
Asynchronous Circuit Design

Chris J. Myers

Lecture 4: Graphical Representations
Chapter 4

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 1 / 105

Chapter Overview

HDL’s allow specification of large systems.
Graphs allow pictorial representation of small examples, and they are
used by virtually every CAD algorithm.
The chapter discusses the following types of graphs:

State machines
Petri-nets

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 2 / 105

Graph Basics

A graph G is composed of a finite nonempty set of vertices V and a
binary relation, R (R ⊆ V ×V).
Undirected graphs:

R is an irreflexive symmetric relation.
Since R is symmetric, (u,v) ∈ R ⇒ (v ,u) ∈ R.
E is the set of symmetric pairs, or edges (denoted uv).

Directed graphs, or digraphs:
R does not need to be either irreflexive or symmetric.
E is the set of directed edges or arcs (denoted (u,v)).

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 3 / 105

A Simple Graph

v1

v2 v3

v4

v5

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 4 / 105

A Simple Directed Graph

v1

v2 v3

v4

v5

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 5 / 105

Additional Graph Definitions

|V | is called the order of G.
|E | is called the size of G.
V (G) and E(G) are the vertex and edge sets for G.
If e = (u,v) ∈ E(G), e joins u and v .
If e = (u,v) ∈ E(G), u and v are incident with e.
If (u,v) ∈ E(G), v is adjacent to u.
If (u,v) %∈ E(G), u and v are nonadjacent vertices.

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 6 / 105

Connected Graphs

u-v path is an alternating sequence of vertices and edges beginning with
u and ending with v .
The length of a u-v path is the number of edges in the path.
If there exists a u-v path, then v is reachable from u.
A u-v path is simple if it does not repeat any vertex.
If for every pair of vertices u and v there exists a u-v path, the graph is
connected.

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 7 / 105

A Unconnected Graph

v1

v2 v3

v4

v5

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 8 / 105

Directed Acyclic Graphs

In a digraph, a u-v path forms a cycle if u = v .
If the u-v path excluding u is simple, then the cycle is simple.
A cycle of length 1 is a self-loop.
A digraph with no self-loops is simple.
In an undirected graph, a u-v path is a cycle only if simple.
A graph which contains no cycles is acyclic.
An acyclic digraph is called a directed acyclic graph or DAG.

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 9 / 105

A Cyclic Digraph

v1

v2 v3

v4

v5

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 10 / 105

More Graph Properties

A digraph G is strongly connected if for every two distinct vertices u and
v , there exists a u-v path and a v -u path.
A graph is bipartite if there exists a partition of V into two subsets V1 and
V2 such that every edge of G joins a vertex of V1 with V2.
A labeled graph is a triple 〈V ,R,L〉 in which L is a labeling function
associated either to the set of vertices or edges.

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 11 / 105

A Strongly Connected Digraph

v1

v2 v3

v4

v5

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 12 / 105

A Simple Labeled Directed Graph

v1

v2

a

v3

b

v4

c d

v5

e

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 13 / 105

A Synchronous FSM

INPUTS

OUTPUTS

STATE

CLOCK
Re
gi
ste
r

Logic
Comb.

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 14 / 105

An Asynchronous FSM

INPUTS

OUTPUTS

STATE

Logic
Comb.

D
el
ay

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 15 / 105

Finite State Machines

I is the input alphabet;
O is the output alphabet;
S is the finite, non-empty set of states;
S0 ⊆ S is the set of initial (reset) states;
δ : S× I → S is the next-state function;
λ : S× I → O is the output function for a Mealy machine (or λ : S→ O for
a Moore machine).

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 16 / 105

Finite State Machine Diagrams

FSM’s are often represented using a labeled digraph.
The vertex set contains the states (i.e., V = S).
The edge set contains the set of state transitions (i.e., (u,v) ∈ E iff ∃i ∈ I
s.t. ((u, i),v) ∈ δ).
The labeling function is defined by next-state and output functions.

Each edge (u,v) is labeled with i/o where i ∈ I and o ∈ O and
((u, i),v) ∈ δ and ((u, i),o) ∈ λ.

