi_{10}),(\pi_8,\pi_9),(\pi_8,\overline{\pi_{10}})\}\\ &S_{\pi_7} = \\ &S_{\pi_6} = \\ &S_{\pi_6} = \\ &S_{\pi_4} = \\ &S_{\pi_6} = \end{split}$$

$$\begin{split} &(\pi_1,\pi_2)(\pi_1,\pi_7)(\pi_1,\pi_{10})(\pi_2,\pi_6)(\pi_2,\overline{\pi_5})(\pi_3,\pi_4)(\pi_3,\pi_5)(\pi_3,\pi_8)(\pi_3,\pi_9)\\ &(\pi_4,\pi_8)(\pi_4,\pi_9)(\pi_4,\overline{\pi_5})(\pi_6,\pi_7)(\pi_6,\overline{\pi_5})(\pi_7,\pi_{10})(\pi_8,\pi_9)(\pi_8,\overline{\pi_{10}})(\pi_9,\pi_{10})\\ &\text{First step:} \qquad c = \{(\pi_9,\pi_{10})\}\\ &S_{\pi_8} = \pi_9,\overline{\pi_{10}}\colon \qquad c = \{(\pi_9,\pi_{10}),(\pi_8,\pi_9),(\pi_8,\overline{\pi_{10}})\}\\ &S_{\pi_7} = \pi_{10}\colon\\ &S_{\pi_6} = \\ &S_{\pi_4} = \\ &S_{\pi_4} = \\ &S_{\pi_6} = \end{split}$$

$$\begin{split} &(\pi_1,\pi_2)(\pi_1,\pi_7)(\pi_1,\pi_{10})(\pi_2,\pi_6)(\pi_2,\overline{\pi_5})(\pi_3,\pi_4)(\pi_3,\pi_5)(\pi_3,\pi_8)(\pi_3,\pi_9)\\ &(\pi_4,\pi_8)(\pi_4,\pi_9)(\pi_4,\overline{\pi_5})(\pi_6,\pi_7)(\pi_6,\overline{\pi_5})(\pi_7,\pi_{10})(\pi_8,\pi_9)(\pi_8,\overline{\pi_{10}})(\pi_9,\pi_{10})\\ &\text{First step:} \qquad c = \{(\pi_9,\pi_{10})\}\\ &S_{\pi_8} = \pi_9,\overline{\pi_{10}}: \qquad c = \{(\pi_9,\pi_{10}),(\pi_8,\pi_9),(\pi_8,\overline{\pi_{10}})\}\\ &S_{\pi_7} = \pi_{10}: \qquad c = \{(\pi_9,\pi_{10}),(\pi_8,\pi_9),(\pi_8,\overline{\pi_{10}}),(\pi_7,\pi_{10})\}\\ &S_{\pi_6} = \\ &S_{\pi_4} = \\ &S_{\pi_5} = \end{split}$$

$$\begin{split} &(\pi_1,\pi_2)(\pi_1,\pi_7)(\pi_1,\pi_{10})(\pi_2,\pi_6)(\pi_2,\overline{\pi_5})(\pi_3,\pi_4)(\pi_3,\pi_5)(\pi_3,\pi_8)(\pi_3,\pi_9)\\ &(\pi_4,\pi_8)(\pi_4,\pi_9)(\pi_4,\overline{\pi_5})(\pi_6,\pi_7)(\pi_6,\overline{\pi_5})(\pi_7,\pi_{10})(\pi_8,\pi_9)(\pi_8,\overline{\pi_{10}})(\pi_9,\pi_{10})\\ &\text{First step:} \qquad c = \{(\pi_9,\pi_{10})\}\\ &S_{\pi_8} = \pi_9,\overline{\pi_{10}}: \qquad c = \{(\pi_9,\pi_{10}),(\pi_8,\pi_9),(\pi_8,\overline{\pi_{10}})\}\\ &S_{\pi_7} = \pi_{10}: \qquad c = \{(\pi_9,\pi_{10}),(\pi_8,\pi_9),(\pi_8,\overline{\pi_{10}}),(\pi_7,\pi_{10})\}\\ &S_{\pi_6} = \pi_7,\,\overline{\pi_5}: \\ &S_{\pi_4} = \\ &S_{\pi_3} = \end{split}$$

$$\begin{split} &(\pi_1,\pi_2)(\pi_1,\pi_7)(\pi_1,\pi_{10})(\pi_2,\pi_6)(\pi_2,\overline{\pi_5})(\pi_3,\pi_4)(\pi_3,\pi_5)(\pi_3,\pi_8)(\pi_3,\pi_9)\\ &(\pi_4,\pi_8)(\pi_4,\pi_9)(\pi_4,\overline{\pi_5})(\pi_6,\pi_7)(\pi_6,\overline{\pi_5})(\pi_7,\pi_{10})(\pi_8,\pi_9)(\pi_8,\overline{\pi_{10}})(\pi_9,\pi_{10})\\ &\text{First step:} \qquad \qquad c = \{(\pi_9,\pi_{10})\}\\ &S_{\pi_8} = \pi_9,\overline{\pi_{10}}: \qquad \qquad c = \{(\pi_9,\pi_{10}),(\pi_8,\pi_9),(\pi_8,\overline{\pi_{10}})\}\\ &S_{\pi_7} = \pi_{10}: \qquad \qquad c = \{(\pi_9,\pi_{10}),(\pi_8,\pi_9),(\pi_8,\overline{\pi_{10}}),(\pi_7,\pi_{10})\}\\ &S_{\pi_6} = \pi_7,\overline{\pi_5}: \qquad \qquad c = \{(\pi_9,\pi_{10}),(\pi_8,\pi_9),(\pi_8,\overline{\pi_{10}}),(\pi_7,\pi_{10})\}\\ &S_{\pi_4} = \\ &S_{\pi_4} = \\ &S_{\pi_5} = \end{split}$$

$$\begin{split} &(\pi_1,\pi_2)(\pi_1,\pi_7)(\pi_1,\pi_{10})(\pi_2,\pi_6)(\pi_2,\overline{\pi_5})(\pi_3,\pi_4)(\pi_3,\pi_5)(\pi_3,\pi_8)(\pi_3,\pi_9)\\ &(\pi_4,\pi_8)(\pi_4,\pi_9)(\pi_4,\overline{\pi_5})(\pi_6,\pi_7)(\pi_6,\overline{\pi_5})(\pi_7,\pi_{10})(\pi_8,\pi_9)(\pi_8,\overline{\pi_{10}})(\pi_9,\pi_{10})\\ &\text{First step:} & c = \{(\pi_9,\pi_{10})\}\\ &S_{\pi_8} = \pi_9,\overline{\pi_{10}}\colon & c = \{(\pi_9,\pi_{10}),(\pi_8,\pi_9),(\pi_8,\overline{\pi_{10}})\}\\ &S_{\pi_7} = \pi_{10}\colon & c = \{(\pi_9,\pi_{10}),(\pi_8,\pi_9),(\pi_8,\overline{\pi_{10}}),(\pi_7,\pi_{10})\}\\ &S_{\pi_6} = \pi_7,\overline{\pi_5}\colon & c = \{(\pi_9,\pi_{10}),(\pi_8,\pi_9),(\pi_8,\overline{\pi_{10}}),(\pi_7,\pi_{10})\}\\ &S_{\pi_4} = \pi_8,\pi_9,\overline{\pi_5}\colon & (\pi_6,\pi_7),(\pi_6,\overline{\pi_5})\}\\ &S_{\pi_7} = \pi_8,\pi_9,\overline{\pi_5}\colon & (\pi_8,\pi_9),(\pi_8,\pi_9),(\pi_8,\pi_9),(\pi_8,\overline{\pi_{10}}),(\pi_7,\pi_{10}),\\ &(\pi_8,\pi_7),(\pi_8,\overline{\pi_5})\} \end{split}$$

$$\begin{split} &(\pi_1,\pi_2)(\pi_1,\pi_7)(\pi_1,\pi_{10})(\pi_2,\pi_6)(\pi_2,\overline{\pi_5})(\pi_3,\pi_4)(\pi_3,\pi_5)(\pi_3,\pi_8)(\pi_3,\pi_9)\\ &(\pi_4,\pi_8)(\pi_4,\pi_9)(\pi_4,\overline{\pi_5})(\pi_6,\pi_7)(\pi_6,\overline{\pi_5})(\pi_7,\pi_{10})(\pi_8,\pi_9)(\pi_8,\overline{\pi_{10}})(\pi_9,\pi_{10})\\ &\text{First step:} \qquad \qquad c = \{(\pi_9,\pi_{10})\}\\ &S_{\pi_8} = \pi_9,\overline{\pi_{10}}\colon \qquad c = \{(\pi_9,\pi_{10}),(\pi_8,\pi_9),(\pi_8,\overline{\pi_{10}})\}\\ &S_{\pi_7} = \pi_{10}\colon \qquad c = \{(\pi_9,\pi_{10}),(\pi_8,\pi_9),(\pi_8,\overline{\pi_{10}}),(\pi_7,\pi_{10})\}\\ &S_{\pi_6} = \pi_7,\overline{\pi_5}\colon \qquad c = \{(\pi_9,\pi_{10}),(\pi_8,\pi_9),(\pi_8,\overline{\pi_{10}}),(\pi_7,\pi_{10})\}\\ &S_{\pi_4} = \pi_8,\pi_9,\overline{\pi_5}\colon \qquad c = \{(\pi_9,\pi_{10}),(\pi_8,\pi_9),(\pi_8,\overline{\pi_{10}}),(\pi_7,\pi_{10}),\\ &S_{\pi_9} = S_{\pi_9} = S_{\pi_9}, &S_{\pi_9} = S_{\pi_9}, &S_{\pi_9} = S_{\pi_9}, &S_{\pi_9} = S_{\pi_9}, &S_{\pi_9} = S_{\pi_9}, &S_{\pi_9},(\pi_9,\pi_9),(\pi_9,\pi_9),(\pi_9,\pi_9),\\ &S_{\pi_9} = S_{\pi_9} = S_{\pi_9}, &S_{\pi_9} = S_{\pi_9}, &S_{\pi_9} = S_{\pi_9}, &S_{\pi_9},(\pi_9,\pi_9),(\pi_9,\pi_9),(\pi_9,\pi_9),\\ &S_{\pi_9} = S_{\pi_9} = S_{\pi_9}, &S_{\pi_9} = S_{\pi_9}, &S_{\pi_9} = S_{\pi_9}, &S_{\pi_9} = S_{\pi_9}, &S_{\pi_9},(\pi_9,\pi_9),(\pi_9,\pi_9),\\ &S_{\pi_9} = S_{\pi_9} = S_{\pi_9}, &S_{\pi_9} =$$

$$\begin{split} &(\pi_1,\pi_2)(\pi_1,\pi_7)(\pi_1,\pi_{10})(\pi_2,\pi_6)(\pi_2,\overline{\pi_5})(\pi_3,\pi_4)(\pi_3,\pi_5)(\pi_3,\pi_8)(\pi_3,\pi_9)\\ &(\pi_4,\pi_8)(\pi_4,\pi_9)(\pi_4,\overline{\pi_5})(\pi_6,\pi_7)(\pi_6,\overline{\pi_5})(\pi_7,\pi_{10})(\pi_8,\pi_9)(\pi_8,\overline{\pi_{10}})(\pi_9,\pi_{10})\\ &\text{First step:} \qquad c = \{(\pi_9,\pi_{10})\}\\ &S_{\pi_8} = \pi_9,\overline{\pi_{10}}: \qquad c = \{(\pi_9,\pi_{10}),(\pi_8,\pi_9),(\pi_8,\overline{\pi_{10}})\}\\ &S_{\pi_7} = \pi_{10}: \qquad c = \{(\pi_9,\pi_{10}),(\pi_8,\pi_9),(\pi_8,\overline{\pi_{10}}),(\pi_7,\pi_{10})\}\\ &S_{\pi_6} = \pi_7,\overline{\pi_5}: \qquad c = \{(\pi_9,\pi_{10}),(\pi_8,\pi_9),(\pi_8,\overline{\pi_{10}}),(\pi_7,\pi_{10})\}\\ &S_{\pi_4} = \pi_8,\pi_9,\overline{\pi_5}: \qquad c = \{(\pi_9,\pi_{10}),(\pi_8,\pi_9),(\pi_8,\overline{\pi_{10}}),(\pi_7,\pi_{10}),\\ &(\pi_6,\pi_7),(\pi_6,\overline{\pi_5})\}\\ &S_{\pi_9} = \pi_4,\pi_5,\pi_8,\pi_9; \end{split}$$

$$\begin{split} &(\pi_1,\pi_2)(\pi_1,\pi_7)(\pi_1,\pi_{10})(\pi_2,\pi_6)(\pi_2,\overline{\pi_5})(\pi_3,\pi_4)(\pi_3,\pi_5)(\pi_3,\pi_8)(\pi_3,\pi_9)\\ &(\pi_4,\pi_8)(\pi_4,\pi_9)(\pi_4,\overline{\pi_5})(\pi_6,\pi_7)(\pi_6,\overline{\pi_5})(\pi_7,\pi_{10})(\pi_8,\pi_9)(\pi_8,\overline{\pi_{10}})(\pi_9,\pi_{10})\\ &\text{First step:} \qquad c = \{(\pi_9,\pi_{10})\}\\ &S_{\pi_8} = \pi_9,\overline{\pi_{10}}: \qquad c = \{(\pi_9,\pi_{10}),(\pi_8,\pi_9),(\pi_8,\overline{\pi_{10}})\}\\ &S_{\pi_7} = \pi_{10}: \qquad c = \{(\pi_9,\pi_{10}),(\pi_8,\pi_9),(\pi_8,\overline{\pi_{10}}),(\pi_7,\pi_{10})\}\\ &S_{\pi_6} = \pi_7,\overline{\pi_5}: \qquad c = \{(\pi_9,\pi_{10}),(\pi_8,\pi_9),(\pi_8,\overline{\pi_{10}}),(\pi_7,\pi_{10})\}\\ &S_{\pi_4} = \pi_8,\pi_9,\overline{\pi_5}: \qquad c = \{(\pi_9,\pi_{10}),(\pi_8,\overline{\pi_{10}}),(\pi_7,\pi_{10}),(\pi_7,\pi_{10}),\\ &(\pi_6,\pi_7),(\pi_6,\overline{\pi_5})\}\\ &S_{\pi_3} = \pi_4,\pi_5,\pi_8,\pi_9: \qquad c = \{(\pi_9,\pi_{10}),(\pi_8,\overline{\pi_{10}}),(\pi_7,\pi_{10}),(\pi_6,\pi_7),\\ &(\pi_6,\overline{\pi_5}),(\pi_4,\pi_8,\pi_9),(\pi_4,\overline{\pi_5})\}\\ &S_{\pi_3} = \pi_4,\pi_5,\pi_8,\pi_9: \qquad c = \{(\pi_9,\pi_{10}),(\pi_8,\overline{\pi_{10}}),(\pi_7,\pi_{10}),(\pi_6,\pi_7),\\ &(\pi_6,\overline{\pi_5}),(\pi_4,\pi_8,\pi_9),(\pi_4,\overline{\pi_5})\}\\ &S_{\pi_3} = \pi_4,\pi_5,\pi_8,\pi_9: \qquad c = \{(\pi_9,\pi_{10}),(\pi_8,\overline{\pi_{10}}),(\pi_7,\pi_{10}),(\pi_6,\pi_7),\\ &(\pi_6,\overline{\pi_5}),(\pi_4,\pi_8,\pi_9),(\pi_4,\pi_8,\pi_9),\\ &(\pi_3,\pi_5)\} \end{split}$$

$$\begin{split} &(\pi_1,\pi_2)(\pi_1,\pi_7)(\pi_1,\pi_{10})(\pi_2,\pi_6)(\pi_2,\overline{\pi_5})(\pi_3,\pi_4)(\pi_3,\pi_5)(\pi_3,\pi_8)(\pi_3,\pi_9)\\ &(\pi_4,\pi_8)(\pi_4,\pi_9)(\pi_4,\overline{\pi_5})(\pi_6,\pi_7)(\pi_6,\overline{\pi_5})(\pi_7,\pi_{10})(\pi_8,\pi_9)(\pi_8,\overline{\pi_{10}})(\pi_9,\pi_{10})\\ &\mathcal{S}_{\pi_3}=\pi_4,\pi_5,\pi_8,\pi_9\colon \quad c=\{(\pi_9,\pi_{10}),(\pi_8,\overline{\pi_{10}}),(\pi_7,\pi_{10}),(\pi_6,\pi_7),\\ &\qquad\qquad\qquad (\pi_6,\overline{\pi_5}),(\pi_4,\overline{\pi_5}),(\pi_3,\pi_4,\pi_8,\pi_9),\\ &\qquad\qquad\qquad (\pi_3,\pi_5)\}\\ &\mathcal{S}_{\pi_2}=\\ &\mathcal{S}_{\pi_1}=\end{split}$$

$$\begin{split} (\pi_1,\pi_2)(\pi_1,\pi_7)(\pi_1,\pi_{10})(\pi_2,\pi_6)(\pi_2,\overline{\pi_5})(\pi_3,\pi_4)(\pi_3,\pi_5)(\pi_3,\pi_8)(\pi_3,\pi_9)\\ (\pi_4,\pi_8)(\pi_4,\pi_9)(\pi_4,\overline{\pi_5})(\pi_6,\pi_7)(\pi_6,\overline{\pi_5})(\pi_7,\pi_{10})(\pi_8,\pi_9)(\pi_8,\overline{\pi_{10}})(\pi_9,\pi_{10})\\ S_{\pi_3} &= \pi_4,\pi_5,\pi_8,\pi_9\colon \quad c = \{(\pi_9,\pi_{10}),(\pi_8,\overline{\pi_{10}}),(\pi_7,\pi_{10}),(\pi_6,\pi_7),\\ &\qquad\qquad\qquad\qquad (\pi_6,\overline{\pi_5}),(\pi_4,\overline{\pi_5}),(\pi_3,\pi_4,\pi_8,\pi_9),\\ &\qquad\qquad\qquad (\pi_3,\pi_5)\}\\ S_{\pi_2} &= \pi_6,\overline{\pi_5}\colon \end{split}$$

