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Chapter Overview

HDL’s allow specification of large systems.
Graphs allow pictorial representation of small examples, and they are
used by virtually every CAD algorithm.
The chapter discusses the following types of graphs:

State machines
Petri-nets
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Graph Basics

A graph G is composed of a finite nonempty set of vertices V and a
binary relation, R (R ⊆ V ×V ).
Undirected graphs:

R is an irreflexive symmetric relation.
Since R is symmetric, (u,v) ∈ R ⇒ (v ,u) ∈ R.
E is the set of symmetric pairs, or edges (denoted uv ).

Directed graphs, or digraphs:
R does not need to be either irreflexive or symmetric.
E is the set of directed edges or arcs (denoted (u,v)).
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A Simple Graph
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A Simple Directed Graph
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Additional Graph Definitions

|V | is called the order of G.
|E | is called the size of G.
V (G) and E(G) are the vertex and edge sets for G.
If e = (u,v) ∈ E(G), e joins u and v .
If e = (u,v) ∈ E(G), u and v are incident with e.
If (u,v) ∈ E(G), v is adjacent to u.
If (u,v) %∈ E(G), u and v are nonadjacent vertices.
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Connected Graphs

u-v path is an alternating sequence of vertices and edges beginning with
u and ending with v .
The length of a u-v path is the number of edges in the path.
If there exists a u-v path, then v is reachable from u.
A u-v path is simple if it does not repeat any vertex.
If for every pair of vertices u and v there exists a u-v path, the graph is
connected.
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A Unconnected Graph
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Directed Acyclic Graphs

In a digraph, a u-v path forms a cycle if u = v .
If the u-v path excluding u is simple, then the cycle is simple.
A cycle of length 1 is a self-loop.
A digraph with no self-loops is simple.
In an undirected graph, a u-v path is a cycle only if simple.
A graph which contains no cycles is acyclic.
An acyclic digraph is called a directed acyclic graph or DAG.
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A Cyclic Digraph
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More Graph Properties

A digraph G is strongly connected if for every two distinct vertices u and
v , there exists a u-v path and a v -u path.
A graph is bipartite if there exists a partition of V into two subsets V1 and
V2 such that every edge of G joins a vertex of V1 with V2.
A labeled graph is a triple 〈V ,R,L〉 in which L is a labeling function
associated either to the set of vertices or edges.
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A Strongly Connected Digraph
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A Simple Labeled Directed Graph
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A Synchronous FSM
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An Asynchronous FSM
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Finite State Machines

I is the input alphabet;
O is the output alphabet;
S is the finite, non-empty set of states;
S0 ⊆ S is the set of initial (reset) states;
δ : S× I → S is the next-state function;
λ : S× I → O is the output function for a Mealy machine (or λ : S→ O for
a Moore machine).
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Finite State Machine Diagrams

FSM’s are often represented using a labeled digraph.
The vertex set contains the states (i.e., V = S).
The edge set contains the set of state transitions (i.e., (u,v) ∈ E iff ∃i ∈ I
s.t. ((u, i),v) ∈ δ).
The labeling function is defined by next-state and output functions.

Each edge (u,v) is labeled with i/o where i ∈ I and o ∈ O and
((u, i),v) ∈ δ and ((u, i),o) ∈ λ.
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Passive/Active Shop

shop_PA_1:process
begin
guard(req_wine,’1’); - winery calls
assign(ack_wine,’1’,1,3); - receives wine
guard(req_wine,’0’); - req_wine reset
assign(req_patron,’1’,1,3); - call patron
guard(ack_patron,’1’); - wine purchased
assign(req_patron,’0’,1,3); - reset req_patron
guard(ack_patron,’0’); - ack_patron reset
assign(ack_wine,’0’,1,3); - reset ack_wine

end process;
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Passive/Active Shop FSM

start

s0

s1

10/10

s2

00/11

s3

01/10

00/00

req_wine / ack_patron
00 01 11 10

s0 s0!, 00 − − s1, 10
s1 s2, 11 − − s1!, 10
s2 s2!, 11 s3, 10 − −
s3 s0, 00 s3!, 10 − −

ack_wine / req_patron
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Burst-Mode State Machine

s0

s1

req_wine+/
ack_wine+

s2

req_wine-/
req_patron+

s3

ack_patron+/
req_patron-

ack_patron-/
ack_wine-

req_wine / ack_patron
00 01 11 10

s0 s0!, 00 − − s1, 10
s1 s2, 11 − − s1!, 10
s2 s2!, 11 s3, 10 − −
s3 s0, 00 s3!, 10 − −

ack_wine / req_patron
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Burst-Mode State Machines