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 17 / 105

Passive/Active Shop

shop_PA_1:process
begin
guard(req_wine,’1’); - winery calls
assign(ack_wine,’1’,1,3); - receives wine
guard(req_wine,’0’); - req_wine reset
assign(req_patron,’1’,1,3); - call patron
guard(ack_patron,’1’); - wine purchased
assign(req_patron,’0’,1,3); - reset req_patron
guard(ack_patron,’0’); - ack_patron reset
assign(ack_wine,’0’,1,3); - reset ack_wine

end process;

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 18 / 105

Passive/Active Shop FSM

start

s0

s1

10/10

s2

00/11

s3

01/10

00/00

req_wine / ack_patron
00 01 11 10

s0 s0!, 00 − − s1, 10
s1 s2, 11 − − s1!, 10
s2 s2!, 11 s3, 10 − −
s3 s0, 00 s3!, 10 − −

ack_wine / req_patron

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 19 / 105

Burst-Mode State Machine

s0

s1

req_wine+/
ack_wine+

s2

req_wine-/
req_patron+

s3

ack_patron+/
req_patron-

ack_patron-/
ack_wine-

req_wine / ack_patron
00 01 11 10

s0 s0!, 00 − − s1, 10
s1 s2, 11 − − s1!, 10
s2 s2!, 11 s3, 10 − −
s3 s0, 00 s3!, 10 − −

ack_wine / req_patron

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 20 / 105

Burst-Mode State Machines

V is a finite set of vertices (or states);
E ⊆ V ×V is the set of edges (or transitions);
I = {x1, . . . ,xm} is the set of inputs;
O = {z1, . . . ,zn} is the set of outputs;
v0 ∈ V is the start state;
in : V → {0,1}m is value of the m inputs at entry to state;
out : V → {0,1}n is value of the n outputs at entry to state.

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 21 / 105

Input and Output Bursts

Input burst is defined by transi : E → 2I .
xi ∈ transi(e) iff ini(u) %= ini(v)

Output burst is defined by transo : E → 2O .
xi ∈ transo(e) iff outi(u) %= outi(v)

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 22 / 105

Maximal Set Property

No input burst leaving a given state can be a subset of another leaving
the same state.
The behavior in such a state would be ambiguous.
∀(u,v),(u,w) ∈ E : transi(u,v) ⊆ transi(u,w) ⇒ v = w .
This restrication is called the maximal set property.

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 23 / 105

Maximal Set Property

s0

s1

a+/
x+

s2

a+,b+/
y+

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 24 / 105

BM State Diagrams

Not every BM state diagram represents a legal BM machine.
If mislabeled with transitions that are not possible, it is impossible to
define the in and out functions.
There must be a strict alternation of rising and falling transitions on every
input and output signal, across all paths.

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 25 / 105

BM State Diagrams

s0

s1

a+/
x+

s2

b-/
y-

b+/
y+

a-/
x-

s0

s1

a+/
x+

s2

b+/
y+

s3

b-/
y-

a-/
x-

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 26 / 105

Extended Burst-Mode

BM machines require prescribed order: inputs change, outputs change,
and state signals change.
In extended burst-mode (XBM) state machines, this limitation is loosened
a bit by the introduction of directed don’t cares.
These allow one to specify that an input change may or may not happen
in a given input burst.
BM machines also are unable to express conditional behavior.
To support this type of behavior, XBM machines allow conditional input
bursts.

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 27 / 105

Directed Don’t Cares

Shop_PA_2:process
begin
guard(req_wine,’1’); - winery calls
assign(ack_wine,’1’,1,3); - receives wine
guard(req_wine,’0’); - req_wine reset
assign(ack_wine = ’0’,1,3,req_patron,’1’,1,3);
guard(ack_patron,’1’); - wine purchased
assign(req_patron,’0’,1,3); - reset req_patron
guard(ack_patron,’0’); - ack_patron reset

end process;

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 28 / 105

Directed Don’t Cares

s0

s1

req_wine+/
ack_wine+

s2

req_wine-/
ack_wine-,req_patron+

s3

req_wine*,ack_patron+/
req_patron-

req_wine+,ack_patron-/
ack_wine+

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 29 / 105

Directed Don’t Cares

req_wine / ack_patron
00 01 11 10

s0 s0!, 00 − − s1, 10
s1 s2, 01 − − s1!, 10
s2 s2!, 01 s3, 00 s3, 00 s2!, 01
s3 s3!, 00 s3!, 00 s3!, 00 s1, 10

ack_wine / req_patron

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 30 / 105

Directed Don’t Cares

A transition is terminating when it is of the form t+ or t−.
A directed don’t care transition is of the form t∗.
A compulsory transition is a terminating transition which is not preceded
by a directed don’t care transition.
Each input burst must have at least one compulsory transition.