 $S_{\pi_1} =$

$$\begin{split} &(\pi_1,\pi_2)(\pi_1,\pi_7)(\pi_1,\pi_{10})(\pi_2,\pi_6)(\pi_2,\overline{\pi_5})(\pi_3,\pi_4)(\pi_3,\pi_5)(\pi_3,\pi_8)(\pi_3,\pi_9)\\ &(\pi_4,\pi_8)(\pi_4,\pi_9)(\pi_4,\overline{\pi_5})(\pi_6,\pi_7)(\pi_6,\overline{\pi_5})(\pi_7,\pi_{10})(\pi_8,\pi_9)(\pi_8,\overline{\pi_{10}})(\pi_9,\pi_{10})\\ &S_{\pi_3}=\pi_4,\pi_5,\pi_8,\pi_9\colon \quad c=\{(\pi_9,\pi_{10}),(\pi_8,\overline{\pi_{10}}),(\pi_7,\pi_{10}),(\pi_6,\pi_7),\\ &\qquad\qquad\qquad\qquad (\pi_6,\overline{\pi_5}),(\pi_4,\overline{\pi_5}),(\pi_3,\pi_4,\pi_8,\pi_9),\\ &\qquad\qquad\qquad (\pi_3,\pi_5)\}\\ &S_{\pi_2}=\pi_6,\overline{\pi_5}\colon \qquad c=\{(\pi_9,\pi_{10}),(\pi_8,\overline{\pi_{10}}),(\pi_7,\pi_{10}),(\pi_6,\pi_7),\\ &\qquad\qquad\qquad (\pi_4,\overline{\pi_5}),(\pi_3,\pi_4,\pi_8,\pi_9),(\pi_3,\pi_5),\\ &\qquad\qquad\qquad (\pi_2,\pi_6,\overline{\pi_5})\}\\ &S_{\pi_1}=\end{split}$$

$$\begin{split} &(\pi_1,\pi_2)(\pi_1,\pi_7)(\pi_1,\pi_{10})(\pi_2,\pi_6)(\pi_2,\overline{\pi_5})(\pi_3,\pi_4)(\pi_3,\pi_5)(\pi_3,\pi_8)(\pi_3,\pi_9)\\ &(\pi_4,\pi_8)(\pi_4,\pi_9)(\pi_4,\overline{\pi_5})(\pi_6,\pi_7)(\pi_6,\overline{\pi_5})(\pi_7,\pi_{10})(\pi_8,\pi_9)(\pi_8,\overline{\pi_{10}})(\pi_9,\pi_{10})\\ &S_{\pi_3}=\pi_4,\pi_5,\pi_8,\pi_9\colon \quad c=\{(\pi_9,\pi_{10}),(\pi_8,\overline{\pi_{10}}),(\pi_7,\pi_{10}),(\pi_6,\pi_7),\\ &\qquad\qquad\qquad (\pi_6,\overline{\pi_5}),(\pi_4,\overline{\pi_5}),(\pi_3,\pi_4,\pi_8,\pi_9),\\ &\qquad\qquad\qquad (\pi_3,\pi_5)\}\\ &S_{\pi_2}=\pi_6,\overline{\pi_5}\colon \qquad c=\{(\pi_9,\pi_{10}),(\pi_8,\overline{\pi_{10}}),(\pi_7,\pi_{10}),(\pi_6,\pi_7),\\ &\qquad\qquad (\pi_4,\overline{\pi_5}),(\pi_3,\pi_4,\pi_8,\pi_9),(\pi_3,\pi_5),\\ &\qquad\qquad (\pi_2,\pi_6,\overline{\pi_5})\}\\ &S_{\pi_1}=\pi_2,\pi_7,\pi_{10}\colon \end{split}$$

<i>X</i> ₁	(π_1,π_2)
<i>X</i> ₂	(π_1, π_7, π_{10})
<i>X</i> ₃	$(\pi_2,\pi_6,\overline{\pi_5})$
<i>X</i> ₄	$(\pi_3,\pi_4,\pi_8,\pi_9)$
<i>X</i> ₅	(π_3,π_5)
<i>x</i> ₆	$(\pi_4,\overline{\pi_5})$
<i>X</i> ₇	(π_6,π_7)
<i>X</i> ₈	$(\pi_8,\overline{\pi_{10}})$
<i>X</i> 9	(π_9,π_{10})

Setting up the Covering Problem

$$\mathbf{A} = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 & x_9 \\ 1 & 1 & - & - & - & - & - & - & - \\ 1 & - & 1 & - & - & - & - & - & - \\ - & - & - & 1 & 1 & - & - & - & - \\ - & - & 1 & - & 1 & - & - & - & - \\ - & - & 1 & - & 1 & 1 & - & - & - \\ - & - & 1 & - & - & - & 1 & - & - \\ - & 1 & - & - & - & 1 & - & - & - \\ - & - & - & 1 & - & - & - & 1 & - \\ - & - & - & 1 & - & - & - & 1 & 1 \end{bmatrix} \quad \begin{array}{c} \pi_1 \\ \pi_2 \\ \pi_3 \\ \pi_4 \\ \pi_5 \\ \pi_6 \\ \pi_7 \\ \pi_8 \\ \pi_9 \\ \pi_{10} \\ \end{array}$$

Setting up the Covering Problem

Cyclic with
$$L=3$$

$$\mathbf{A} = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 & x_9 \\ 1 & 1 & - & - & - & - & - & - & - \\ 1 & - & 1 & - & - & - & - & - & - \\ - & - & - & 1 & 1 & - & - & - & - \\ - & - & 1 & - & 1 & - & - & - & - \\ - & - & 1 & - & 1 & 1 & - & - & - \\ - & 1 & - & - & - & 1 & - & - & - \\ - & - & - & 1 & - & - & - & 1 & - \\ - & - & - & 1 & - & - & - & 1 & - \\ - & - & - & 1 & - & - & - & 1 & 1 \end{bmatrix} \quad \begin{array}{c} \pi_1 \\ \pi_2 \\ \pi_3 \\ \pi_4 \\ \pi_5 \\ \pi_6 \\ \pi_7 \\ \pi_8 \\ \pi_9 \\ \pi_{10} \\ \end{array}$$

Setting up the Covering Problem

Cyclic with
$$L = 3$$

Branch on x_4

$$\mathbf{A} = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 & x_9 \\ 1 & 1 & - & - & - & - & - & - & - \\ 1 & - & 1 & - & - & - & - & - & - \\ - & - & - & 1 & 1 & - & - & - & - \\ - & - & 1 & - & 1 & - & - & - & - \\ - & - & 1 & - & 1 & 1 & - & - & - \\ - & 1 & - & - & - & 1 & - & - & - \\ - & - & - & 1 & - & - & - & 1 & - \\ - & - & - & 1 & - & - & - & 1 & - \\ - & - & - & 1 & - & - & - & 1 & 1 \end{bmatrix} \quad \begin{array}{c} \pi_1 \\ \pi_2 \\ \pi_3 \\ \pi_4 \\ \pi_5 \\ \pi_6 \\ \pi_7 \\ \pi_8 \\ \pi_9 \\ \pi_{10} \\ \end{array}$$

$$\mathbf{A} = \begin{bmatrix} x_1 & x_2 & x_3 & x_5 & x_6 & x_7 & x_8 & x_9 \\ 1 & 1 & - & - & - & - & - & - \\ 1 & - & 1 & - & - & - & - & - \\ - & - & 1 & 1 & 1 & - & - & - \\ - & - & 1 & - & - & 1 & - & - \\ - & 1 & - & - & - & 1 & 1 & - & - \\ - & 1 & - & - & - & - & 1 & 1 & - & \pi_7 \\ x_4 = 1 \end{bmatrix} \quad \begin{array}{c} \pi_1 \\ \pi_2 \\ \pi_5 \\ \pi_6 \\ \pi_7 \\ \pi_{10} \end{array}$$

Column x_3 dominates x_5 and x_6 Column x_2 dominates x_8 and x_9

$$\mathbf{A} = \begin{bmatrix} x_1 & x_2 & x_3 & x_5 & x_6 & x_7 & x_8 & x_9 \\ 1 & 1 & - & - & - & - & - & - \\ 1 & - & 1 & - & - & - & - & - \\ - & - & 1 & 1 & 1 & - & - & - \\ - & - & 1 & - & - & 1 & - & - \\ - & 1 & - & - & - & 1 & 1 & - & - \\ - & 1 & - & - & - & - & 1 & 1 & - & \pi_7 \\ x_4 = 1 \end{bmatrix} \quad \begin{array}{c} \pi_1 \\ \pi_2 \\ \pi_5 \\ \pi_6 \\ \pi_7 \\ \pi_{10} \end{array}$$

$$\mathbf{A} = \begin{bmatrix} x_1 & x_2 & x_3 & x_7 \\ 1 & 1 & - & - \\ 1 & - & 1 & - \\ - & - & 1 & - \\ - & - & 1 & 1 \\ - & 1 & - & 1 \\ - & 1 & - & - \end{bmatrix} \begin{bmatrix} \pi_1 \\ \pi_2 \\ \pi_5 \\ \pi_6 \\ \pi_7 \\ \pi_{10} \end{bmatrix}$$

 $x_4 = 1, x_5 = 0, x_6 = 0, x_8 = 0, x_9 = 0$

x_2 and x_3 are now essential

$$\mathbf{A} = \begin{bmatrix} x_1 & x_2 & x_3 & x_7 \\ 1 & 1 & - & - \\ 1 & - & 1 & - \\ - & - & 1 & - \\ - & - & 1 & 1 \\ - & 1 & - & 1 \\ - & 1 & - & - \end{bmatrix} \begin{bmatrix} \pi_1 \\ \pi_2 \\ \pi_5 \\ \pi_6 \\ \pi_7 \\ \pi_{10} \end{bmatrix}$$

$$x_4 = 1, x_5 = 0, x_6 = 0, x_8 = 0, x_9 = 0$$

Minimal Boolean Matrix

	<i>Y</i> ₁ <i>Y</i> ₂ <i>Y</i> ₃
a	000
b	011
С	110
d	001
е	101
f	111

Original Flow Table

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄
а	a,0	c,1	d,0	c,1
b	a,0	f,1	c,1	b,0
С	f,1	c,1	c,1	c,1
d	-,-	d,0	d,0	b,0
е	a,0	d,0	c,1	e,1
f	f,1	f,1	-,-	e,1

Encoded Flow Table

	<i>X</i> ₁	<i>X</i> ₂	<i>x</i> ₃	<i>x</i> ₄
000	0,000	011,1	100,0	011,1
110	0,000	111,1	011,1	110,0
011	111,1	011,1	011,1	011,1
100	-,-	100,0	100,0	110,0
101	0,000	100,0	011,1	101,1
111	111,1	111,1	-,-	111,1

Fed-Back Outputs as State Variables

- Previously ignored outputs during state assignment.
- May be possible to feed back outputs as state variables.
- Determine in each state under each input the value of each output upon entry.
- This information can satisfy some partitions.
- Satisfying partitions, can reduce number of state variables.

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄
а	a,0	c,1	d,0	c,1
b	a,0	f,1	c,1	b,0
С	f,1	c,1	с,1	c,1
d	-,-	d,0	d,0	b,0
е	a,0	d,0	c,1	e,1
f	f,1	f,1	-,-	e,1

π_{1}	=	{ab;cf}
π_2	=	{ ae; cf }
π_3	=	$\{ac; de\}$
π_4	=	$\{ac; bf\}$
π_5	=	$\{bf; de\}$
π_6	=	{ad;bc}
π_7	=	$\{ad; ce\}$
π_8	=	$\{ac;bd\}$
π_9	=	$\{ac; ef\}$
π_{10}	=	{bd;ef}

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄
(0) a	a,0	c,1	d,0	c,1
b	a,0	f,1	c,1	b,0
С	f,1	c,1	c,1	c,1
d	-,-	d,0	d,0	b,0
е	a,0	d,0	c,1	e,1
f	f,1	f,1	-,-	e,1

$\pi_{1} \\$	=	$\{ab; cf\}$
π_2	=	{ae; cf}
π_3	=	$\{ac; de\}$
π_4	=	$\{ac; bf\}$
π_5	=	$\{bf; de\}$
π_6	=	{ ad; bc }
π_{7}	=	$\{ad; ce\}$
π_8	=	$\{ac;bd\}$
π_9	=	$\{ac; ef\}$
π_{10}	=	$\{bd; ef\}$

	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄
(0) a	a,0	c,1	d,0	с,1
(0) b	a,0	f,1	c,1	b,0
С	f,1	c,1	c,1	c,1
d	-,-	d,0	d,0	b,0
е	a,0	d,0	c,1	e,1
f	f,1	f,1	-,-	e,1

π_{1}	=	$\{ab; cf\}$
π_2	=	$\{ae; cf\}$
π_3	=	$\{ac; de\}$
π_4	=	$\{ac; bf\}$
π_5	=	$\{bf; de\}$
π_6	=	$\{ad;bc\}$
π_{7}	=	$\{ad; ce\}$
π_8	=	$\{ac;bd\}$
π_{9}	=	$\{ac; ef\}$
π_{10}	=	{bd;ef}

	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> ₃	<i>X</i> ₄
(0) a	a,0	c,1	d,0	c,1
(0) b	a,0	f,1	c,1	b,0
(1) c	f,1	c,1	c,1	c,1
d	-,-	d,0	d,0	b,0
е	a,0	d,0	c,1	e,1
f	f,1	f,1	-,-	e,1

π_{1}	=	{ab;cf}
π_2	=	{ ae; cf }
π_3	=	$\{ac; de\}$
π_4	=	$\{ac; bf\}$
π_5	=	$\{bf; de\}$
π_6	=	{ ad; bc }
π_7	=	$\{ad; ce\}$
π_8	=	$\{ac;bd\}$
π_9	=	$\{ac; ef\}$
π_{10}	=	$\{bd; ef\}$

	<i>X</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>X</i> ₄
(0) a	a,0	c,1	d,0	c,1
(0) b	a,0	f,1	c,1	b,0
(1) c	f,1	c,1	c,1	c,1
(0) d	-,-	d,0	d,0	b,0
е	a,0	d,0	c,1	e,1
f	f,1	f,1	-,-	e,1

$\pi_{1} \\$	=	$\{ab; cf\}$
π_2	=	{ae; cf}
π_3	=	$\{ac; de\}$
π_4	=	$\{ac; bf\}$
π_{5}	=	$\{bf; de\}$
π_6	=	$\{ad;bc\}$
π_{7}	=	$\{ad; ce\}$
π_8	=	$\{ac;bd\}$
π_9	=	$\{ac; ef\}$
π_{10}	=	$\{bd; ef\}$

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄
(0) a	a,0	c,1	d,0	c,1
(0) b	a,0	f,1	с,1	b,0
(1) c	f,1	c,1	c,1	c,1
(0) d	-,-	d,0	d,0	b,0
(1) e	a,0	d,0	c,1	e,1
f	f,1	f,1	-,-	e,1

π_1	=	$\{ab; cf\}$
π_2	=	$\{ae; cf\}$
π_3	=	{ ac; de}
π_4	=	$\{ac; bf\}$
π_5	=	$\{bf; de\}$
π_6	=	$\{ad;bc\}$
π_7	=	{ad;ce}
π_8	=	$\{ac;bd\}$
π_9	=	$\{ac; ef\}$
π_{10}	=	{bd;ef}

	<i>X</i> ₁	x_2	<i>X</i> 3	x_4
(0) a	a,0	c,1	d,0	c,1
(0) b	a,0	f,1	c,1	b,0
(1) c	f,1	c,1	c,1	c,1
(0) d	-,-	d,0	d,0	b,0
(1) e	a,0	d,0	с,1	e,1
(1) f	f,1	f,1	-,-	e,1

$\pi_{1} \\$	=	{ab;cf}
π_2	=	$\{ae; cf\}$
π_3	=	{ ac; de}
π_4	=	$\{ac; bf\}$
π_5	=	$\{bf; de\}$
π_6	=	{ad;bc}
π_7	=	{ad;ce}
π_8	=	$\{ac;bd\}$
π_9	=	$\{ac; ef\}$
π_{10}	=	$\{bd; ef\}$

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄
(0) a	a,0	c,1	d,0	с,1
(0) b	a,0	f,1	c,1	b,0
(1) c	f,1	c,1	c,1	c,1
(0) d	-,-	d,0	d,0	b,0
(1) e	a,0	d,0	с,1	e,1
(1) f	f,1	f,1	-,-	e,1

```
\begin{array}{rcl} \pi_2 & = & \{ae;cf\} \\ \pi_3 & = & \{ac;de\} \\ \pi_4 & = & \{ac;bf\} \\ \pi_5 & = & \{bf;de\} \\ \pi_6 & = & \{ad;bc\} \\ \pi_7 & = & \{ad;ce\} \\ \pi_8 & = & \{ac;bd\} \\ \pi_9 & = & \{ac;ef\} \\ \pi_{10} & = & \{bd;ef\} \end{array}
```

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>x</i> ₄
(0) a	a,0	c,1	d,0	c,1
(0) b	a,0	f,1	c,1	b,0
(1) c	f,1	c,1	с,1	c,1
(0) d	-,-	d,0	d,0	b,0
(1) e	a,0	d,0	c,1	e,1
(1) f	f,1	f,1	-,-	e,1

π_2	=	{ae;cf}
π_3	=	{ ac; de}
π_4	=	$\{ac; bf\}$
π_5	=	$\{bf; de\}$
π_6	=	$\{ad;bc\}$
π_8	=	$\{ac;bd\}$
π_9	=	$\{ac; ef\}$
π_{10}	=	$\{bd; ef\}$