V is a finite set of vertices (or states);
E ⊆ V ×V is the set of edges (or transitions);
I = {x1, . . . ,xm} is the set of inputs;
O = {z1, . . . ,zn} is the set of outputs;
v0 ∈ V is the start state;
in : V → {0,1}m is value of the m inputs at entry to state;
out : V → {0,1}n is value of the n outputs at entry to state.
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Input and Output Bursts

Input burst is defined by transi : E → 2I .
xi ∈ transi(e) iff ini(u) %= ini(v)

Output burst is defined by transo : E → 2O .
xi ∈ transo(e) iff outi(u) %= outi(v)
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Maximal Set Property

No input burst leaving a given state can be a subset of another leaving
the same state.
The behavior in such a state would be ambiguous.
∀(u,v),(u,w) ∈ E : transi(u,v) ⊆ transi(u,w) ⇒ v = w .
This restrication is called the maximal set property.
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Maximal Set Property
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BM State Diagrams

Not every BM state diagram represents a legal BM machine.
If mislabeled with transitions that are not possible, it is impossible to
define the in and out functions.
There must be a strict alternation of rising and falling transitions on every
input and output signal, across all paths.
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BM State Diagrams
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Extended Burst-Mode

BM machines require prescribed order: inputs change, outputs change,
and state signals change.
In extended burst-mode (XBM) state machines, this limitation is loosened
a bit by the introduction of directed don’t cares.
These allow one to specify that an input change may or may not happen
in a given input burst.
BM machines also are unable to express conditional behavior.
To support this type of behavior, XBM machines allow conditional input
bursts.
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Directed Don’t Cares

Shop_PA_2:process
begin
guard(req_wine,’1’); - winery calls
assign(ack_wine,’1’,1,3); - receives wine
guard(req_wine,’0’); - req_wine reset
assign(ack_wine = ’0’,1,3,req_patron,’1’,1,3);
guard(ack_patron,’1’); - wine purchased
assign(req_patron,’0’,1,3); - reset req_patron
guard(ack_patron,’0’); - ack_patron reset

end process;
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Directed Don’t Cares
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Directed Don’t Cares

req_wine / ack_patron
00 01 11 10

s0 s0!, 00 − − s1, 10
s1 s2, 01 − − s1!, 10
s2 s2!, 01 s3, 00 s3, 00 s2!, 01
s3 s3!, 00 s3!, 00 s3!, 00 s1, 10

ack_wine / req_patron
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Directed Don’t Cares

A transition is terminating when it is of the form t+ or t−.
A directed don’t care transition is of the form t∗.
A compulsory transition is a terminating transition which is not preceded
by a directed don’t care transition.
Each input burst must have at least one compulsory transition.
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Directed Don’t Cares
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Modified Maximal Set Property
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Conditional Input Bursts

Shop_PA_2:process
begin
guard(req_wine,’1’);
shelf <= bottle after delay(2,4);
wait for delay(5,10);
assign(ack_wine,’1’,1,3);
guard(req_wine,’0’);
if (shelf = ’0’) then
assign(ack_wine,’0’,1,3,req_patron1,’1’,1,3);
guard(ack_patron1,’1’);
assign(req_patron1,’0’,1,3);
guard(ack_patron1,’0’);
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Conditional Input Bursts

elsif (shelf = ’1’) then
assign(ack_wine,’0’,1,3,req_patron2,’1’,1,3);
guard(ack_patron2,’1’);
assign(req_patron2,’0’,1,3);
guard(ack_patron2,’0’);

end if;
end process;
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Conditional Input Bursts