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄
(0) a	a,0	c,1	d,0	c,1
(0) b	a,0	f,1	c,1	b,0
(1) c	f,1	с,1	c,1	c,1
(0) d	-,-	d,0	d,0	b,0
(1) e	a,0	d,0	c,1	e,1
(1) f	f,1	f,1	-,-	e,1

$$\begin{array}{rcl} \pi_2 & = & \{ae;cf\} \\ \pi_3 & = & \{ac;de\} \\ \pi_4 & = & \{ac;bf\} \\ \pi_5 & = & \{bf;de\} \\ \pi_6 & = & \{ad;bc\} \\ \pi_8 & = & \{ac;bd\} \\ \pi_9 & = & \{ac;ef\} \end{array}$$

Modified Partition List

```
{ ae, cf }
\pi_2
                                   \pi_2
\pi_3
             { ac, de }
                                                       0
                                   \pi_3
              { ac, bf }
\pi_4
                                                       0
                                   \pi_4
              { bf, de }
\pi_5
                                   \pi_5
              { ad, bc }
\pi_6
                                                             0
                                                       1
                                   \pi_6
\pi_8
             { ac, bd }
                                                       0
                                   \pi_8
\pi_9
              { ac, ef }
                                                       0
                                   \pi_9
```

Pairwise Intersectibles

$$\begin{split} (\pi_2, \pi_6)(\pi_2, \overline{\pi_5})(\pi_3, \pi_4)(\pi_3, \pi_5)(\pi_3, \pi_8)(\pi_3, \pi_9)(\pi_4, \pi_8) \\ (\pi_4, \pi_9)(\pi_4, \overline{\pi_5})(\pi_6, \overline{\pi_5})(\pi_8, \pi_9) \end{split}$$

Maximal Intersectibles

```
\begin{array}{ll} \text{First step:} & c = \{(\pi_8, \pi_9)\} \\ S_{\pi_6} = \overline{\pi_5} \colon & c = \{(\pi_8, \pi_9), (\pi_6, \overline{\pi_5}), \} \\ S_{\pi_4} = \pi_8, \pi_9, \overline{\pi_5} \colon & c = \{(\pi_4, \pi_8, \pi_9), (\pi_4, \overline{\pi_5}), (\pi_6, \overline{\pi_5})\} \\ S_{\pi_3} = \pi_4, \pi_5, \pi_8, \pi_9 \colon & c = \{(\pi_3, \pi_4, \pi_8, \pi_9), (\pi_3, \pi_5), (\pi_4, \overline{\pi_5}), (\pi_6, \overline{\pi_5})\} \\ S_{\pi_2} = \pi_6, \overline{\pi_5} \colon & c = \{(\pi_3, \pi_4, \pi_8, \pi_9), (\pi_3, \pi_5), (\pi_4, \overline{\pi_5}), (\pi_6, \overline{\pi_5})\} \end{array}
```

Maximal Intersectables (cont)

$$\begin{array}{ccc} x_1 & (\pi_2, \pi_6, \overline{\pi_5} \\ x_2 & (\pi_3, \pi_4, \pi_8, \pi_9) \\ x_3 & (\pi_3, \pi_5) \\ x_4 & (\pi_4, \overline{\pi_5}) \end{array}$$

Constraint Matrix

$$\mathbf{A} = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 \\ 1 & - & - & - \\ - & 1 & 1 & - \\ - & 1 & - & 1 \\ 1 & - & 1 & 1 \\ 1 & - & - & - \\ - & 1 & - & - \\ - & 1 & - & - \end{bmatrix} \quad \begin{array}{c} \pi_2 \\ \pi_3 \\ \pi_4 \\ \pi_5 \\ \pi_6 \\ \pi_8 \\ \pi_9 \end{bmatrix}$$

Constraint Matrix

 x_1 and x_2 are essential.

$$\mathbf{A} = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 \\ 1 & - & - & - \\ - & 1 & 1 & - \\ - & 1 & - & 1 \\ 1 & - & 1 & 1 \\ 1 & - & - & - \\ - & 1 & - & - \\ - & 1 & - & - \end{bmatrix} \begin{bmatrix} \pi_2 \\ \pi_3 \\ \pi_4 \\ \pi_5 \\ \pi_6 \\ \pi_8 \\ \pi_9 \end{bmatrix}$$

Minimal Boolean Matrix

	<i>y</i> ₁ <i>y</i> ₂ <i>y</i> ₃
а	00
b	11
С	01
d	10
е	10
f	11

Original Flow Table

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄
а	a,0	c,1	d,0	c,1
b	a,0	f,1	c,1	b,0
С	f,1	c,1	c,1	c,1
d	-,-	d,0	d,0	b,0
е	a,0	d,0	c,1	e,1
f	f,1	f,1	-,-	e,1

New Encoded Flow Table

	<i>X</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄
00	00,0	01,1	10,0	01,1
11	00,0	11,1	01,1	11,0
01	11,1	01,1	01,1	01,1
10	-,-	10,0	10,0	11,0
10	00,0	10,0	01,1	10,1
11	11,1	11,1	-,-	11,1

Hazard-free Logic Synthesis

- For each next state and output signal:
 - Derive sum-of-products (SOP) implementation.
 - Transform SOP using laws of Boolean algebra into a multi-level logic implementation.
 - Map to gates found in the given gate library.
- For asynchronous FSMs, must avoid hazards in SOP.
- Some laws of Boolean algebra introduce hazards.
- First describe for SIC fundamental-mode.

Boolean Functions and Minterms

- A Boolean function f of n variables $x_1, x_2, ..., x_n$ is a mapping: $f: \{0,1\}^n \rightarrow \{0,1,-\}.$
- Each element m of $\{0,1\}^n$ is called a *minterm*.
- The value of a variable x_i in a minterm m is given by m(i).
- The *ON-set* of *f* is the set of minterms which return 1.
- The *OFF-set* of *f* is the set of minterms which return 0.
- The DC-set of f is the set of minterms which return —.

Literals and Products

- A *literal* is either the variable, x_i , or its complement, x'_i .
- The literal x_i evaluates to 1 in the minterm m when m(i) = 1.
- The literal x_i' evaluates to 1 when m(i) = 0.
- A product is a conjunction (AND) of literals.
- A product evaluates to 1 for m (i.e., the product contains m) if each literal evaluates to 1 in m.
- $X \subseteq Y$ if minterms contained in X are a subset of those in Y.
- Intersection of two products is the minterms contained in both.
- A sum-of-products (SOP) is a set of products.
- A SOP contains *m* when a product in the SOP contains *m*.

Implicants and Prime Implicants

- An implicant is a product that contains none of the OFF-set.
- A prime implicant is an implicant contained by no other.
- A cover is a SOP which contains the entire ON-set and none of the OFF-set.
- A cover may optionally include part of the DC-set.
- The two-level logic minimization problem is to find a minimum-cost cover of the function.
- For SIC fundamental-mode, a minimal cover is always composed of only prime implicants.

WX					
	00	01	11	10	
00	1	1	1	1	
01	0	1	1	_	
11	0	1	1	0	
10	0	_	0	0	
	01	00 1 01 0 11 0	00 01 00 1 1 01 0 1 11 0 1	00 01 11 00 1 1 1 01 0 1 1 11 0 1 1	

			WX		
		00	01	11	10
	00	1	1	1	1
yΖ	01	0	1	1	_
	11	0	1	1	0
	10	0	_	0	0

 $\mathsf{ON}\text{-set} \ = \ \{\overline{w}\,\overline{x}\,\overline{y}\,\overline{z}, \overline{w}x\overline{y}\,\overline{z}, wx\overline{y}\,\overline{z}, wx\overline{y}\,\overline{z}, \overline{w}x\overline{y}z, \overline{w}x\overline{y}z, \overline{w}xyz, wxyz\}$

			WX		
		00	01	11	10
	00	1	1	1	1
yΖ	01	0	1	1	_
	11	0	1	1	0
	10	0	_	0	0

```
\begin{array}{lll} \text{ON-set} & = & \{\overline{w}\,\overline{x}\,\overline{y}\,\overline{z},\overline{w}x\overline{y}\,\overline{z},wx\overline{y}\,\overline{z},wx\overline{y}\,\overline{z},\overline{w}x\overline{y}z,wx\overline{y}z,\overline{w}xyz,wxyz\}\\ \text{OFF-set} & = & \{\overline{w}\,\overline{x}\,\overline{y}z,\overline{w}\,\overline{x}yz,w\overline{x}yz,\overline{w}\,\overline{x}y\overline{z},wxy\overline{z},wx\overline{y}\overline{z}\} \end{array}
```

			WX		
		00	01	11	10
	00	1	1	1	1
yz	01	0	1	1	_
	11	0	1	1	0
	10	0	_	0	0

```
\begin{array}{lll} \text{ON-set} &=& \{\overline{w}\,\overline{x}\,\overline{y}\,\overline{z},\overline{w}x\overline{y}\,\overline{z},wx\overline{y}\,\overline{z},w\overline{x}\,\overline{y}\,\overline{z},\overline{w}x\overline{y}z,wx\overline{y}z,\overline{w}xyz,wxyz\}\\ \text{OFF-set} &=& \{\overline{w}\,\overline{x}\,\overline{y}z,\overline{w}\,\overline{x}yz,w\overline{x}yz,\overline{w}\,\overline{x}y\overline{z},wxy\overline{z},w\overline{x}y\overline{z}\}\\ \text{DC-set} &=& \{w\overline{x}\,\overline{y}z,\overline{w}xy\overline{z}\} \end{array}
```

Prime Implicant Generation

- For functions of less than 4 variables, can use a Karnaugh map.
- For more variables, Karnaugh maps too tedious.
- Quine's tabular method is better but requires all minterms be listed.
- Recursive procedure based on consensus and complete sums is better.

Consensus and Complete Sums

- The consensus theorem states: $xy + \overline{x}z = xy + \overline{x}z + yz$.
- The product yz is called the consensus for xy and $\overline{x}z$.
- A complete sum is defined to be a SOP formula composed of all the prime implicants.
- Theorem 5.5 (Blake, 1937) A SOP is a complete sum iff:
 - No term includes any other term.
 - The consensus of any two terms of the formula either does not exist or is contained in some term of the formula.

Recursive Prime Generation

- **Theorem 5.6** (Blake, 1937) If we have two complete sums f_1 and f_2 , we can obtain the complete sum for $f_1 \cdot f_2$ using the following two steps:
 - Multiply out f_1 and f_2 using the following properties
 - $x \cdot x = x$ (idempotent)
 - $x \cdot (y + z) = xy + xz$ (distributive)
 - $x \cdot \overline{x} = 0$ (complement)
 - Eliminate all terms contained in some other term.
- A recursive procedure for finding the complete sum for *f*:

$$cs(f) = abs([x_1 + cs(f(0, x_2, ..., x_n))] \cdot [\overline{x_1} + cs(f(1, x_2, ..., x_n))])$$

where abs(f) removes absorbed terms from f(abs(a+ab)=a).

			WX		
		00	01	11	10
	00	1	1	1	1
yz	01	0	1	1	_
	11	0	1	1	0
	10	0	_	0	0

```
\begin{array}{lll} \text{ON-set} &=& \{\overline{w}\,\overline{x}\,\overline{y}\,\overline{z},\overline{w}x\overline{y}\,\overline{z},wx\overline{y}\,\overline{z},w\overline{x}\,\overline{y}\,\overline{z},\overline{w}x\overline{y}z,wx\overline{y}z,\overline{w}xyz,wxyz\}\\ \text{OFF-set} &=& \{\overline{w}\,\overline{x}\,\overline{y}z,\overline{w}\,\overline{x}yz,w\overline{x}yz,\overline{w}\,\overline{x}y\overline{z},wxy\overline{z},w\overline{x}y\overline{z}\}\\ \text{DC-set} &=& \{w\overline{x}\,\overline{y}z,\overline{w}xy\overline{z}\} \end{array}
```

$$cs(f) = abs([x_1 + cs(f(0, x_2, ..., x_n))] \cdot [\overline{x_1} + cs(f(1, x_2, ..., x_n))])$$

$$f(w, x, y, z) = y'z' + xz + wx'y'z + w'xyz'$$

$$cs(f) = abs([x_1 + cs(f(0, x_2, ..., x_n))] \cdot [\overline{x_1} + cs(f(1, x_2, ..., x_n))])$$

$$f(w, x, y, z) = y'z' + xz + wx'y'z + w'xyz'$$

$$f(w, x, y, 0) =$$

$$cs(f) = abs([x_1 + cs(f(0, x_2, ..., x_n))] \cdot [\overline{x_1} + cs(f(1, x_2, ..., x_n))])$$

$$f(w, x, y, z) = y'z' + xz + wx'y'z + w'xyz'$$

$$f(w, x, y, 0) = y' + w'xy$$

$$cs(f) = abs([x_1 + cs(f(0, x_2, ..., x_n))] \cdot [\overline{x_1} + cs(f(1, x_2, ..., x_n))])$$

$$f(w, x, y, z) = y'z' + xz + wx'y'z + w'xyz'$$

$$f(w, x, y, 0) = y' + w'xy$$

$$f(w, x, 0, 0) =$$

$$cs(f) = abs([x_1 + cs(f(0, x_2, ..., x_n))] \cdot [\overline{x_1} + cs(f(1, x_2, ..., x_n))])$$

$$f(w, x, y, z) = y'z' + xz + wx'y'z + w'xyz'$$

$$f(w, x, y, 0) = y' + w'xy$$

$$f(w, x, 0, 0) = 1$$

$$cs(f) = abs([x_1 + cs(f(0, x_2, ..., x_n))] \cdot [\overline{x_1} + cs(f(1, x_2, ..., x_n))])$$

$$f(w, x, y, z) = y'z' + xz + wx'y'z + w'xyz'$$

$$f(w, x, y, 0) = y' + w'xy$$

$$f(w, x, 0, 0) = 1$$

$$f(w, x, 1, 0) =$$

$$cs(f) = abs([x_1 + cs(f(0, x_2, ..., x_n))] \cdot [\overline{x_1} + cs(f(1, x_2, ..., x_n))])$$

$$f(w, x, y, z) = y'z' + xz + wx'y'z + w'xyz'$$

$$f(w, x, y, 0) = y' + w'xy$$

$$f(w, x, 0, 0) = 1$$

$$f(w, x, 1, 0) = w'x$$

$$cs(f) = abs([x_1 + cs(f(0, x_2, ..., x_n))] \cdot [\overline{x_1} + cs(f(1, x_2, ..., x_n))])$$

$$f(w, x, y, z) = y'z' + xz + wx'y'z + w'xyz'$$

$$f(w, x, y, 0) = y' + w'xy$$

$$f(w, x, 0, 0) = 1$$

$$f(w, x, 1, 0) = w'x$$

$$cs(f(w, x, y, 0)) =$$

$$cs(f) = abs([x_1 + cs(f(0, x_2, ..., x_n))] \cdot [\overline{x_1} + cs(f(1, x_2, ..., x_n))])$$

$$f(w, x, y, z) = y'z' + xz + wx'y'z + w'xyz'$$

$$f(w, x, y, 0) = y' + w'xy$$

$$f(w, x, 0, 0) = 1$$

$$f(w, x, 1, 0) = w'x$$

$$cs(f(w, x, y, 0)) = abs((y + 1)(y' + w'x)) = y' + w'x$$

$$cs(f) = abs([x_1 + cs(f(0, x_2, ..., x_n))] \cdot [\overline{x_1} + cs(f(1, x_2, ..., x_n))])$$

$$f(w, x, y, z) = y'z' + xz + wx'y'z + w'xyz'$$

$$f(w, x, y, 0) = y' + w'xy$$

$$f(w, x, 0, 0) = 1$$

$$f(w, x, 1, 0) = w'x$$

$$cs(f(w, x, y, 0)) = abs((y + 1)(y' + w'x)) = y' + w'x$$

$$f(w, x, y, 1) =$$

$$cs(f) = abs([x_1 + cs(f(0, x_2, ..., x_n))] \cdot [\overline{x_1} + cs(f(1, x_2, ..., x_n))])$$

$$f(w, x, y, z) = y'z' + xz + wx'y'z + w'xyz'$$

$$f(w, x, y, 0) = y' + w'xy$$

$$f(w, x, 0, 0) = 1$$

$$f(w, x, 1, 0) = w'x$$

$$cs(f(w, x, y, 0)) = abs((y + 1)(y' + w'x)) = y' + w'x$$

$$f(w, x, y, 1) = x + wx'y'$$

$$cs(f) = abs([x_1 + cs(f(0, x_2, ..., x_n))] \cdot [\overline{x_1} + cs(f(1, x_2, ..., x_n))])$$

$$f(w, x, y, z) = y'z' + xz + wx'y'z + w'xyz'$$

$$f(w, x, y, 0) = y' + w'xy$$

$$f(w, x, 0, 0) = 1$$

$$f(w, x, 1, 0) = w'x$$

$$cs(f(w, x, y, 0)) = abs((y + 1)(y' + w'x)) = y' + w'x$$

$$f(w, x, y, 1) = x + wx'y'$$

$$f(w, 0, y, 1) =$$

$$cs(f) = abs([x_1 + cs(f(0, x_2, ..., x_n))] \cdot [\overline{x_1} + cs(f(1, x_2, ..., x_n))])$$

$$f(w, x, y, z) = y'z' + xz + wx'y'z + w'xyz'$$

$$f(w, x, y, 0) = y' + w'xy$$

$$f(w, x, 0, 0) = 1$$

$$f(w, x, 1, 0) = w'x$$

$$cs(f(w, x, y, 0)) = abs((y + 1)(y' + w'x)) = y' + w'x$$

$$f(w, x, y, 1) = x + wx'y'$$

$$f(w, 0, y, 1) = wy'$$

$$cs(f) = abs([x_1 + cs(f(0, x_2, ..., x_n))] \cdot [\overline{x_1} + cs(f(1, x_2, ..., x_n))])$$

$$f(w, x, y, z) = y'z' + xz + wx'y'z + w'xyz'$$

$$f(w, x, y, 0) = y' + w'xy$$

$$f(w, x, 0, 0) = 1$$

$$f(w, x, 1, 0) = w'x$$

$$cs(f(w, x, y, 0)) = abs((y + 1)(y' + w'x)) = y' + w'x$$

$$f(w, x, y, 1) = x + wx'y'$$

$$f(w, 0, y, 1) = wy'$$

$$f(w, 1, y, 1) =$$

$$cs(f) = abs([x_1 + cs(f(0, x_2, ..., x_n))] \cdot [\overline{x_1} + cs(f(1, x_2, ..., x_n))])$$

$$f(w, x, y, z) = y'z' + xz + wx'y'z + w'xyz'$$

$$f(w, x, y, 0) = y' + w'xy$$

$$f(w, x, 0, 0) = 1$$

$$f(w, x, 1, 0) = w'x$$

$$cs(f(w, x, y, 0)) = abs((y + 1)(y' + w'x)) = y' + w'x$$

$$f(w, x, y, 1) = x + wx'y'$$

$$f(w, 0, y, 1) = wy'$$

$$f(w, 1, y, 1) = 1$$

$$cs(f) = abs([x_1 + cs(f(0, x_2, ..., x_n))] \cdot [\overline{x_1} + cs(f(1, x_2, ..., x_n))])$$

$$f(w, x, y, z) = y'z' + xz + wx'y'z + w'xyz'$$

$$f(w, x, y, 0) = y' + w'xy$$

$$f(w, x, 0, 0) = 1$$

$$f(w, x, 1, 0) = w'x$$

$$cs(f(w, x, y, 0)) = abs((y + 1)(y' + w'x)) = y' + w'x$$

$$f(w, x, y, 1) = x + wx'y'$$

$$f(w, 0, y, 1) = wy'$$

$$f(w, 1, y, 1) = 1$$

$$cs(f(w, x, y, 1)) =$$

$$cs(f) = abs([x_1 + cs(f(0, x_2, ..., x_n))] \cdot [\overline{x_1} + cs(f(1, x_2, ..., x_n))])$$

$$f(w, x, y, z) = y'z' + xz + wx'y'z + w'xyz'$$

$$f(w, x, y, 0) = y' + w'xy$$

$$f(w, x, 0, 0) = 1$$

$$f(w, x, 1, 0) = w'x$$

$$cs(f(w, x, y, 0)) = abs((y + 1)(y' + w'x)) = y' + w'x$$

$$f(w, x, y, 1) = x + wx'y'$$

$$f(w, 0, y, 1) = wy'$$

$$f(w, 1, y, 1) = 1$$

$$cs(f(w, x, y, 1)) = abs((x + wy')(x' + 1)) = x + wy'$$

$$cs(f) = abs([x_1 + cs(f(0, x_2, ..., x_n))] \cdot [\overline{x_1} + cs(f(1, x_2, ..., x_n))])$$

$$f(w, x, y, z) = y'z' + xz + wx'y'z + w'xyz'$$

$$f(w, x, y, 0) = y' + w'xy$$

$$f(w, x, 0, 0) = 1$$

$$f(w, x, 1, 0) = w'x$$

$$cs(f(w, x, y, 0)) = abs((y + 1)(y' + w'x)) = y' + w'x$$

$$f(w, x, y, 1) = x + wx'y'$$

$$f(w, 0, y, 1) = wy'$$

$$f(w, 1, y, 1) = 1$$

$$cs(f(w, x, y, 1)) = abs((x + wy')(x' + 1)) = x + wy'$$

$$cs(f(w, x, y, z)) =$$

$$cs(f) = abs([x_1 + cs(f(0, x_2, ..., x_n))] \cdot [\overline{x_1} + cs(f(1, x_2, ..., x_n))])$$

$$f(w, x, y, z) = y'z' + xz + wx'y'z + w'xyz'$$

$$f(w, x, y, 0) = y' + w'xy$$

$$f(w, x, 0, 0) = 1$$

$$f(w, x, 1, 0) = w'x$$

$$cs(f(w, x, y, 0)) = abs((y + 1)(y' + w'x)) = y' + w'x$$

$$f(w, x, y, 1) = x + wx'y'$$

$$f(w, 0, y, 1) = wy'$$

$$f(w, 1, y, 1) = 1$$

$$cs(f(w, x, y, 1)) = abs((x + wy')(x' + 1)) = x + wy'$$

$$cs(f(w, x, y, z)) = abs((z + y' + w'x)(z' + x + wy'))$$

$$cs(f) = abs([x_1 + cs(f(0, x_2, ..., x_n))] \cdot [\overline{x_1} + cs(f(1, x_2, ..., x_n))])$$

$$f(w, x, y, z) = y'z' + xz + wx'y'z + w'xyz'$$

$$f(w, x, y, 0) = y' + w'xy$$

$$f(w, x, 0, 0) = 1$$

$$f(w, x, 1, 0) = w'x$$

$$cs(f(w, x, y, 0)) = abs((y + 1)(y' + w'x)) = y' + w'x$$

$$f(w, x, y, 1) = x + wx'y'$$

$$f(w, 0, y, 1) = wy'$$

$$f(w, 1, y, 1) = 1$$

$$cs(f(w, x, y, 1)) = abs((x + wy')(x' + 1)) = x + wy'$$

$$cs(f(w, x, y, z)) = abs((z + y' + w'x)(z' + x + wy'))$$

$$= abs(xz + wy'z + y'z' + xy' + wy' + w'xz' + w'x)$$

$$cs(f) = abs([x_1 + cs(f(0, x_2, ..., x_n))] \cdot [\overline{x_1} + cs(f(1, x_2, ..., x_n))])$$

$$f(w, x, y, z) = y'z' + xz + wx'y'z + w'xyz'$$

$$f(w, x, y, 0) = y' + w'xy$$

$$f(w, x, 0, 0) = 1$$

$$f(w, x, 1, 0) = w'x$$

$$cs(f(w, x, y, 0)) = abs((y + 1)(y' + w'x)) = y' + w'x$$

$$f(w, x, y, 1) = x + wx'y'$$

$$f(w, 0, y, 1) = wy'$$

$$f(w, 1, y, 1) = 1$$

$$cs(f(w, x, y, 1)) = abs((x + wy')(x' + 1)) = x + wy'$$

$$cs(f(w, x, y, z)) = abs((z + y' + w'x)(z' + x + wy'))$$

$$= abs(xz + wy'z + y'z' + xy' + wy' + w'xz' + w'x)$$

$$= xz + y'z' + xy' + wy' + w'x$$

Recursion Tree for Example

Prime Implicant Selection

	XZ	$\overline{y}\overline{z}$	$x\overline{y}$	$w\overline{y}$	$\overline{W}X$
$\overline{w}\overline{x}\overline{y}\overline{z}$	_	1	_	_	_
$\overline{w}x\overline{y}\overline{z}$	_	1	1	_	1
$wx\overline{y}\overline{z}$	_	1	1	1	_
$w\overline{x}\overline{y}\overline{z}$	_	1	_	1	_
$\overline{w}x\overline{y}z$	1	_	1	_	1
wx y z	1	_	1	1	_
$\overline{w}xyz$	1	_	_	_	1
wxyz	1	_	_	_	_

Prime Implicant Selection

Combinational Hazards

- For asynchronous design, two-level logic minimization problem is complicated by hazards.
- Let us consider the design of a function f to implement either an output or next state variable.
- When input changes under SIC, circuit moves from minterm m_1 to another m_2 which differ in value in exactly one x_i .
- During this transition, there are four possible transitions of f:
 - **1** Static $0 \rightarrow 0$ transition: $f(m_1) = f(m_2) = 0$.
 - 2 Static 1 \rightarrow 1 transition: $f(m_1) = f(m_2) = 1$.
 - **3** Dynamic $0 \rightarrow 1$ transition: $f(m_1) = 0$ and $f(m_2) = 1$.
 - Oynamic 1 \rightarrow 0 transition: $f(m_1) = 1$ and $f(m_2) = 0$.

Static 0-Hazard

- If during a static 0 → 0 transition, the cover of f can due to differences in delays momentarily evaluate to 1, then we say that there exists a static 0-hazard.
- In a SOP cover of a function, no product term is allowed to include either m₁ or m₂ since they are in the OFF-set.
- Static 0-hazard exists only if some product includes both x_i and $\overline{x_i}$.
- Such a product is not useful since it contains no minterms.
- If we exclude such product terms from the cover, then the SOP cover can never produce a static 0-hazard.

Static 1-Hazard

- If during a static $1 \rightarrow 1$ transition, the cover of f can evaluate to 0, then we say that there exists a *static* 1-hazard.
- Consider case where one product p_1 contains m_1 but not m_2 and another product p_2 contains m_2 but not m_1 .
- If p_1 is implemented with a faster gate than p_2 , then the gate for p_1 can turn off faster than the gate for p_2 turns on which can lead to the cover momentarily evaluating to a 0.
- To eliminate static 1-hazards, for each $m_1 \rightarrow m_2$, there must exist a product in the cover that includes both m_1 and m_2 .

Static 1-Hazard Example

		WX		
	00	01	11	10
00		1	1	1
01	0	1	1	_
11	0	1	1	0
10	0	_	0	0

Dynamic Hazards

- If during a 0 → 1 transition, the cover can change from 0 to 1 back to 0 and finally stabilize at 1, we say the cover has a dynamic 0 → 1 hazard.
- Assuming no useless product terms (ones that include both x_i and $\overline{x_i}$), this is impossible under the SIC assumption.
- No product is allowed to include m_1 since it is in the OFF-set.
- Any product that includes m₂ turns on monotonically.
- Similarly, there are no *dynamic* $1 \rightarrow 0$ *hazards*.

Removing Hazards

- A simple, inefficent approach to produce a hazard-free SOP cover is to include all prime implicants in the cover.
- Since two minterms m_1 and m_2 in a transition are distance 1 apart, they must be included together in some prime.
- An implicant exists which is made up of all literals that are equal in both m₁ and m₂.
- This implicant must be part of some prime implicant.
- For our example, the following cover is guaranteed to be hazard-free under SIC:

$$f = xz + \overline{y}\overline{z} + x\overline{y} + w\overline{y} + \overline{w}x$$

Better Approach to Remove Hazards

- Form an implicant out of each pair of states m_1 and m_2 involved in a static $1 \rightarrow 1$ transition which includes each literal that is the same value in both m_1 and m_2 .
- The covering problem is now to find the minimum number of prime implicants that cover each of these transition cubes.

Two-Level Logic Minimization Example

	WX				
		00	01	11	10
	00	1	1	1	1
yz	01	0	1	1	_
-	11	0	1	1	0
	10	0	_	0	0

```
\begin{array}{lll} \text{ON-set} &=& \{\overline{w}\,\overline{x}\,\overline{y}\,\overline{z},\overline{w}x\overline{y}\,\overline{z},wx\overline{y}\,\overline{z},w\overline{x}\,\overline{y}\,\overline{z},\overline{w}x\overline{y}z,wx\overline{y}z,\overline{w}xyz,wxyz\}\\ \text{OFF-set} &=& \{\overline{w}\,\overline{x}\,\overline{y}z,\overline{w}\,\overline{x}yz,w\overline{x}yz,\overline{w}\,\overline{x}y\overline{z},wxy\overline{z},w\overline{x}y\overline{z}\}\\ \text{DC-set} &=& \{w\overline{x}\,\overline{y}z,\overline{w}xy\overline{z}\} \end{array}
```

	XZ	$\overline{y}\overline{z}$	$x\overline{y}$	$w\overline{y}$	$\overline{W}X$
$\overline{w}\overline{y}\overline{z}$	_	1	_	_	_
$\overline{x}\overline{y}\overline{z}$	_	1	_	_	_
$\overline{w}x\overline{y}$	_	_	1	_	1
$wx\overline{y}$	_	_	1	1	_
$w\overline{yz}$	_	1	_	1	_
$x\overline{y}z$	1	_	1	_	_
$\overline{W}XZ$	1	_	_	_	1
WXZ	1	_	_	_	_

$$\begin{array}{cccc} & x\overline{y} & w\overline{y} & \overline{w}x \\ \overline{w}x\overline{y} & 1 & - & 1 \\ wx\overline{y} & 1 & 1 & - \end{array}$$

$$\overline{w}x\overline{y}$$
 1 $wx\overline{y}$ 1

$$\overline{w}x\overline{y}$$
 1 $wx\overline{y}$ 1

Solution: $f = xz + \overline{y}\overline{z} + x\overline{y}$

		WX		
	00	01	11	10
00		1	1	1
01	0	1		_
11	0	1	1	0
10	0	_	0	0

Extensions for MIC Operation

- Preceeding restricted the class of circuits to SIC.
- Each input burst can have only a single transition.
- Now extend the synthesis method to MIC.
- Synthesize any XBM machine satisfying the maximal set property.

Transition Cubes

- MIC Transitions begin in one minterm m_1 and end in another m_2 where the values of multiple variables may have changed.
- m_1 is called the *start point* while m_2 is called the *end point*.
- Machine may pass through minterms between m_1 and m_2 .
- Set of minterms is called a *transition cube* (denoted $[m_1, m_2]$).
- Transition cube can be represented with a product which contains a literal for each x_i in which $m_1(i) = m_2(i)$.
- Open transition cube $[m_1, m_2)$ includes all minterms in $[m_1, m_2]$ except m_2 .
- An open transition cube represented using a set of products.

Transition Cube: Example

		WX				
		00	01	11	10	
	00	1	1	1	1	
/Z	01	0	1	1	1	
	11	0	1	1	0	
	10	0	1	0	0	

$$\left[\overline{w} x \overline{y} \overline{z}, w x \overline{y} z \right] \\
 \left[\overline{w} x y z, w x y \overline{z} \right)$$

Function Hazards

- If *f* does not change monotonically during a multiple-input change, *f* has a *function hazard* for that transition.
- A function f contains a function hazard during a transition from m_1 to m_2 if there exists an m_3 and m_4 such that:

 - $m_3 \in [m_1, m_2] \text{ and } m_4 \in [m_3, m_2].$
 - **3** $f(m_1) \neq f(m_3)$ and $f(m_4) \neq f(m_2)$.
- If $f(m_1) = f(m_2)$, it is a static function hazard.
- If $f(m_1) \neq f(m_2)$, it is a dynamic function hazard.

Function Hazards: Example

		WX				
		00	01	11	10	
	00	1	1	1	1	
γZ	01	0	1	1	1	
	11	0	1	1	0	
	10	0	1	0	0	

$$\begin{bmatrix}
 \overline{w} \overline{x} \overline{y} \overline{z}, \overline{w} x \overline{y} z
 \end{bmatrix}
 \begin{bmatrix}
 \overline{w} x y \overline{z}, w \overline{x} y z
 \end{bmatrix}$$

Function Hazards

- If a transition has a function hazard, there is no implementation of the function which avoids the hazard during the transition.
- Fortunately, the synthesis method never produces a design with a transition that has a function hazard.

Combinational Hazards for State Variables

- A minimum transition time state assignment has MIC hazards.
- Multiple changing next state variables may be fed back to the input of the FSM.
- The circuit moves from one minterm m_1 to another minterm m_2 , but multiple state variables may be changing concurrently.
- For normal flow tables with outputs that change only in unstable states then only static transitions possible.

MIC Static Hazards

- There can be no static 0-hazards.
- Since multiple variables may be changing concurrently, the cover may pass through other minterms between m_1 and m_2 .
- To be free of static 1-hazards, it is necessary that a single product in the cover include all these minterms.
- Each $[m_1, m_2]$ where $f(m_1) = f(m_2) = 1$, must be contained in some product in the cover to eliminate static 1-hazards.

MIC Static Hazards: Example

 $[\overline{w} x \overline{y} \overline{z}, w x \overline{y} z]$

MIC Static Hazards: Example

 $[\overline{w}x\overline{y}\overline{z},\,wx\overline{y}z]$

MIC Dynamic Hazards

- For each 1 \rightarrow 0 transition, $[m_1, m_2]$, if a product in the cover intersects $[m_1, m_2]$, then it must include the start point, m_1 .
- For each $0 \to 1$ transition, $[m_1, m_2]$, if a product in the cover intersects $[m_1, m_2]$, then it must include the end point, m_2 .

 $[\overline{w} \, x \, \overline{y} \, \overline{z}, \overline{w} \, \overline{x} \, \overline{y} \, z]$

 $[\overline{w} \, x \, \overline{y} \, \overline{z}, \overline{w} \, \overline{x} \, \overline{y} \, z]$

 $[\overline{w} \, x \, \overline{y} \, \overline{z}, \overline{w} \, \overline{x} \, \overline{y} \, z]$

 $[\overline{w} x \overline{y} z, wxyz]$

Burst-Mode Transitions

- In legal BM machines, types of transitions are restricted.
- A function may only change value after every transition in the input burst has occurred.
- $[m_1, m_2]$ for a function f is a burst-mode transition if for every minterm $m_i \in [m_1, m_2)$, $f(m_1) = f(m_i)$.
- The result is that if a function *f* only has burst-mode transitions, then it is free of function hazards.
- Also, any dynamic 0 → 1 transition is free of dynamic hazards.
- For any legal BM machine, there exists a hazard-free cover for each output and next state variable before state minimization.

Example Burst-Mode Transitions

		Χ			X				Χ			Χ	
		0	1		0	1			0	1		0	1
y	0	0	0	0	1	1		0	0	0	0	1	1
	1	0	0	1	1	1		1	0	1	1	1	0
		Χ			X		•		X			Χ	
		<i>x</i> 0	1		<i>x</i> 0	1	_		<i>x</i> 0	1		<i>x</i> 0	1
у	0		1	0	<i>x</i> 0 1	1		0	i	1	0		1

	ab						
	00	01	11	10	хy		
s0	s0,0	s0,0	s1,1	s0,0	01		
s1			s1,1		10		

$$[\overline{a}\overline{b}\overline{x}y,ab\overline{x}y]$$

 $[\overline{a}\overline{b}\overline{x}y,ab\overline{x}y]$

Dynamic 0 ightarrow 1 transition for output c and next-state variable X

 $[\overline{a}\overline{b}\overline{x}y,ab\overline{x}y]$

Dynamic $0 \rightarrow 1$ transition for output c and next-state variable XDynamic $1 \rightarrow 0$ transition for next-state variable Y

 $[\overline{a}\overline{b}\overline{x}y,ab\overline{x}y]$

Dynamic $0 \to 1$ transition for output c and next-state variable XDynamic $1 \to 0$ transition for next-state variable Y $[ab\overline{x}y, abx\overline{y}]$

$$[\overline{a}\overline{b}\overline{x}y,ab\overline{x}y]$$

Dynamic 0 \rightarrow 1 transition for output c and next-state variable X Dynamic 1 \rightarrow 0 transition for next-state variable Y $[ab\overline{x}y,abx\overline{y}]$

Static 1 \rightarrow 1 transition for output c and next-state variable X

 $[\overline{a}\overline{b}\overline{x}y,ab\overline{x}y]$

Dynamic 0 \rightarrow 1 transition for output c and next-state variable X Dynamic 1 \rightarrow 0 transition for next-state variable Y $[ab\overline{x}y,abx\overline{y}]$

Static 1 \rightarrow 1 transition for output c and next-state variable XStatic 0 \rightarrow 0 transition for next-state variable Y

State Minimization: Burst-Mode

 After state minimization, it is possible that no hazard-free cover exists for some variable in the design.