A conditional input burst includes a regular input burst and a conditional
clause.
A clause of the form < s− > indicates that the transition is only taken if s
is low.
A clause of the form < s+ > indicates that the transition is only taken if s
is high.
The signal in the conditional clause must be stable before every
compulsory transition in the input burst.
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Conditional Input Bursts
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Conditional Input Bursts

req_wine / ack_patron1 / ack_patron2 / shelf
0000 0001 0011 0010 0110 0111 0101 0100

s0 s0!, 000 s0!, 000 − − − − − −
s1 s2, 010 s4, 001 − − − − − −
s2 s2!, 010 s2!, 010 − − − − s3, 000 s3, 000
s3 s3!, 010 s3!, 010 − − − − s3!, 000 s3!, 000
s4 s4!, 001 s4!, 001 s5, 000 s5, 000 − − − −
s5 s5!, 000 s5!, 000 s5!, 000 s5!, 000 − − − −

ack_wine / req_patron1 / req_patron2
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Conditional Input Bursts

req_wine / ack_patron1 / ack_patron2 / shelf
1100 1101 1111 1110 1010 1011 1001 1000

s0 − − − − − − s1, 100 s1, 100
s1 − − − − − − s1!, 100 s1!, 100
s2 s3, 000 s3,000 − − − − s2!, 010 s2!, 010
s3 s3!, 000 s3!, 000 − − − − s1, 100 s1, 100
s4 − − − − s5, 000 s5,000 s4!, 001 s4!, 001
s5 − − − − s5!, 000 s5!, 000 s1, 100 s1, 100

ack_wine / req_patron1 / req_patron2
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Modified Maximal Set Property
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Burst-Mode State Machines

V is a finite set of vertices (or states).
E ⊆ V ×V is the set of edges (or transitions).
I = {x1, . . . ,xm} is the set of inputs.
O = {z1, . . . ,zn} is the set of outputs.
C = {c1, . . . ,cl} is the set of conditional signals.
v0 ∈ V is the start state.
in : V → {0,1,∗}m defines m inputs upon entry to each state.
out : V → {0,1}n defines n outputs upon entry to each state.
cond : E → {0,1,∗}l defines needed conditional inputs.
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No XBM Machine

Shop_PA_lazy_active:process
begin
guard(req_wine,’1’); - winery calls
assign(ack_wine,’1’,1,3); - receives wine
guard(ack_patron,’0’); - ack_patron reset
assign(req_patron,’1’,1,3); - call patron
guard(req_wine,’0’); - req_wine reset
assign(ack_wine,’0’,1,3); - reset ack_wine
guard(ack_patron,’1’); - wine purchased
assign(req_patron,’0’,1,3); - reset req_patron

end process;
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Illegal XBM Machine
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Petri-Nets

A Petri-net is a bipartite digraph.
The vertex set is partitioned into two disjoint subsets:

P is the set of places.
T is the set of transitions.

The set of arcs, F , is composed of pairs where one element is from P and
the other is from T (i.e., F ⊆ (P×T )∪ (T ×P)).
A Petri-net is 〈P,T ,F ,M0〉 where M0 is the initial marking.
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Petri-net for Shop with Infinite Shelf Space
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Presets and Postsets

The preset of a transition t ∈ T (denoted •t) is the set of places
connected to t (i.e., •t = {p ∈ P | (p, t) ∈ F}).
The postset of a transition t ∈ T (denoted t•) is the set of places t is
connected to (i.e., t• = {p ∈ P | (t,p) ∈ F}).
The preset of a place p ∈ P (denoted •p) is the set of transitions
connected to p (i.e., •p = {t ∈ T | (t,p) ∈ F}).
The postset of a place p ∈ P (denoted p•) is the set of transitions p is
connected to (i.e., p• = {t ∈ T | (p, t) ∈ F}).
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Markings

A marking, M, for a Petri net is a function that maps places to natural
numbers (i.e., M : P → N).
Markings can be added or subtracted using vector arithmetic.
They can also be compared:

M ≥M ′ iff ∀p ∈ P . M(p) ≥M ′(p)

For a set of places, A⊆ P, CA denotes the characteristic marking of A:

CA(p) = if p ∈ A then 1 else 0.
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Transition Firings

A transition t is enabled under the marking M if M ≥ C•t .
In other words, M(p) ≥ 1 for each p ∈ •t .
The firing transforms the marking as follows (denoted M[t〉M ′):

M ′ = M−C•t +Ct•

When a transition t fires, a token is removed from each place in its preset,
and a token is added to each place in its postset.
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Reachable Markings

Firing of a transition transforms the marking of the Petri net into a new
marking.
A sequence of transition firings (σ= t1, t2, . . . , tn) produces a sequence of
markings (M0, M1, . . . , Mn).
If such a firing sequence exists, we say that the marking Mn is reachable
from M0 by σ (denoted M0[σ〉Mn).
We denote the set of all markings reachable from a given marking by [M〉.
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Example Firing Sequence
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Example Firing Sequence
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Example Firing Sequence
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Example Firing Sequence
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Example Firing Sequence
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Example Firing Sequence
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Example Firing Sequence
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k -Bounded Petri-Nets

A Petri net is k-bounded if there does not exist a reachable marking which
has a place with more than k tokens.
A 1-bounded Petri net is also called a safe Petri net (i.e.,
∀p ∈ P,∀M ∈ [M0〉.M(p) ≤ 1).
When working with safe Petri nets, a marking can be denoted as simply a
subset of places.
If M(p) = 1, p ∈M, and if M(p) = 0, we p %∈M.
M(p) cannot take on any other values in a safe Petri net.
Since a marking can only take on the values 1 and 0, the place can be
annotated with a token when 1 and without when 0.
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k -Bounded Petri-net
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Liveness

A Petri net is live if from every reachable marking, there exists a
sequence of transitions such that any transition can fire.

∀M ∈ [M0〉,∀t ∈ T ,∃M ′ ∈ [M〉.M ′ ≥ C•t

To determine if a Petri net is live, it is typically necessary to find all the
reachable markings.
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Liveness

produce receive send consume
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Liveness Categories

Different liveness categories can be determined more easily.
In particular, a transition t for a given Petri net is said to be:

1 dead (L0-live) if there does not exist a firing sequence in which t can be
fired.

2 L1-live (potentially firable) if there exists at least one firing sequence in
which t can be fired.

3 L2-live if t can be fired at least k times.
4 L3-live if t can be fired infinitely often in some firing sequence.
5 L4-live or live if t is L1-live in every marking reachable from the initial

marking.

A Petri net is Lk-live if every transition in the net is Lk-live.
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Liveness Categories
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Reachability Graph

When a Petri net is bounded, the number of reachable markings is finite,
and a reachability graph (RG) can be found.
In an RG, the vertices, Φ, are the markings and the edges, Γ, are the
possible transition firings between two markings.
For safe Petri nets, vertices in RG are labeled with the subset of places
included in the marking.
The edges are labeled with the transition that fires to move the Petri net
from one marking to the next.
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Algorithm to Find Reachability Graph

find_RG(Petri net 〈P,T ,F ,M0〉)
M =M0; Te = {t ∈ T |M ≥ C•t}; Φ= {M}; Γ= /0;
done = false;
while (¬ done)
t = select(Te);
if (Te−{t} %= /0) then push(M,Te−{t});
M ′ =M−C•t +Ct•;
if (M ′ %∈Φ) then
Φ=Φ∪{M ′}; Γ= Γ∪{(M,M ′)};
M =M ′; Te = {t ∈ T |M ≥ C•t};

else
Γ= Γ∪{(M,M ′)};
if (stack is not empty) then (M,Te) = pop();
else done = true;

return(Φ,Γ);
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Safe Example

p1 p3 p5

produce receive send consume

p2 p4 p6
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Example Reachability Graph
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Concurrency, Conflict, and Confusion

Two transitions t1 and t2 are concurrent when there exists markings
where both are enabled and can fire in either order.
Two transitions, t1 and t2, are in conflict when the firing of one disables
the firing of the other.
When concurrency and conflict are mixed, we get confusion.
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Example of Concurrency, Conflict, and Confusion
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State Machines and Marked Graphs

A Petri-net is a state machine if and only if every transition has exactly
one place in its preset and one place in its postset.