Static 1 \rightarrow 1 transition $[a\overline{b}\,\overline{c}, a\overline{b}c]$ Dynamic 1 \rightarrow 0 transition $[\overline{a}\,\overline{b}\,\overline{c}, ab\overline{c}]$

DHF-Compatibles

- Two states s_1 and s_2 are *dhf-compatible* when they are compatible and for each output z and transition $[m_1, m_2]$ of s_1 and for each transition $[m_3, m_4]$ of s_2 :
 - If z has a 1 \rightarrow 0 transition in $[m_1, m_2]$ and a 1 \rightarrow 1 transition in $[m_3, m_4]$, then $[m_1, m_2] \cap [m_3, m_4] = \emptyset$ or $m_1' \in [m_3, m_4]$.
 - ② If z has a 1 \to 0 transition in $[m_1, m_2]$ and a 1 \to 0 transition in $[m_3, m_4]$, then $[m_1, m_2] \cap [m_3, m_4] = \emptyset$, $m_1 = m_3$, $[m_1, m_2] \subseteq [m_3, m_4]$, or $[m_3, m_4] \subseteq [m_1, m_2]$.

Required Cubes

- Transition cubes for each 1 → 1 transition are required cubes.
- The end point of the transition cube for a 0 → 1 transition is a required cube.
- Transition subcubes for each $1 \rightarrow 0$ transition are required cubes.
- The transition subcubes for $1 \to 0$ transition $[m_1, m_2]$ are all cubes of the form $[m_1, m_3]$ such that $f(m_3) = 1$.
- Can eliminate any subcube contained in another.
- The union of the required cubes forms the ON-set.
- Each of the required cubes must be contained in some product of the cover to insure hazard-freedom.

	ab					
		00	01	11	10	
	00	1	1	1	1	
cd	01	0	1	1	1	
	11	1	1	1	0	
	10	1	1	0	0	

$$t_1 = [a\overline{b}\overline{c}d, ab\overline{c}\overline{d}]$$

$$t_2 = [a\overline{b}c\overline{d}, a\overline{b}cd]$$

$$t_3 = [\overline{a}b\overline{c}\overline{d}, \overline{a}\overline{b}\overline{c}d]$$

$$t_4 = [\overline{a}bcd, a\overline{b}c\overline{d}]$$

	ab					
		00	01	11	10	
	00	1	1	1	1	
cd	01	0	1	1	1	
	11	1	1	1	0	
	10	1	1	0	0	

$$t_{1} = [a\overline{b}\overline{c}d, ab\overline{c}\overline{d}] \quad 1 \to 1$$

$$t_{2} = [a\overline{b}c\overline{d}, a\overline{b}cd]$$

$$t_{3} = [\overline{a}b\overline{c}\overline{d}, \overline{a}\overline{b}\overline{c}d]$$

$$t_{4} = [\overline{a}bcd, a\overline{b}c\overline{d}]$$

	ab					
		00	01	11	10	
	00	1	1	1	1	
cd	01	0	1	1	1	
	11	1	1	1	0	
	10	1	1	0	0	

$$t_1 = [a\overline{b}\overline{c}d, ab\overline{c}\overline{d}] \quad 1 \to 1 \quad a\overline{c}$$
 $t_2 = [a\overline{b}c\overline{d}, a\overline{b}cd]$
 $t_3 = [\overline{a}b\overline{c}\overline{d}, \overline{a}\overline{b}\overline{c}d]$
 $t_4 = [\overline{a}bcd, a\overline{b}c\overline{d}]$

	ab					
		00	01	11	10	
	00	1	1	1	1	
cd	01	0	1	1	1	
	11	1	1	1	0	
	10	1	1	0	0	

$$t_{1} = [a\overline{b}\overline{c}d, ab\overline{c}\overline{d}] \quad 1 \to 1 \quad a\overline{c}$$

$$t_{2} = [a\overline{b}c\overline{d}, a\overline{b}cd] \quad 0 \to 0$$

$$t_{3} = [\overline{a}b\overline{c}\overline{d}, \overline{a}\overline{b}\overline{c}d]$$

$$t_{4} = [\overline{a}bcd, a\overline{b}c\overline{d}]$$

	ab					
		00	01	11	10	
	00	1	1	1	1	
cd	01	0	1	1	1	
	11	1	1	1	0	
	10	1	1	0	0	

$$t_1 = [a\overline{b}\overline{c}d, ab\overline{c}\overline{d}] \quad 1 \to 1 \quad a\overline{c}$$
 $t_2 = [a\overline{b}c\overline{d}, a\overline{b}cd] \quad 0 \to 0 \quad \text{no required cubes}$
 $t_3 = [\overline{a}b\overline{c}\overline{d}, \overline{a}\overline{b}\overline{c}d]$
 $t_4 = [\overline{a}bcd, a\overline{b}c\overline{d}]$

	ab					
		00	01	11	10	
	00	1	1	1	1	
cd	01	0	1	1	1	
	11	1	1	1	0	
	10	1	1	0	0	

$$t_1 = [a\overline{b}\overline{c}d, ab\overline{c}\overline{d}] \quad 1 \to 1 \quad a\overline{c}$$
 $t_2 = [a\overline{b}c\overline{d}, a\overline{b}cd] \quad 0 \to 0 \quad \text{no required cubes}$
 $t_3 = [\overline{a}b\overline{c}\overline{d}, \overline{a}\overline{b}\overline{c}d] \quad 1 \to 0$
 $t_4 = [\overline{a}bcd, a\overline{b}c\overline{d}]$

	ab					
		00	01	11	10	
	00	1	1	1	1	
cd	01	0	1	1	1	
	11	1	1	1	0	
	10	1	1	0	0	

$$t_1 = [a\overline{b}\overline{c}d, ab\overline{c}\overline{d}] \quad 1 \to 1 \quad a\overline{c}$$
 $t_2 = [a\overline{b}c\overline{d}, a\overline{b}cd] \quad 0 \to 0 \quad \text{no required cubes}$
 $t_3 = [\overline{a}b\overline{c}\overline{d}, \overline{a}\overline{b}\overline{c}d] \quad 1 \to 0 \quad \overline{a}\overline{c}\overline{d}, \overline{a}b\overline{c}$
 $t_4 = [\overline{a}bcd, a\overline{b}c\overline{d}]$

	ab					
		00	01	11	10	
	00	1	1	1	1	
cd	01	0	1	1	1	
	11	1	1	1	0	
	10	1	1	0	0	

$$\begin{array}{lll} t_1 = [a\overline{b}\overline{c}d,ab\overline{c}\overline{d}] & 1 \to 1 & a\overline{c} \\ t_2 = [a\overline{b}c\overline{d},a\overline{b}cd] & 0 \to 0 & \text{no required cubes} \\ t_3 = [\overline{a}b\overline{c}\overline{d},\overline{a}\overline{b}\overline{c}d] & 1 \to 0 & \overline{a}\overline{c}\overline{d},\overline{a}b\overline{c} \\ t_4 = [\overline{a}bcd,a\overline{b}c\overline{d}] & 1 \to 0 \end{array}$$

		ab					
		00	01	11	10		
	00	1	1	1	1		
cd	01	0	1	1	1		
	11	1	1	1	0		
	10	1	1	0	0		

$$t_1 = [a\overline{b}\overline{c}d, ab\overline{c}\overline{d}] \quad 1 \to 1 \quad a\overline{c}$$
 $t_2 = [a\overline{b}c\overline{d}, a\overline{b}cd] \quad 0 \to 0 \quad \text{no required cubes}$
 $t_3 = [\overline{a}b\overline{c}\overline{d}, \overline{a}\overline{b}\overline{c}d] \quad 1 \to 0 \quad \overline{a}\overline{c}\overline{d}, \overline{a}b\overline{c}$
 $t_4 = [\overline{a}bcd, a\overline{b}c\overline{d}] \quad 1 \to 0 \quad bcd, \overline{a}c$

		ab					
		00	01	11	10		
	00	1	1	1	1		
cd	01	0	1	1	1		
	11	1	1	1	0		
	10	1	1	0	0		

$$t_1 = [a\overline{b}\overline{c}d, ab\overline{c}\overline{d}] \quad 1 \to 1 \quad a\overline{c}$$
 $t_2 = [a\overline{b}c\overline{d}, a\overline{b}cd] \quad 0 \to 0 \quad \text{no required cubes}$
 $t_3 = [\overline{a}b\overline{c}\overline{d}, \overline{a}\overline{b}\overline{c}d] \quad 1 \to 0 \quad \overline{a}\overline{c}\overline{d}, \overline{a}b\overline{c}$
 $t_4 = [\overline{a}bcd, a\overline{b}c\overline{d}] \quad 1 \to 0 \quad bcd, \overline{a}c$
 $req-set = \{a\overline{c}, \overline{a}\overline{c}\overline{d}, \overline{a}b\overline{c}, bcd, \overline{a}c\}$

Prime Implicants: Example

$$f(a,b,c,d) = a\overline{c} + \overline{a}\overline{c}\overline{d} + \overline{a}b\overline{c} + bcd + \overline{a}c$$

$$f(a,b,c,d) = a\overline{c} + \overline{a}\overline{c}\overline{d} + \overline{a}b\overline{c} + bcd + \overline{a}c$$

 $f(a,b,0,d) =$

$$f(a,b,c,d) = a\overline{c} + \overline{a}\overline{c}\overline{d} + \overline{a}b\overline{c} + bcd + \overline{a}c$$

$$f(a,b,0,d) = a + \overline{a}\overline{d} + \overline{a}b$$

$$f(a,b,c,d) = a\overline{c} + \overline{a}\overline{c}\overline{d} + \overline{a}b\overline{c} + bcd + \overline{a}c$$

$$f(a,b,0,d) = a + \overline{a}\overline{d} + \overline{a}b$$

$$f(0,b,0,d) =$$

$$f(a,b,c,d) = a\overline{c} + \overline{a}\overline{c}\overline{d} + \overline{a}b\overline{c} + bcd + \overline{a}c$$

$$f(a,b,0,d) = a + \overline{a}\overline{d} + \overline{a}b$$

$$f(0,b,0,d) = \overline{d} + b$$

$$f(a,b,c,d) = a\overline{c} + \overline{a}\overline{c}\overline{d} + \overline{a}b\overline{c} + bcd + \overline{a}c$$

$$f(a,b,0,d) = a + \overline{a}\overline{d} + \overline{a}b$$

$$f(0,b,0,d) = \overline{d} + b$$

$$f(1,b,0,d) =$$

$$f(a,b,c,d) = a\overline{c} + \overline{a}\overline{c}\overline{d} + \overline{a}b\overline{c} + bcd + \overline{a}c$$

$$f(a,b,0,d) = a + \overline{a}\overline{d} + \overline{a}b$$

$$f(0,b,0,d) = \overline{d} + b$$

$$f(1,b,0,d) = 1$$

$$\begin{array}{rcl} f(a,b,c,d) & = & a\overline{c} + \overline{a}\overline{c}\,\overline{d} + \overline{a}b\,\overline{c} + b\,c\,d + \overline{a}\,c \\ f(a,b,0,d) & = & a + \overline{a}\,\overline{d} + \overline{a}\,b \\ f(0,b,0,d) & = & \overline{d} + b \\ f(1,b,0,d) & = & 1 \\ \operatorname{cs}(f(a,b,0,d)) & = & \end{array}$$

$$\begin{array}{rcl} f(a,b,c,d) & = & a\overline{c} + \overline{a}\overline{c}\,\overline{d} + \overline{a}\,b\overline{c} + b\,c\,d + \overline{a}\,c \\ f(a,b,0,d) & = & a + \overline{a}\,\overline{d} + \overline{a}\,b \\ f(0,b,0,d) & = & \overline{d} + b \\ f(1,b,0,d) & = & 1 \\ \operatorname{cs}(f(a,b,0,d)) & = & \operatorname{abs}((a + \overline{d} + b)(\overline{a} + 1)) = a + \overline{d} + b \end{array}$$

$$\begin{array}{rcl} f(a,b,c,d) & = & a\overline{c} + \overline{a}\overline{c}\,\overline{d} + \overline{a}b\overline{c} + b\,c\,d + \overline{a}\,c \\ f(a,b,0,d) & = & a + \overline{a}\,\overline{d} + \overline{a}\,b \\ f(0,b,0,d) & = & \overline{d} + b \\ f(1,b,0,d) & = & 1 \\ \operatorname{cs}(f(a,b,0,d)) & = & \operatorname{abs}((a + \overline{d} + b)(\overline{a} + 1)) = a + \overline{d} + b \\ f(a,b,1,d) & = & \end{array}$$

$$f(a,b,c,d) = a\overline{c} + \overline{a}\overline{c}\overline{d} + \overline{a}b\overline{c} + bcd + \overline{a}c$$

$$f(a,b,0,d) = a + \overline{a}\overline{d} + \overline{a}b$$

$$f(0,b,0,d) = \overline{d} + b$$

$$f(1,b,0,d) = 1$$

$$cs(f(a,b,0,d)) = abs((a + \overline{d} + b)(\overline{a} + 1)) = a + \overline{d} + b$$

$$f(a,b,1,d) = bd + \overline{a}$$

$$f(a,b,c,d) = a\overline{c} + \overline{a}\overline{c}\overline{d} + \overline{a}b\overline{c} + bcd + \overline{a}c$$

$$f(a,b,0,d) = a + \overline{a}\overline{d} + \overline{a}b$$

$$f(0,b,0,d) = \overline{d} + b$$

$$f(1,b,0,d) = 1$$

$$cs(f(a,b,0,d)) = abs((a + \overline{d} + b)(\overline{a} + 1)) = a + \overline{d} + b$$

$$f(a,b,1,d) = bd + \overline{a}$$

$$f(0,b,1,d) =$$

$$\begin{array}{rcl} f(a,b,c,d) & = & a\overline{c} + \overline{a}\overline{c}\,\overline{d} + \overline{a}b\overline{c} + b\,c\,d + \overline{a}\,c \\ f(a,b,0,d) & = & a + \overline{a}\,\overline{d} + \overline{a}\,b \\ f(0,b,0,d) & = & \overline{d} + b \\ f(1,b,0,d) & = & 1 \\ \operatorname{cs}(f(a,b,0,d)) & = & \operatorname{abs}((a + \overline{d} + b)(\overline{a} + 1)) = a + \overline{d} + b \\ f(a,b,1,d) & = & b\,d + \overline{a} \\ f(0,b,1,d) & = & 1 \end{array}$$

$$\begin{array}{rcl} f(a,b,c,d) & = & a\overline{c} + \overline{a}\overline{c}\,\overline{d} + \overline{a}b\overline{c} + bcd + \overline{a}c \\ f(a,b,0,d) & = & a + \overline{a}\,\overline{d} + \overline{a}b \\ f(0,b,0,d) & = & \overline{d} + b \\ f(1,b,0,d) & = & 1 \\ \operatorname{cs}(f(a,b,0,d)) & = & \operatorname{abs}((a+\overline{d}+b)(\overline{a}+1)) = a + \overline{d} + b \\ f(a,b,1,d) & = & bd + \overline{a} \\ f(0,b,1,d) & = & 1 \\ f(1,b,1,d) & = & 1 \end{array}$$

$$\begin{array}{rcl} f(a,b,c,d) & = & a\overline{c} + \overline{a}\overline{c}\,\overline{d} + \overline{a}b\overline{c} + b\,c\,d + \overline{a}\,c \\ f(a,b,0,d) & = & a + \overline{a}\,\overline{d} + \overline{a}\,b \\ f(0,b,0,d) & = & \overline{d} + b \\ f(1,b,0,d) & = & 1 \\ \operatorname{cs}(f(a,b,0,d)) & = & \operatorname{abs}((a+\overline{d}+b)(\overline{a}+1)) = a + \overline{d} + b \\ f(a,b,1,d) & = & b\,d + \overline{a} \\ f(0,b,1,d) & = & 1 \\ f(1,b,1,d) & = & b\,d \end{array}$$

$$f(a,b,c,d) = a\overline{c} + \overline{a}\overline{c}\overline{d} + \overline{a}b\overline{c} + bcd + \overline{a}c$$

$$f(a,b,0,d) = a + \overline{a}\overline{d} + \overline{a}b$$

$$f(0,b,0,d) = \overline{d} + b$$

$$f(1,b,0,d) = 1$$

$$cs(f(a,b,0,d)) = abs((a + \overline{d} + b)(\overline{a} + 1)) = a + \overline{d} + b$$

$$f(a,b,1,d) = bd + \overline{a}$$

$$f(0,b,1,d) = 1$$

$$f(1,b,1,d) = bd$$

$$cs(f(a,b,1,d)) =$$

$$f(a,b,c,d) = a\overline{c} + \overline{a}\overline{c}\overline{d} + \overline{a}b\overline{c} + bcd + \overline{a}c$$

$$f(a,b,0,d) = a + \overline{a}\overline{d} + \overline{a}b$$

$$f(0,b,0,d) = \overline{d} + b$$

$$f(1,b,0,d) = 1$$

$$cs(f(a,b,0,d)) = abs((a + \overline{d} + b)(\overline{a} + 1)) = a + \overline{d} + b$$

$$f(a,b,1,d) = bd + \overline{a}$$

$$f(0,b,1,d) = 1$$

$$f(1,b,1,d) = bd$$

$$cs(f(a,b,1,d)) = abs((a+1)(\overline{a} + bd)) = \overline{a} + bd$$

$$\begin{array}{rcl} f(a,b,c,d) & = & a\overline{c} + \overline{a}\overline{c}\,\overline{d} + \overline{a}b\overline{c} + bcd + \overline{a}c \\ f(a,b,0,d) & = & a + \overline{a}\,\overline{d} + \overline{a}b \\ f(0,b,0,d) & = & \overline{d} + b \\ f(1,b,0,d) & = & 1 \\ \operatorname{cs}(f(a,b,0,d)) & = & \operatorname{abs}((a+\overline{d}+b)(\overline{a}+1)) = a + \overline{d} + b \\ f(a,b,1,d) & = & bd + \overline{a} \\ f(0,b,1,d) & = & 1 \\ f(1,b,1,d) & = & bd \\ \operatorname{cs}(f(a,b,1,d)) & = & \operatorname{abs}((a+1)(\overline{a}+bd)) = \overline{a} + bd \\ \operatorname{cs}(f(a,b,c,d)) & = & \end{array}$$

$$\begin{array}{rcl} f(a,b,c,d) & = & a\overline{c} + \overline{a}\overline{c}\,\overline{d} + \overline{a}\,b\overline{c} + b\,c\,d + \overline{a}\,c \\ f(a,b,0,d) & = & a + \overline{a}\,\overline{d} + \overline{a}\,b \\ f(0,b,0,d) & = & \overline{d} + b \\ f(1,b,0,d) & = & 1 \\ \operatorname{cs}(f(a,b,0,d)) & = & \operatorname{abs}((a+\overline{d}+b)(\overline{a}+1)) = a + \overline{d} + b \\ f(a,b,1,d) & = & b\,d + \overline{a} \\ f(0,b,1,d) & = & 1 \\ f(1,b,1,d) & = & b\,d \\ \operatorname{cs}(f(a,b,1,d)) & = & \operatorname{abs}((a+1)(\overline{a}+b\,d)) = \overline{a}+b\,d \\ \operatorname{cs}(f(a,b,c,d)) & = & \operatorname{abs}((c+a+\overline{d}+b)(\overline{c}+\overline{a}+b\,d)) \end{array}$$

$$f(a,b,c,d) = a\overline{c} + \overline{a}\overline{c}\overline{d} + \overline{a}b\overline{c} + bcd + \overline{a}c$$

$$f(a,b,0,d) = a + \overline{a}\overline{d} + \overline{a}b$$

$$f(0,b,0,d) = \overline{d} + b$$

$$f(1,b,0,d) = 1$$

$$\operatorname{cs}(f(a,b,0,d)) = \operatorname{abs}((a + \overline{d} + b)(\overline{a} + 1)) = a + \overline{d} + b$$

$$f(a,b,1,d) = bd + \overline{a}$$

$$f(0,b,1,d) = 1$$

$$f(1,b,1,d) = bd$$

$$\operatorname{cs}(f(a,b,1,d)) = \operatorname{abs}((a+1)(\overline{a}+bd)) = \overline{a}+bd$$

$$\operatorname{cs}(f(a,b,c,d)) = \operatorname{abs}((c+a+\overline{d}+b)(\overline{c}+\overline{a}+bd))$$

$$= \operatorname{abs}(\overline{a}c+bcd+a\overline{c}+abd+\overline{c}\overline{d}+\overline{a}\overline{d}+b\overline{c}+\overline{a}b+bd)$$

$$f(a,b,c,d) = a\overline{c} + \overline{a}\overline{c}\overline{d} + \overline{a}b\overline{c} + bcd + \overline{a}c$$

$$f(a,b,0,d) = a + \overline{a}\overline{d} + \overline{a}b$$

$$f(0,b,0,d) = \overline{d} + b$$

$$f(1,b,0,d) = 1$$

$$cs(f(a,b,0,d)) = abs((a + \overline{d} + b)(\overline{a} + 1)) = a + \overline{d} + b$$

$$f(a,b,1,d) = bd + \overline{a}$$

$$f(0,b,1,d) = 1$$

$$f(1,b,1,d) = bd$$

$$cs(f(a,b,1,d)) = abs((a+1)(\overline{a} + bd)) = \overline{a} + bd$$

$$cs(f(a,b,c,d)) = abs((c+a+\overline{d} + b)(\overline{c} + \overline{a} + bd))$$

$$= abs(\overline{a}c + bcd + a\overline{c} + abd + \overline{c}\overline{d} + \overline{a}\overline{d} + b\overline{c} + \overline{a}b + bd)$$

$$= \overline{a}c + a\overline{c} + \overline{c}\overline{d} + \overline{a}\overline{d} + b\overline{c} + \overline{a}b + bd$$

Privileged Cubes

- The transition cubes for each dynamic 1 → 0 or 0 → 1 transition are called *priveleged cubes*.
- They cannot be intersected unless the intersecting product also includes its start subcube $(1 \rightarrow 0)$ or end subcube $(0 \rightarrow 1)$.
- If a cover includes a product that intersects a priveleged cube without including its start subcube (or end subcube), then the cover is not hazard-free.

	ab				
		00	01	11	10
	00	1	1	1	1
cd	01	0	1	1	1
	11	1	1	1	0
	10	1	1	0	0

$$t_1 = [a\overline{b}\overline{c}d, ab\overline{c}\overline{d}] \quad 1 \to 1$$

$$t_2 = [a\overline{b}c\overline{d}, a\overline{b}cd] \quad 0 \to 0$$

$$t_3 = [\overline{a}b\overline{c}\overline{d}, \overline{a}\overline{b}\overline{c}d] \quad 1 \to 0$$

$$t_4 = [\overline{a}bcd, a\overline{b}c\overline{d}] \quad 1 \to 0$$

	ab				
		00	01	11	10
	00	1	1	1	1
cd	01	0	1	1	1
	11	1	1	1	0
	10	1	1	0	0

$$t_1 = [a\overline{b}\overline{c}d, ab\overline{c}\overline{d}] \quad 1 \to 1$$
 No privileged cubes $t_2 = [a\overline{b}c\overline{d}, a\overline{b}cd] \quad 0 \to 0$ $t_3 = [\overline{a}b\overline{c}\overline{d}, \overline{a}\overline{b}\overline{c}d] \quad 1 \to 0$ $t_4 = [\overline{a}bcd, a\overline{b}c\overline{d}] \quad 1 \to 0$

	ab				
		00	01	11	10
	00	1	1	1	1
cd	01	0	1	1	1
	11	1	1	1	0
	10	1	1	0	0

$$t_1 = [a\overline{b}\overline{c}d, ab\overline{c}\overline{d}]$$
 $1 \to 1$ No privileged cubes $t_2 = [a\overline{b}c\overline{d}, a\overline{b}cd]$ $0 \to 0$ No privileged cubes $t_3 = [\overline{a}b\overline{c}\overline{d}, \overline{a}\overline{b}\overline{c}d]$ $1 \to 0$ $t_4 = [\overline{a}bcd, a\overline{b}c\overline{d}]$ $1 \to 0$

	ab				
		00	01	11	10
	00	1	1	1	1
cd	01	0	1	1	1
	11	1	1	1	0
	10	1	1	0	0

$$t_1 = [a\overline{b}\overline{c}d, ab\overline{c}\overline{d}]$$
 $1 \to 1$ No privileged cubes $t_2 = [a\overline{b}c\overline{d}, a\overline{b}cd]$ $0 \to 0$ No privileged cubes $t_3 = [\overline{a}b\overline{c}\overline{d}, \overline{a}\overline{b}\overline{c}d]$ $1 \to 0$ $\overline{a}\overline{c}$ $t_4 = [\overline{a}bcd, a\overline{b}c\overline{d}]$ $1 \to 0$

	ab				
		00	01	11	10
	00	1	1	1	1
cd	01	0	1	1	1
	11	1	1	1	0
	10	1	1	0	0

$$t_1 = [a\overline{b}\,\overline{c}\,d, ab\overline{c}\,\overline{d}] \quad 1 \to 1$$
 No privileged cubes $t_2 = [a\overline{b}\,c\,\overline{d}, a\overline{b}\,c\,d] \quad 0 \to 0$ No privileged cubes $t_3 = [\overline{a}\,b\,\overline{c}\,\overline{d}, \overline{a}\,\overline{b}\,\overline{c}\,d] \quad 1 \to 0 \quad \overline{a}\,\overline{c}$ $t_4 = [\overline{a}\,b\,c\,d, a\,\overline{b}\,c\,\overline{d}] \quad 1 \to 0 \quad c$

	ab				
		00	01	11	10
	00	1	1	1	1
cd	01	0	1	1	1
	11	1	1	1	0
	10	1	1	0	0

$$t_1 = [a\overline{b}\overline{c}d, ab\overline{c}\overline{d}]$$
 $1 \to 1$ No privileged cubes $t_2 = [a\overline{b}c\overline{d}, a\overline{b}cd]$ $0 \to 0$ No privileged cubes $t_3 = [\overline{a}b\overline{c}\overline{d}, \overline{a}\overline{b}\overline{c}d]$ $1 \to 0$ $\overline{a}\overline{c}$ $t_4 = [\overline{a}bcd, a\overline{b}c\overline{d}]$ $1 \to 0$ c priv-set $= \{\overline{a}\overline{c}, c\}$

DHF-Prime Implicants

- We may not be able to produce a SOP cover that is free of dynamic hazards using only prime implicants.
- A dhf-implicant is an implicant which does not illegally intersect any privileged cube.
- A dhf-prime implicant is a dhf-implicant that is contained in no other dhf-implicant.
- A dhf-prime implicant may not be a prime implicant.
- A minimal hazard-free cover includes only dhf-prime implicants.

J	Start Subcube
āc	ābc̄ d̄
С	abcd
Primes D	HF-Prime
ac	
$\overline{c}\overline{d}$	
b¯c	
āc	
āb	
$\overline{a}\overline{d}$	
bd	

Privileged C	Cube Start Subcube
āc	<u>ā</u> b̄c̄ d̄
С	<u>a</u> bcd
Primes	DHF-Prime
a c	Yes
$\overline{c}\overline{d}$	
b̄c	
āc	
āb	
$\overline{a}\overline{d}$	
bd	

Privileg	ged Cube	Start Subcube
-	ā c	ābc̄ d̄
	С	<u>a</u> bcd
Primes	D	HF-Prime
а с		Yes
$\overline{c}\overline{d}$	Yes, lega	ally intersects $\overline{a}\overline{c}$
b¯c		
āc		
āb		
$\overline{a}\overline{d}$		
bd		

-	ged Cube	Start Subcube $\overline{a}b\overline{c}\overline{d}$	
•	ac	abcu	
	С	<u>ā</u> bcd	
Primes	DHF-Prime		
ac		Yes	
$\overline{c}\overline{d}$	Yes, lega	ally intersects $\overline{a}\overline{c}$	
b¯c	Yes, lega	ally intersects $\overline{a}\overline{c}$	
āc			
āb			
$\overline{a}\overline{d}$			
bd			

-	ged Cube	Start Subcube
•	ā̄c	āb̄c d
	С	ābcd
Primes	D	HF-Prime
а с		Yes
$\overline{c}\overline{d}$	Yes, lega	ally intersects $\overline{a}\overline{c}$
b¯c	Yes, lega	ally intersects $\overline{a}\overline{c}$
āc	Yes, legally intersects c	
āb		
$\overline{a}\overline{d}$		
bd		

Privile	ged Cube	Start Subcube
	<u>ā</u> c	<u>ā</u> bc̄ d̄
	С	abcd
Primes	D	HF-Prime
а с		Yes
$\overline{c}\overline{d}$	Yes, lega	ally intersects $\overline{a}\overline{c}$
b¯c	Yes, lega	ally intersects $\overline{a}\overline{c}$
āc	Yes, legally intersects c	
āb	Yes, lega	lly intersects both
$\overline{a}\overline{d}$		
bd		

Privileged Cube		Start Subcube
<u>ā</u> c		ābc̄ d̄
С		abcd
Primes DF		HF-Prime
ac		Yes
$\overline{c}\overline{d}$ Yes, lega		ally intersects $\overline{a}\overline{c}$
b¯c	$b\overline{c}$ Yes, legally intersects	
āc	c Yes, legally intersects c	
āb	Yes, legally intersects both	
$\overline{a}\overline{d}$	No, illegally intersects c	
bd		

_	ged Cube ā c	Start Subcube $\overline{a}b\overline{c}\overline{d}$
	С	abcd
Primes	D	HF-Prime
a c	Yes	
$\overline{c}\overline{d}$	Yes, legally intersects $\overline{a}\overline{c}$	
b¯c	Yes, legally intersects $\overline{a}\overline{c}$	
āc	Yes, legally intersects c	
āb	Yes, legally intersects both	
$\overline{a}\overline{d}$	No, illegally intersects c	
bd	No, illegally intersects $\overline{a}\overline{c}$	

	ged Cube ac	Start Subcube $\overline{a}b\overline{c}\overline{d}$
	С	abcd
Primes	D	HF-Prime
ac		Yes
$\overline{c}\overline{d}$	Yes, lega	ally intersects $\overline{a}\overline{c}$
b¯c	Yes, lega	ally intersects $\overline{a}\overline{c}$
āc	Yes, leg	ally intersects c
āb	Yes, lega	lly intersects both
$\overline{a}\overline{d}$	No, illeg	gally intersects c
bd	No, illega	ally intersects $\overline{a}\overline{c}$
$\overline{a}\overline{c}\overline{d}$		

	ged Cube ac	Start Subcube $\overline{a}b\overline{c}\overline{d}$
	С	ābcd
Primes	D	HF-Prime
ac		Yes
$\overline{c}\overline{d}$	Yes, lega	ally intersects $\overline{a}\overline{c}$
b¯c	Yes, lega	ally intersects $\overline{a}\overline{c}$
āc	Yes, leg	ally intersects <i>c</i>
āb	Yes, lega	lly intersects both
$\overline{a}\overline{d}$	No, illeg	ally intersects c
bd	No, illega	ally intersects $\overline{a}\overline{c}$
$\overline{a}\overline{c}\overline{d}$	No,	subset of $\overline{c}\overline{d}$

Privile	ged Cube	Start Subcube
	<u>ā</u> c	ābc̄ d̄
	С	<u>a</u> bcd
Primes	D	HF-Prime
ac		Yes
$\overline{c}\overline{d}$	Yes, lega	ally intersects $\overline{a}\overline{c}$
b¯c	Yes, lega	ally intersects $\overline{a}\overline{c}$
āc	Yes, leg	ally intersects c
āb	Yes, lega	lly intersects both
$\overline{a}\overline{d}$	No, illeg	ally intersects c
bd	No, illega	ally intersects $\overline{a}\overline{c}$
<u>a</u> cd	No,	subset of $\overline{c}\overline{d}$
abd		

Privile	ged Cube	Start Subcube
	<u>a</u> c	<u>ā</u> b̄c̄ d̄
	С	<u>a</u> bcd
Primes	D	HF-Prime
ac		Yes
$\overline{c}\overline{d}$	Yes, lega	ally intersects $\overline{a}\overline{c}$
b¯c	Yes, lega	ally intersects $\overline{a}\overline{c}$
āc	Yes, leg	ally intersects c
āb	Yes, lega	lly intersects both
$\overline{a}\overline{d}$	No, illeg	ally intersects c
bd	No, illega	ally intersects $\overline{a}\overline{c}$
ācd	No,	subset of $\overline{c}\overline{d}$
abd	No, illeg	ally intersects c

	Privileged Cube		Start Subcube
		<u>ā</u> c	ābc̄ d̄
		С	<u>a</u> bcd
	Primes	D	HF-Prime
	а с		Yes
	$\overline{c}\overline{d}$	Yes, lega	ally intersects $\overline{a}\overline{c}$
	b¯c	Yes, lega	ally intersects $\overline{a}\overline{c}$
	āc	Yes, leg	ally intersects c
	āb	Yes, lega	lly intersects both
	$\overline{a}\overline{d}$	No, illeg	ally intersects c
	bd	No, illega	ally intersects $\overline{a}\overline{c}$
	ācd	No,	subset of $\overline{c}\overline{d}$
abd No, illegally intersec			ally intersects c
	ab̄cd		

Privile	ged Cube	Start Subcube	
	<u>a</u> c	ābc̄ d̄	
	С	<u>a</u> bcd	
Primes	D	HF-Prime	
a c		Yes	
$\overline{c}\overline{d}$	Yes, lega	ally intersects $\overline{a}\overline{c}$	
b̄c	Yes, lega	ally intersects $\overline{a}\overline{c}$	
āc	$\overline{a}c$ Yes, legally intersects c		
āb	Yes, lega	lly intersects both	
$\overline{a}\overline{d}$	No, illeg	ally intersects c	
bd	No, illegally intersects $\overline{a}\overline{c}$		
$\overline{a}\overline{c}\overline{d}$	No, subset of $\overline{c}\overline{d}$		
abd	No, illegally intersects c		
ab c d	No, subset of $a\overline{c}$		

Privileged Cube		Start Subcube	
	<u>a</u> c	ābc̄ d̄	
	С	<u>a</u> bcd	
Primes	D	HF-Prime	
a c		Yes	
$\overline{c}\overline{d}$	Yes, lega	ally intersects $\overline{a}\overline{c}$	
b¯c	Yes, legally intersects $\overline{a}\overline{c}$		
āc	Yes, leg	ally intersects <i>c</i>	
āb	Yes, legally intersects both		
$\overline{a}\overline{d}$	No, illegally intersects c		
bd	No, illegally intersects $\overline{a}\overline{c}$		
$\overline{a}\overline{c}\overline{d}$	No, subset of $\overline{c}\overline{d}$		
abd	No, illegally intersects c		
ab c d	No, subset of $a\overline{c}$		
bcd			

Privileged Cube		Start Subcube	
-	<u>ā</u> c	āb̄c d	
	С	ābcd	
Primes	D	HF-Prime	
ac		Yes	
$\overline{c}\overline{d}$	Yes, lega	ally intersects $\overline{a}\overline{c}$	
b¯c	Yes, legally intersects $\overline{a}\overline{c}$		
āc	Yes, leg	ally intersects <i>c</i>	
āb	Yes, lega	lly intersects both	
$\overline{a}\overline{d}$	No, illeg	ally intersects c	
bd	No, illega	ally intersects $\overline{a}\overline{c}$	
ācd	No, subset of $\overline{c}\overline{d}$		
abd	No, illegally intersects c		
ab c d	No, subset of $a\overline{c}$		
bcd	Yes		

Setting up the Covering Problem

	āc	а с	$\overline{c}\overline{d}$	bō	āb	bcd
а с	_	1	_	_	_	_
ācd	_	_	1	_	_	_
ābc	_	_	_	1	1	_
bcd	_	_	_	_	_	1
āc	1	_	_	_	_	_

Setting up the Covering Problem

$$\overline{a}c$$
 $a\overline{c}$ $\overline{c}d$ $b\overline{c}$ $\overline{a}b$ bcd
 $a\overline{c}$ - 1 - - - -
 $\overline{a}\overline{c}\overline{d}$ - - 1 - - -
 $\overline{a}b\overline{c}$ - - - 1 1 -
 bcd - - - - 1
 $\overline{a}c$ 1 - - - - -
 $f = \overline{a}c + a\overline{c} + \overline{c}\overline{d} + b\overline{c} + bcd$

Generalized Transition Cube

- Generalized transition cube allows start and end points to be cubes rather than simply minterms.
- In the *generalized transition cube* $[c_1, c_2]$, the cube c_1 is called the *start cube* and c_2 is called the *end cube*.
- The open generalized transition cube, $[c_1, c_2)$, is all minterms in $[c_1, c_2]$ excluding those in c_2 (i.e., $[c_1, c_2) = [c_1, c_2] c_2$).