∀t ∈ T : | • t| = |t • | = 1

State machines do not allow concurrency, but do allow conflict.
A Petri-net is a marked graph if and only if every place has exactly one
transition in its preset and one in its postset.

∀p ∈ P : | •p| = |p • | = 1

Marked graphs do not allow conflict, but do allow concurrency.
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Example Nets
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Free Choice Nets

A Petri-net is free choice if and only if every pair of transitions that share a
common place in their preset have only a single place in their preset.

∀t, t ′ ∈ T , t %= t ′ : •t ∩•t ′ %= /0⇒ | • t| = | • t ′| = 1

∀p,p′ ∈ P,p %= p′ : p •∩p′• %= /0⇒ |p • | = |p′ • | = 1

∀p ∈ P,∀t ∈ T : (p, t) ∈ F ⇒ p• = {t}∨•t = {p}

Free choice nets allow concurrency and conflict, but do allow confusion.
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Example Nets
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Extended Free Choice Nets

A Petri net is an extended free choice net if and only if every pair of
places that share common transitions in their postset have exactly the
same transitions in their postset.

∀p,p′ ∈ P . p •∩ p′• %= /0⇒ p• = p′•

Extended free-choice nets also allow concurrency and conflict, but they
do not allow confusion.
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Example Nets
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Asymmetric Choice Nets

A Petri net is an asymmetric choice net if and only if for every pair of
places that share common transitions in their postset, one has a subset of
the transitions of the other.

∀p,p′ ∈ P . p •∩ p′• %= /0⇒ p•⊆ p′ •∨ p′•⊆ p•

Asymmetric choice nets allow asymmetric confusion but not symmetric
confusion.
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Example Nets
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Checking Safety and Liveness

It is possible to check safety and liveness for certain restricted classes of
Petri nets using the theorems given below.
Theorem 4.1 A state machine is live and safe iff it is strongly connected
and M0 has exactly one token.
Theorem 4.2 (Commoner, 1971) A marked graph is live and safe iff it is
strongly connected and M0 places exactly one token on each simple
cycle.
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Example Nets
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Siphons and Traps

A siphon is a nonempty subset of places, S, in which every transition
having a postset place in S also has a preset place in S (i.e., •S ⊆ S•).
If in some marking no place in S has a token, then in all future markings,
no place in S will ever have a token.
A trap is a nonempty subset of places, Q, in which every transition having
a preset place in Q also has a postset place in Q (i.e., Q•⊆ •Q).
If in some marking some place in Q has a token, then in all future
markings some place in Q will have a token.

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 73 / 105



Example Siphon and Trap
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Checking Liveness

Theorem 4.3 (Hack, 1972) A free-choice net, N, is live iff every siphon in N
contains a marked trap.
Theorem 4.4 (Commoner, 1972) An asymmetric choice net N is live if (but not
only if) every siphon in N contains a marked trap.
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State Machine Components

A state machine component of a net, N, is a subnet in which each
transition has at most one place in its preset and one place in its postset
and is generated by these places.
The net generated by a set of places includes these places, all transitions
in their preset and postset, and all connecting arcs.
A net N is said to be covered by a set of SM-components when the set of
components includes all places, transitions, and arcs from N.
Theorem 4.5 (Hack, 1972) A live free-choice net, N, is safe iff N is
covered by strongly connected SM-components each of which has
exactly one token in M0.
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Marked Graph Components

A marked graph component of a net, N, is a subnet in which each place
has at most one transition in its preset and one transition in its postset
and is generated by these transitions.
The net generated by a set of transitions includes these transitions, all
places in their preset and postset, and all connecting arcs.
A net N is said to be covered by a set of MG-components when the set of
components includes all places, transitions, and arcs from N.
Theorem 4.6 If N is a live and safe free-choice net then N is covered by
strongly connected MG-components.
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Signal Transition Graphs (STG)

To use a Petri net to model asynchronous circuits, must relate transitions
to events on signal wires.
Several variants of Petri nets accomplish this: M-nets, I-nets, and change
diagrams.
A signal transition graph (STG) is a labeled safe Petri net which is
modeled by 〈P,T ,F ,M0,N,s0,λT 〉, where:

N = I∪O is the set of signals where I is the set of input signals and O is
the set of output signals.
s0 is the initial value for each signal in the initial state.
λT : T → N×{+,−} is the transition labeling function.

Each transition is labeled with either a rising transition, s+, or falling
transition, s−.
A STG imposes explicit restrictions on the environment.

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 78 / 105



Example Signal Transition Graph (STG)
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STG Restrictions

STGs are often restricted to a synthesizable subset.
Synthesis methods often restrict the STG to be live and safe.
Some synthesis methods require STGs to be persistent.
A STG is persistent if for all a∗→ b∗, there exist other arcs that ensure
that b∗ fires before the opposite transition of a∗.
Other methods require single-cycle transitions.
A STG has single-cycle transitions if each signal name appears in exactly
one rising and one falling transition.
None of these restrictions is actually a necessary requirement for a circuit
implementation to exist.
These restrictions can simplify the synthesis algorithms.
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Liveness
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Safety
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Persistency
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Single-Cycle Transitions

y+ z+ x+

x- w+ x-

y- z-

w-
Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 84 / 105



State Graphs (SG)

To design a circuit from an STG, must find its state graph.
A SG is modeled by the tuple 〈 S, δ, λS 〉.

S is the set of states.
δ ⊆ S × T × S is the set of state transitions.
λS : S→ (N → {0,1}) is the state labeling function.

Each state s is labeled with a vector 〈s(0),s(1), . . . ,s(n)〉, where s(i) is
either 0 or 1, indicating value returned by λS .
We use s(i) interchangeably with λS(s)(i).
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Implied State

If in si , there exists a transition on signal ui to sj [i.e.,
∃(si , t,sj) ∈ δ . λT (t) = ui +∨ λT (t) = ui−], then ui is excited.
Otherwise, the signal ui is in equilibrium.
The value each signal is tending to is called its implied value.
If the signal is excited, the implied value of ui is s(i).
If the signal is in equilibrium, the implied value of ui is s(i).
The implied state, s′ is labeled with a binary vector 〈s′(0), s′(1), . . . ,
s′(n)〉 of the implied values.
The function X : S→ 2N returns the set of excited signals in a given state
[i.e., X(s) = {ui ∈ S | s(i) %= s′(i)}].
When ui ∈ X(s) and s(i) = 0, s(i) in SG is marked with “R”.
When ui ∈ X(s) and s(i) = 1, s(i) in SG is marked with “F”.
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Algorithm to Find SG

find_SG(〈P,T ,F ,M0,N,s0,λT 〉)
M =M0; s = s0; S = {M}; λS(M) = s;
Te = {t ∈ T |M ⊆ •t}; done = false;
while (¬ done)
t = select(Te);
if (Te−{t} %= /0) then push(M,s,Te−{t});
if ((M−•t)∩ t• %= /0) then return(“Not safe.”);
M ′ = (M−•t)∪ t•; s′ = s;
if (λT (t) = u+) then s′(u) = 1;
else if (λT (t) = u−) then s′(u) = 0;
if (M ′ %∈ S) then
S = S∪{M ′}; λS(M ′) = s′ δ= δ∪{(M, t,M ′)};
M =M ′; s = s′; Te = {t ∈ T |M ⊆ •t};

else
if (λS(M ′) %= s′) then return(“Inconsistent.”);
if (stack is not empty) then (M,s,Te) = pop();
else done = true;

return(〈S,δ,λS〉);
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Example Signal Transition Graph (STG)
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SG for C-Element
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Consistent State Assignment

A well-formed SG, must have a consistent state assignment.
A SG has a consistent state assignment if for each state transition
(si , t,sj) ∈ δ exactly one signal changes value, and its value is consistent
with the transition.