Extended Burst-Mode Transitions

- In XBM machine, some signals are rising, some are falling, and others are levels which can change nonmonotonically.
- Rising and falling signals change monotonically.
- Level signals must hold the same value in c_1 and c_2 , where the value is either a constant (0 or 1) or a don't care (-).
- Level signals may change nonmonotonically.
- Transitions are restricted such that each function may change value only after the completion of an input burst.
- $[c_1, c_2]$ for a function f is an *extended burst-mode transition* if for every minterm $m_i \in [c_1, c_2)$, $f(m_i) = f(c_1)$ and for every minterm $m_i \in c_2$, $f(m_i) = f(c_2)$.
- If a function has only extended burst-mode transitions, then it is function hazard-free.

	xl					
		00	01	11	10	
	00	1	1	1	1	
/Z	01	1	1	1	1	
	11	1	1	0	0	
	10	1	1	0	0	

$$[\overline{x} - \overline{y} -, x - y -]$$

	xl				
		00	01	11	10
	00	1	1	1	1
yz	01	1	1	1	1
	11	1	1	0	0
	10	1	1	0	0

$$[\overline{x} - \overline{y} -, x - y -]$$
 Extended burst-mode transition

	xl				
		00	01	11	10
	00	1	1	1	1
/Z	01	1	1	1	1
	11	1	1	0	0
	10	1	1	0	0

$$[\overline{x} - \overline{y} -, x - yz]$$

	xI						
		00	01	11	10		
	00	1	1	1	1		
yz	01	1	1	1	1		
	11	1	1	0	0		
	10	1	1	0	0		

$$[\overline{x} - \overline{y} -, x - yz]$$

Not an extended burst-mode transition

	ab							
	00	01	11	10	ХJ			
s0	s0,0	s0,0	s1,1	s1,1	0			
s1			s1,1	s1,1	1(

$$[\overline{a} - \overline{x}y, a - \overline{x}y]$$

Dynamic $0 \rightarrow 1$ transition for output c and next-state variable X

Dynamic $0 \to 1$ transition for output c and next-state variable XDynamic $1 \to 0$ transition for next-state variable Y

	ab						
	00	01	11	10	ху		
s0	s0,0	s0,0	s1,1	s1,1	01		
s1			s1,1	s1,1	10		

$$[\overline{a} - \overline{x}y, a - \overline{x}y]$$

Dynamic 0 \to 1 transition for output c and next-state variable X Dynamic 1 \to 0 transition for next-state variable Y

$$[a-\overline{x}y,a-x\overline{y}]$$

10

s1,1

s1,1

XY

01

10

$$[\overline{a}-\overline{x}y,a-\overline{x}y]$$

Dynamic $0 \rightarrow 1$ transition for output c and next-state variable XDynamic $1 \rightarrow 0$ transition for next-state variable Y

$$[a-\overline{x}y,a-x\overline{y}]$$

Static 1 \rightarrow 1 transition for output *c* and next-state variable *X*

$$[\overline{a}-\overline{x}y,a-\overline{x}y]$$

Dynamic 0 \rightarrow 1 transition for output c and next-state variable XDynamic 1 \rightarrow 0 transition for next-state variable Y

$$[a-\overline{x}y,a-x\overline{y}]$$

Static 1 \rightarrow 1 transition for output c and next-state variable XStatic 0 \rightarrow 0 transition for next-state variable Y

Start and End Subcubes

- Start subcube, c'_1 , is maximal subcube of c_1 where signals having directed don't-care transitions are set to initial value.
- End subcube, c'_2 , is maximal subcube of c_2 where signals having directed don't-care transitions are set to final value.

Start and End Subcube: Example

	xI						
		00	01	11	10		
	00	1	1	1	1		
yΖ	01	1	1	1	1		
	11	1	1	0	0		
	10	1	1	0	0		

$$[\overline{x} - \overline{y} -, x - y -]$$

Assume that z is a rising directed don't care transition.

Start and End Subcube: Example

	xl						
		00	01	11	10		
	00	1	1	1	1		
yΖ	01	1	1	1	1		
	11	1	1	0	0		
	10	1	1	0	0		

$$[\overline{x} - \overline{y} -, x - y -]$$

Assume that *z* is a rising directed don't care transition.

 $\overline{x} - \overline{y}\overline{z}$ is the start subcube.

Start and End Subcube: Example

	xl						
		00	01	11	10		
	00	1	1	1	1		
yz	01	1	1	1	1		
	11	1	1	0	0		
	10	1	1	0	0		

$$[\overline{x} - \overline{y} -, x - y -]$$

Assume that z is a rising directed don't care transition.

 $\overline{x} - \overline{y}\overline{z}$ is the start subcube.

x - yz is the end subcube.

Hazard Issues

- Considering $[c'_1, c'_2]$, hazard considerations are same.
- If a static 1 → 1 transition the entire transition cube must be included in some product term in the cover.
- If a dynamic 1 \rightarrow 0 transition, any product that intersects this transition cube must contain the start subcube, c'_1 .
- Must also consider dynamic $0 \rightarrow 1$ transitions.
- Any product that intersects transition cube for a dynamic $0 \rightarrow 1$ transition must contain the end subcube, c'_2 .

	xI						
		00	01	11	10		
	00	0	0	0	0		
yΖ	01	0	0	1	1		
	11	0	0	1	0		
	10	0	0	0	0		

$$[\overline{x} - \overline{y}\overline{z}, x - \overline{y}z]$$

	xI						
		00	01	11	10		
	00	0	0	0	0		
yz	01	0	0	1	1		
-	11	0	0	1	0		
	10	0	0	0	0		

$$[\overline{x} - \overline{y}\overline{z}, x - \overline{y}z]$$
 Dynamic 0 \rightarrow 1 transition

	xl						
		00	01	11	10		
	00	0	0	0	0		
yΖ	01	0	0	1	1		
-	11	0	0	1	0		
	10	0	0	0	0		

$$\begin{aligned} & [\overline{X} - \overline{y}\,\overline{z}, X - \overline{y}\,z] \\ & \text{Dynamic } 0 \to 1 \text{ transition} \\ & [\overline{X}\,I\,y\,\overline{z}, X\,I\,y\,z] \end{aligned}$$

	xI						
		00	01	11	10		
	00	0	0	0	0		
yΖ	01	0	0	1	1		
	11	0	0	1	0		
	10	0	0	0	0		

$$[\overline{X} - \overline{y}\overline{z}, X - \overline{y}z]$$

Dynamic $0 \to 1$ transition $[\overline{X}/\overline{y}\overline{z}, X/\overline{y}z]$
Dynamic $0 \to 1$ transition

	xl						
		00	01	11	10		
	00	0	0	0	0		
yΖ	01	0	0	1	1		
	11	0	0	1	0		
	10	0	0	0	0		

$$[\overline{X} - \overline{y}\overline{z}, X - \overline{y}z]$$
 Dynamic $0 \to 1$ transition
$$[\overline{X}Iy\overline{z}, XIyz]$$
 Dynamic $0 \to 1$ transition
$$f = x\overline{y}z + xIz$$

	xl						
		00	01	11	10		
	00	0	0	0	0		
yz	01	0	0	1	1		
	11	0	0	1	0		
	10	0	0	0	0		

$$\begin{aligned} & [\overline{x} - \overline{y}\,\overline{z}, x - \overline{y}\,z] \\ & \text{Dynamic } 0 \to 1 \text{ transition} \\ & [\overline{x}\,l\,y\,\overline{z}, x\,l\,y\,z] \\ & \text{Dynamic } 0 \to 1 \text{ transition} \\ & f = x\overline{y}z + xlz \\ & \textit{xlz} \text{ illegally intersects } [\overline{x} - \overline{y}\,\overline{z}, x - \overline{y}\,z] \end{aligned}$$

		xl				
		00	01	11	10	
	00	0	0	0	0	
yz	01	0	0	1	1	
	11	0	0	1	0	
	10	0	0	0	0	

$$\begin{aligned} & [\overline{x} - \overline{y}\,\overline{z}, x - \overline{y}\,z] \\ & \text{Dynamic } 0 \to 1 \text{ transition} \\ & [\overline{x}\,l\,y\,\overline{z}, x\,l\,y\,z] \\ & \text{Dynamic } 0 \to 1 \text{ transition} \\ & f = x\overline{y}z + xlz \\ xlz \text{ illegally intersects } [\overline{x} - \overline{y}\,\overline{z}, x - \overline{y}\,z] \\ & \text{Must reduce to: } f = x\overline{y}z + xlyz \end{aligned}$$

DHF-Compatibles

- Two states s_1 and s_2 are *dhf-compatible* when they are compatible and for each output z and transition $[c_1, c_2]$ of s_1 and for each transition $[c_3, c_4]$ of s_2 :
 - If z has a 1 \rightarrow 0 transition in $[c_1, c_2]$ and a 1 \rightarrow 1 transition in $[c_3, c_4]$, then $[c_1, c_2] \cap [c_3, c_4] = \emptyset$ or $c'_1 \in [c_3, c_4]$.
 - ② If z has a 1 \to 0 transition in $[c_1, c_2]$ and a 1 \to 0 transition in $[c_3, c_4]$, then $[c_1, c_2] \cap [c_3, c_4] = \emptyset$, $c_1 = c_3$, $[c_1, c_2] \subseteq [c_3, c_4]$, or $[c_3, c_4] \subseteq [c_1, c_2]$.
 - If z has a $0 \to 1$ transition in $[c_1, c_2]$ and a $1 \to 1$ transition in $[c_3, c_4]$, then $[c_1, c_2] \cap [c_3, c_4] = \emptyset$ or $c_2' \in [c_3, c_4]$.
 - If z has a 0 → 1 transition in $[c_1, c_2]$ and a 0 → 1 transition in $[c_3, c_4]$, then $[c_1, c_2] \cap [c_3, c_4] = \emptyset$, $c_2 = c_4$, $[c_1, c_2] \subseteq [c_3, c_4]$, or $[c_3, c_4] \subseteq [c_1, c_2]$.

State Minimization: Extended Burst-Mode

For input 11, static 1 \rightarrow 1 transition when transition from A to B. In state BC, dynamic 0 \rightarrow 1 transition.

Further Restrictions

- s_1 and s_2 must also satisfy the following further restriction for each s_3 , which can transition to s_1 in $[c_3, c_4]$ and another transition $[c_1, c_2]$ of s_2 :
 - ① If z has a 1 \rightarrow 0 transition in $[c_1, c_2]$ and a 1 \rightarrow 1 transition in $[c_3, c_4]$, then $[c_1, c_2] \cap [c_3, c_4] = \emptyset$ or $c'_1 \in [c_3, c_4]$.
 - If z has a $0 \to 1$ transition in $[c_1, c_2]$ and a $1 \to 1$ transition in $[c_3, c_4]$, then $[c_1, c_2] \cap [c_3, c_4] = \emptyset$ or $c'_2 \in [c_3, c_4]$.
- For each s_3 which can transition to s_2 in $[c_3, c_4]$ and another transition $[c_1, c_2]$ of s_1 :
 - If z has a 1 \rightarrow 0 transition in $[c_1, c_2]$ and a 1 \rightarrow 1 transition in $[c_3, c_4]$, then $[c_1, c_2] \cap [c_3, c_4] = \emptyset$ or $c'_1 \in [c_3, c_4]$.
 - If z has a $0 \to 1$ transition in $[c_1, c_2]$ and a $1 \to 1$ transition in $[c_3, c_4]$, then $[c_1, c_2] \cap [c_3, c_4] = \emptyset$ or $c_2' \in [c_3, c_4]$.

Extended Burst-Mode Dynamic Hazard Problem

Static 1 \rightarrow 1 transition $[dc\overline{x}\,\overline{y},dcx\overline{y}]$ Dynamic 1 \rightarrow 0 transition $[-cx\overline{y},-\overline{c}x\overline{y}]$

State Assignment

	dc							
		00	01	11	10			
	000	0	0	0	0			
	001	_	_	_	_			
	011	_	_	_	_			
рху	010	_	_	_	_			
	110	0	1	1	0			
	111	_	_	_	_			
	101	_	_	_	_			
	100	0	1	1	0			
			Χ					

			dc		
		00	01	11	10
	000	0	0	1	0
	001	_	-	_	_
	011	_	1	_	
рху	010	_	_	_	_
	110	0	1	1	0
	111	_	-	_	_
	101	_	-	_	_
	100	0	1	1	0
			Р		

Hazard-free dff Circuit

					abc				
		000	001	011	010	110	111	101	100
	00	0	0	0	0	0	0	0	0
de	01	0	0	0	0	0	0	0	0
	10	0	0	1	1	1	1	1	1
	11	0	0	1	1	0	0	1	1

Transition Cube Type Required Cube Privileged Cube $[\overline{a}\overline{b}\overline{d}, \overline{a}bd]$ $[ab\overline{c}d\overline{e}, abcd\overline{e}]$ $[a\overline{b}d, a\overline{b}d]$

Subcube

		abc								
		000	001	011	010	110	111	101	100	
	00	0	0	0	0	0	0	0	0	
de	01	0	0	0	0	0	0	0	0	
	10	0	0	1	1	1	1	1	1	
	11	0	0	1	1	0	0	1	1	

Required Cube

Privileged Cube

Transition Cube Type $[\overline{a}\overline{b}\overline{d},\overline{a}bd]$ $0 \rightarrow 1$ $[ab\overline{c}d\overline{e}, abcd\overline{e}]$

 $[a\overline{b}d, a\overline{b}\overline{d}]$

Subcube

	abc									
		000	001	011	010	110	111	101	100	
	00	0	0	0	0	0	0	0	0	
de	01	0	0	0	0	0	0	0	0	
	10	0	0	1	1	1	1	1	1	
	11	0	0	1	1	0	0	1	1	

Transition Cube Type Subcube Required Cube Privileged Cube $[\overline{a}\overline{b}\overline{d},\overline{a}bd]$ $0 \rightarrow 1$ ābd $[ab\overline{c}d\overline{e}, abcd\overline{e}]$

 $[a\overline{b}d, a\overline{b}\overline{d}]$

Chris J. Myers (Lecture 5: Huffman Circuits)

		abc									
		000	001	011	010	110	111	101	100		
	00	0	0	0	0	0	0	0	0		
de	01	0	0	0	0	0	0	0	0		
	10	0	0	1	1	1	1	1	1		
	11	0	0	1	1	0	0	1	1		

Transition Cube Type Subcube Required Cube Privileged Cube $[\overline{a}\overline{b}\overline{d},\overline{a}bd]$ $0 \rightarrow 1$ ābd ā $[ab\overline{c}d\overline{e}, abcd\overline{e}]$

 $[a\overline{b}d, a\overline{b}\overline{d}]$

					abc				
		000	001	011	010	110	111	101	100
	00	0	0	0	0	0	0	0	0
de	01	0	0	0	0	0	0	0	0
	10	0	0	1	1	1	1	1	1
	11	0	0	1	1	0	0	1	1

Transition Cube	Type	Required Cube	Privileged Cube	Subcube
$[\overline{a}\overline{b}\overline{d},\overline{a}bd]$	$0 \rightarrow 1$	ābd	ā	$\overline{a}b\overline{c}d$ (end)
$[ab\overline{c}d\overline{e},abcd\overline{e}]$				

[abd,abd]

		abc								
		000	001	011	010	110	111	101	100	
	00	0	0	0	0	0	0	0	0	
de	01	0	0	0	0	0	0	0	0	
	10	0	0	1	1	1	1	1	1	
	11	0	0	1	1	0	0	1	1	

Transition Cube	Type	Required Cube	Privileged Cube	Subcube
$[\overline{a}\overline{b}\overline{d},\overline{a}bd]$	$0 \rightarrow 1$	ābd	ā	ābcd (end)
$[ab\overline{c}d\overline{e},abcd\overline{e}]$	$1 \rightarrow 1$			
$[a\overline{b}d, a\overline{b}\overline{d}]$				

		abc									
		000	001	011	010	110	111	101	100		
	00	0	0	0	0	0	0	0	0		
de	01	0	0	0	0	0	0	0	0		
	10	0	0	1	1	1	1	1	1		
	11	0	0	1	1	0	0	1	1		