∀(si , t,sj) ∈ δ.∀u ∈ N . (λT (t) %= u ∗∧ si(u) = sj(u))
∨ (λT (t) = u+∧ si(u) = 0∧ sj(u) = 1)
∨ (λT (t) = u−∧ si(u) = 1∧ sj(u) = 0)

where “∗” represents either “+” or “−”.
A STG produces a SG with a consistent state assignment if in any firing
sequence, transitions of a signal strictly alternate between +’s and −’s.
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Consistent State Assignment
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Unique State Code

A SG has a unique state assignment (USC) if no two different states (i.e.,
markings) have identical values for all signals [i.e.,
∀si ,sj ∈ S,si %= sj . λ(si) %= λ(sj)].
Some synthesis methods are restricted to STGs that produce SGs with
USC.
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Unique State Code
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Reshuffled Passive/Lazy-Active Wine Shop

Shop_PA_lazy_active:process
begin
guard(req_wine,’1’); - winery calls
assign(ack_wine,’1’,1,3); - receives wine
guard(ack_patron,’0’); - ack_patron reset
assign(req_patron,’1’,1,3); - call patron
guard(req_wine,’0’); - req_wine reset
assign(ack_wine,’0’,1,3); - reset ack_wine
guard(ack_patron,’1’); - wine purchased
assign(req_patron,’0’,1,3); - reset req_patron

end process;
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STG for Reshuffled Passive/Lazy-Active Wine Shop
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Wine Shop with Two Patrons

Shop_PA_2:process
begin
guard(req_wine,’1’);
shelf <= bottle after delay(2,4);
wait for delay(5,10);
assign(ack_wine,’1’,1,3);
guard(req_wine,’0’);
if (shelf = ’0’) then
assign(ack_wine,’0’,1,3,req_patron1,’1’,1,3);
guard(ack_patron1,’1’);
assign(req_patron1,’0’,1,3);
guard(ack_patron1,’0’);
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Wine Shop with Two Patrons

elsif (shelf = ’1’) then
assign(ack_wine,’0’,1,3,req_patron2,’1’,1,3);
guard(ack_patron2,’1’);
assign(req_patron2,’0’,1,3);
guard(ack_patron2,’0’);

end if;
end process;
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STG for Wine Shop with Two Patrons
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Labeled Petri nets

AFSMs cannot model arbitrary concurrency.
Petri-nets have difficulty to express signal levels.
Labeled Petri nets are a hybrid graphical representation method which
are both capable of modelling arbitrary concurrency and signal levels.
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Labeled Petri Nets (LPN)

A LPN is a tuple 〈P,T ,B,F ,L,M0,S0〉 where:
P is a finite set of places;

T is a finite set of transitions;

B is a finite set of Boolean variables;

F ⊆ (P×T )∪ (T ×P) is the flow relation;

L is a tuple of labels;

M0 ⊆ P is the set of initially marked places; and

S0 is the set of initial Boolean variable values.
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Labels

Each transition t ∈ T has the following labels:
En : T → P - the enabling condition;

D : T → Q× (Q∪{∞}) - the delay asssignment; and

BA : T ×B→ P - Boolean variable assignments.

The language for the P is defined as follows:

φ ::= true | false | bi | ¬φ | φ∧φ | φ∨φ
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Semantics

A transition t is enabled to fire when its preset (•t) is marked and its
enabling condition (En(t)) evaluates to true in the current state.
Once a transition is enabled it fires sometime between the lower and
upper bound associated with its delay assignment (D(t)).
When a transition fires, the marking is updated and the Boolean
assignments associated with the transition (BA(t,v)) are executed.
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LPN for a C-Element
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LPN for Wine Shop with Two Patrons
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Summary

Finite state machines (AFSMs, BM, and XBM).
Petri-nets, STGs, and LPNs.
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