Transition Cube	Type	Required Cube	Privileged Cube	Subcube
$[\overline{a}\overline{b}\overline{d},\overline{a}bd]$	$0 \to 1$	ābd	ā	ābcd (end)
$[ab\overline{c}d\overline{e},abcd\overline{e}]$	$1 \rightarrow 1$	abd e		
$[a\overline{h}d \ a\overline{h}\overline{d}]$				

[abd,abd

		abc									
		000	001	011	010	110	111	101	100		
	00	0	0	0	0	0	0	0	0		
de	01	0	0	0	0	0	0	0	0		
	10	0	0	1	1	1	1	1	1		
	11	0	0	1	1	0	0	1	1		

Transition Cube	Type	Required Cube	Privileged Cube	Subcube
$[\overline{a}\overline{b}\overline{d},\overline{a}bd]$	$0 \rightarrow 1$	ābd	ā	ābcd (end)
$[ab\overline{c}d\overline{e},abcd\overline{e}]$	$1 \rightarrow 1$	abd e	none	
$[a\overline{b}d, a\overline{b}\overline{d}]$				

[abd,abd]

			abc									
		000	001	011	010	110	111	101	100			
	00	0	0	0	0	0	0	0	0			
de	01	0	0	0	0	0	0	0	0			
	10	0	0	1	1	1	1	1	1			
	11	0	0	1	1	0	0	1	1			

Transition Cube	Type	Required Cube	Privileged Cube	Subcube
$[\overline{a}\overline{b}\overline{d},\overline{a}bd]$	$0 \rightarrow 1$	ābd	ā	$\overline{a}b\overline{c}d$ (end)
$[ab\overline{c}d\overline{e},abcd\overline{e}]$	$1 \rightarrow 1$	abd e	none	none
$[a\overline{h}d \ a\overline{h}\overline{d}]$				

[abd,abd

					abc				
		000	001	011	010	110	111	101	100
	00	0	0	0	0	0	0	0	0
de	01	0	0	0	0	0	0	0	0
	10	0	0	1	1	1	1	1	1
	11	0	0	1	1	0	0	1	1

Transition Cube	Type	Required Cube	Privileged Cube	Subcube
$[\overline{a}\overline{b}\overline{d},\overline{a}bd]$	$0 \rightarrow 1$	ābd	ā	$\overline{a}b\overline{c}d$ (end)
$[ab\overline{c}d\overline{e},abcd\overline{e}]$	$1 \rightarrow 1$	abd <u>ē</u>	none	none
$[a\overline{b}d, a\overline{b}\overline{d}]$	$1 \rightarrow 0$			

					abc				
		000	001	011	010	110	111	101	100
	00	0	0	0	0	0	0	0	0
de	01	0	0	0	0	0	0	0	0
	10	0	0	1	1	1	1	1	1
	11	0	0	1	1	0	0	1	1

Transition Cube	Type	Required Cube	Privileged Cube	Subcube
$[\overline{a}\overline{b}\overline{d},\overline{a}bd]$	$0 \rightarrow 1$	ābd	ā	$\overline{a}b\overline{c}d$ (end)
$[ab\overline{c}d\overline{e},abcd\overline{e}]$	$1 \rightarrow 1$	abd <u>ē</u>	none	none
$[a\overline{h}d \ a\overline{h}\overline{d}]$	1 → 0	$a\overline{h}d$		

					abc				
		000	001	011	010	110	111	101	100
	00	0	0	0	0	0	0	0	0
de	01	0	0	0	0	0	0	0	0
	10	0	0	1	1	1	1	1	1
	11	0	0	1	1	0	0	1	1

Transition Cube	Type	Required Cube	Privileged Cube	Subcube
$[\overline{a}\overline{b}\overline{d},\overline{a}bd]$	$0 \rightarrow 1$	ābd	ā	$\overline{a}b\overline{c}d$ (end)
$[ab\overline{c}d\overline{e},abcd\overline{e}]$	$1 \rightarrow 1$	abd <u>ē</u>	none	none
$[a\overline{b}d \ a\overline{b}\overline{d}]$	1 → 0	a∏d	$a\overline{b}$	

					abc					
		000	001	011	010	110	111	101	100	
	00	0	0	0	0	0	0	0	0	
de	01	0	0	0	0	0	0	0	0	
	10	0	0	1	1	1	1	1	1	
	11	0	0	1	1	0	0	1	1	

Transition Cube	Type	Required Cube	Privileged Cube	Subcube
$[\overline{a}\overline{b}\overline{d},\overline{a}bd]$	$0 \rightarrow 1$	ābd	ā	$\overline{a}b\overline{c}d$ (end)
$[ab\overline{c}d\overline{e},abcd\overline{e}]$	$1 \rightarrow 1$	abd e	none	none
$[a\overline{b}d, a\overline{b}\overline{d}]$	$1 \rightarrow 0$	$a\overline{b}d$	$a\overline{b}$	$a\overline{b}\overline{c}d$ (start)

		abc							
		000	001	011	010	110	111	101	100
de	00	0	0	0	0	0	0	0	0
	01	0	0	0	0	0	0	0	0
	10	0	0	1	1	1	1	1	1
	11	0	0	1	1	0	0	1	1

Transition Cube	Type	Required Cube	Privileged Cube	Subcube
$[\overline{a}\overline{b}\overline{d},\overline{a}bd]$	$0 \to 1$	ābd	ā	$\overline{a}b\overline{c}d$ (end)
$[ab\overline{c}d\overline{e},abcd\overline{e}]$	$1 \to 1$	abd e	none	none
$[a\overline{b}d, a\overline{b}\overline{d}]$	$1 \to 0$	$a\overline{b}d$	$a\overline{b}$	āb̄c̄d (start)

 $\mathsf{primes} = \{\overline{a}\mathit{b}\mathit{d}, a\overline{b}\mathit{d}, a\mathit{d}\,\overline{e}, \mathit{b}\mathit{d}\,\overline{e}\}$

		abc							
		000	001	011	010	110	111	101	100
	00	0	0	0	0	0	0	0	0
de	01	0	0	0	0	0	0	0	0
	10	0	0	1	1	1	1	1	1
	11	0	0	1	1	0	0	1	1

Transition Cube	Type	Required Cube	Privileged Cube	Subcube
$[\overline{a}\overline{b}\overline{d},\overline{a}bd]$	$0 \to 1$	ābd	ā	$\overline{a}b\overline{c}d$ (end)
$[ab\overline{c}d\overline{e},abcd\overline{e}]$	$1 \to 1$	abd e	none	none
$[a\overline{b}d, a\overline{b}\overline{d}]$	$1 \to 0$	$a\overline{b}d$	$a\overline{b}$	$a\overline{b}\overline{c}d$ (start)

primes =
$$\{\overline{a}bd, a\overline{b}d, ad\overline{e}, bd\overline{e}\}$$

DHF-primes = $\{\overline{a}bd, a\overline{b}d, abd\overline{e}\}$

		abc							
		000	001	011	010	110	111	101	100
•	00	0	0	0	0	0	0	0	0
de	01	0	0	0	0	0	0	0	0
	10	0	0	1	1	1	1	1	1
	11	0	0	1	1	0	0	1	1

Transition Cube	Type	Required Cube	Privileged Cube	Subcube
$[\overline{a}\overline{b}\overline{d},\overline{a}bd]$	$0 \to 1$	ābd	ā	$\overline{a}b\overline{c}d$ (end)
$[ab\overline{c}d\overline{e},abcd\overline{e}]$	$1 \to 1$	abd e	none	none
$[a\overline{b}d, a\overline{b}\overline{d}]$	$1 \to 0$	$a\overline{b}d$	$a\overline{b}$	$a\overline{b}\overline{c}d$ (start)

$$\begin{aligned} & \text{primes} = \{\overline{a}bd, a\overline{b}d, ad\overline{e}, bd\overline{e}\} \\ & \text{DHF-primes} = \{\overline{a}bd, a\overline{b}d, abd\overline{e}\} \\ & f = \overline{a}bd + a\overline{b}d + abd\overline{e} \end{aligned}$$

Multi-Level Logic Synthesis

- Two-level SOP implementations cannot be realized directly for most technologies.
- AND or OR stages of arbitrarily large fan-in not practical.
- In CMOS, gates with more than 3 or 4 inputs are too slow.
- Two-level SOP implementations must be decomposed using Boolean algebra laws into multi-level implementations.
- Care must be taken not to introduce hazards.
- We present a number of hazard-preserving transformations.
- If we begin with a hazard-free SOP implementation and only apply hazard-preserving transformations than the resulting multi-level implementation is also hazard-free.

Hazard-Preserving Transformations

- **Theorem 5.19** (Unger, 1969) Given any expression f_1 , if we transform it into another expression, f_2 , using the following laws:
 - $A + (B + C) \Leftrightarrow A + B + C$ (associative law)
 - $A(BC) \Leftrightarrow ABC$ (associative law)
 - $\overline{(A+B)} \Leftrightarrow \overline{A}\overline{B}$ (DeMorgan's theorem)
 - $(AB) \Leftrightarrow \overline{A} + \overline{B}$ (DeMorgan's theorem)
 - $AB + AC \Rightarrow A(B + C)$ (distributive law)
 - $A + AB \Rightarrow A$ (absorptive law)
 - $\bullet A + \overline{A}B \Rightarrow A + B$

then a circuit corresponding to f_2 will have no combinational hazards not present in circuits corresponding to f_1 .

More Hazard-Preserving Transformations

- Hazard exchanges:
 - Insertion or deletion of inverters at the output of a circuit only interchanges 0 and 1-hazards.
 - Insertion or deletion of inverters at the inputs only relocates hazards to duals of original transition.
 - The dual of a circuit (exchange AND and OR gates) produces dual function with dual hazards.

Multilevel Logic Synthesis: Example

$$f = \overline{a}c + a\overline{c} + \overline{c}\overline{d} + bcd + b\overline{c}$$

Multilevel Logic Synthesis: Example

$$f = \overline{c}(a+b+\overline{d})+c(\overline{a}+bd)$$

Technology Mapping

- Technology mapping step takes as input a set of technology-independent logic equations and a library of cells, and it produces a netlist of cells.
- Broken up into three major steps:
 - Decomposition,
 - Partitioning, and
 - Matching/covering.

Decomposition

- Decomposition transforms logic equations into equivalent network using only two-input/one-output base functions.
- A typical choice of base function is two-input NAND gates.
- Decomposition performed using recursive applications of DeMorgan's theorem and the associative law.
- These operations are hazard-preserving.
- Simplification during this step may remove redundant logic added to eliminate hazards, so must be avoided.

$$f = \overline{c}(a+b+\overline{d})+c(\overline{a}+bd)$$

$$f = \overline{c}(a+b+\overline{d}) + c(\overline{a}+bd)$$

$$f = \overline{c}((a+b)+\overline{d}) + c(\overline{a}+bd) \text{ (associative law)}$$

$$f = \overline{c}(a+b+\overline{d}) + c(\overline{a}+bd)$$

$$f = \overline{c}((a+b)+\overline{d}) + c(\overline{a}+bd) \text{ (associative law)}$$

$$f = \overline{c}(\overline{(\overline{a}\overline{b})}+\overline{d}) + c(\overline{a}+bd) \text{ (DeMorgan's theorem)}$$

$$f = \overline{c}(a+b+\overline{d}) + c(\overline{a}+bd)$$

$$f = \overline{c}((a+b)+\overline{d}) + c(\overline{a}+bd) \text{ (associative law)}$$

$$f = \overline{c}(\overline{(\overline{a}\overline{b})}+\overline{d}) + c(\overline{a}+bd) \text{ (DeMorgan's theorem)}$$

$$f = \overline{c}(\overline{(\overline{a}\overline{b})}d) + c(\overline{a}\overline{(bd)}) \text{ (DeMorgan's theorem)}$$

$$f = \overline{c}(a+b+\overline{d})+c(\overline{a}+bd)$$

$$f = \overline{c}((a+b)+\overline{d})+c(\overline{a}+bd) \text{ (associative law)}$$

$$f = \overline{c}((\overline{a}\overline{b})+\overline{d})+c(\overline{a}+bd) \text{ (DeMorgan's theorem)}$$

$$f = \overline{c}((\overline{a}\overline{b})d)+c(\overline{a}(\overline{b}\overline{d})) \text{ (DeMorgan's theorem)}$$

$$f = (\overline{c}((\overline{a}\overline{b})d)) \overline{(\overline{c}(\overline{a}\overline{b}\overline{d}))} \text{ (DeMorgan's theorem)}$$

Partitioning

- Partitioning breaks up decomposed network at points of multiple fanout into single output cones of logic.
- Since partitioning step does not change the topology of the network, it does not affect the hazard behavior of the network.

Matching and Covering

- Matching and covering examines each cone of logic and finds cells in the library to implement subnetworks within the cone.
- Can be implemented either using *structural pattern-matching* or *Boolean matching* techniques.
- In the structural techniques, each library element is also decomposed into base functions.
- Library elements are then compared against portions of the network to be mapped using pattern matching.
- Assuming that the decomposed logic and library gates are hazard-free, the resulting mapped logic is also hazard-free.

Gate Library

Matching and Covering Example

Final Mapped Circuit

	CD			
	00	01	11	10
0	1	1)	0	0
1	0	1	1	0

d

Dynamic 1 \rightarrow 0 transition $[\overline{a}b\overline{c}\overline{d}, \overline{a}\overline{b}\overline{c}d]$

d

Dynamic 1 \rightarrow 0 transition $[\overline{a}b\overline{c}\overline{d}, \overline{a}\overline{b}\overline{c}d]$ Multiplexor has a dynamic 1 \rightarrow 0 hazard.

Dynamic 1 \rightarrow 0 transition $[\overline{a}b\overline{c}\overline{d}, \overline{a}\overline{b}\overline{c}d]$ Multiplexor has a dynamic 1 \rightarrow 0 hazard.

If original implementation was $f = \overline{c} \overline{d} + bd$ then multiplexor would be okay.

Generalized C-Elements

Generalized C-Element Hazard Issues

- Static hazards cannot manifest on the output of a gC gate.
- Prolonged short-circuit current should be avoided.
- Decomposition of trigger signals which during a transition both enable and disable a P and N stack is not allowed.
- By avoiding short circuits, product terms intersecting a dynamic transition no longer must include the start subcube.
- The problems with conditionals and dynamic hazards are also not present in gC implementations.

Hazard Requirements

- The hazard-free cover requirements for the set function, f_{set}, in an extended burst-mode gC become:
 - 1. Each set cube of f_{set} must not include OFF-set minterms.
 - 2. For every dynamic $0 \rightarrow 1$ transition $[c_1, c_2]$ in f_{set} , the end cube, c_2 , must be covered by some product term.
 - 3. Any product of f_{Set} intersecting c_2 of a dynamic $0 \to 1$ transition $[c_1, c_2]$ must also contain the end subcube c_2' .
- Hazard-freedom requirements for freset are analogous to fset.

Generalized C-Element Example

abc de

Transition Cube	Type	Required Cube	Privileged Cube	Subcube
$[\overline{a}\overline{b}\overline{d},\overline{a}bd]$	$0 \to 1$	ābd	ā	āb cd (end)
$[ab\overline{c}d\overline{e},abcd\overline{e}]$	$1 \rightarrow 1$	abd e	none	none
$[a\overline{b}d, a\overline{b}\overline{d}]$	$1 \rightarrow 0$	$a\overline{b}d$	$a\overline{b}$	$a\overline{b}\overline{c}d$ (start)

Generalized C-Element Example

		abc							
		000	001	011	010	110	111	101	100
	00	0	0	0	0	0	0	0	0
de	01	0	0	0	0	0	0	0	0
	10	0	0	1	1	1	1	1	1
	11	0	0	1	1	0	0	1	1

Transition Cube	Type	Required Cube	Privileged Cube	Subcube
$[\overline{a}\overline{b}\overline{d},\overline{a}bd]$	$0 \to 1$	ābd	ā	āb cd (end)
$[ab\overline{c}d\overline{e},abcd\overline{e}]$	$1 \to 1$	abd e	none	none
$[a\overline{b}d, a\overline{b}\overline{d}]$	$1 \to 0$	$a\overline{b}d$	$a\overline{b}$	$a\overline{b}\overline{c}d$ (start)

Only need to consider the two dynamic transitions.

Generalized C-Element Example

Sequential Hazards

- Huffman circuits require that outputs and state variables stabilize before either new inputs or fed-back state variables arrive.
- A violation of this assumption can result in a sequential hazard.
- Presence of a sequential hazard is dependent on timing of the environment, circuit, and feedback delays.

Essential Hazard

	X		
	0	1	
1	①0	2,0	
2	3,1	20	
3	31	k,1	

Feedback Delay Requirement

To eliminate essential hazards, there is a feedback delay requirement:

$$D_f \geq d_{\max} - d_{\min}$$

where D_f is the feedback delay, d_{max} is the maximum delay in the combinational logic, and d_{min} is the minimum delay through the combinational logic.

Fundamental-Mode Constraint

- Sequential hazards can also result if the environment reacts too quickly.
- Fundamental-mode environmental constraint says inputs are not allowed to change until the circuit stabilizes.
- To satisfy this constraint, a conservative separation time needed between inputs can be expressed as follows:

$$d_i \geq 2d_{max} + D_f$$

where d_i is the separation time needed between input bursts.

 Separation needs a 2d_{max} term since the circuit must respond to the input change followed by the subsequent state change.

Setup and Hold Time Constraint

- XBM machines require a *setup time* and *hold time* for conditional signals.
- Conditional signals must stabilize a setup time before the compulsory signal transition which samples them.
- It must remain stable a hold time after the output and state changes complete.
- Outside this window of time, the conditional signals are free to change arbitrarily.

Summary

- Binate covering problems
- State minimization
- State assignment
- Hazard-free logic synthesis
- Extensions for MIC operation
- Multilevel logic synthesis
- Technology mapping
- Generalized C-element implementation
- Sequential hazards