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 31 / 105

Directed Don’t Cares

s0

s1

req_wine+/
ack_wine+

s2

req_wine-/
ack_wine-,req_patron+

s3

req_wine*,ack_patron+/
req_patron-

req_wine*,ack_patron-/

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 32 / 105

Modified Maximal Set Property

s0

s1

a+,b*/
x+

s2

b+/
y+

s0

s1

a+,b*/
x+

s2

a+,b+/
y+

s0

s1

a+,b*/
x+

s2

a+/
y+

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 33 / 105

Conditional Input Bursts

Shop_PA_2:process
begin
guard(req_wine,’1’);
shelf <= bottle after delay(2,4);
wait for delay(5,10);
assign(ack_wine,’1’,1,3);
guard(req_wine,’0’);
if (shelf = ’0’) then
assign(ack_wine,’0’,1,3,req_patron1,’1’,1,3);
guard(ack_patron1,’1’);
assign(req_patron1,’0’,1,3);
guard(ack_patron1,’0’);

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 34 / 105

Conditional Input Bursts

elsif (shelf = ’1’) then
assign(ack_wine,’0’,1,3,req_patron2,’1’,1,3);
guard(ack_patron2,’1’);
assign(req_patron2,’0’,1,3);
guard(ack_patron2,’0’);

end if;
end process;

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 35 / 105

Conditional Input Bursts

A conditional input burst includes a regular input burst and a conditional
clause.
A clause of the form < s− > indicates that the transition is only taken if s
is low.
A clause of the form < s+ > indicates that the transition is only taken if s
is high.
The signal in the conditional clause must be stable before every
compulsory transition in the input burst.

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 36 / 105

Conditional Input Bursts

s0

s1

req_wine+/
ack_wine+

s2

req_wine-,<shelf->/
ack_wine-,req_patron1+

s4

req_wine-,<shelf+>/
ack_wine-,req_patron2+

s3

req_wine*,ack_patron1+/
req_patron1-

s5

req_wine*,ack_patron2+/
req_patron2-

req_wine+,ack_patron1-/
ack_wine+

req_wine+,ack_patron2-/
ack_wine+

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 37 / 105

Conditional Input Bursts

req_wine / ack_patron1 / ack_patron2 / shelf
0000 0001 0011 0010 0110 0111 0101 0100

s0 s0!, 000 s0!, 000 − − − − − −
s1 s2, 010 s4, 001 − − − − − −
s2 s2!, 010 s2!, 010 − − − − s3, 000 s3, 000
s3 s3!, 010 s3!, 010 − − − − s3!, 000 s3!, 000
s4 s4!, 001 s4!, 001 s5, 000 s5, 000 − − − −
s5 s5!, 000 s5!, 000 s5!, 000 s5!, 000 − − − −

ack_wine / req_patron1 / req_patron2

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 38 / 105

Conditional Input Bursts

req_wine / ack_patron1 / ack_patron2 / shelf
1100 1101 1111 1110 1010 1011 1001 1000

s0 − − − − − − s1, 100 s1, 100
s1 − − − − − − s1!, 100 s1!, 100
s2 s3, 000 s3,000 − − − − s2!, 010 s2!, 010
s3 s3!, 000 s3!, 000 − − − − s1, 100 s1, 100
s4 − − − − s5, 000 s5,000 s4!, 001 s4!, 001
s5 − − − − s5!, 000 s5!, 000 s1, 100 s1, 100

ack_wine / req_patron1 / req_patron2

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 39 / 105

Modified Maximal Set Property

s0

s1

<s+>a+,b+/
x+

s2

<s->a+/
y+

s0

s1

<s+>a+,b*/
x+

s2

<s->a*,b+/
y+

s0

s1

<s+>a+,b+/
x+

s2

<s->a+,b+/
y+

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 40 / 105

Burst-Mode State Machines

V is a finite set of vertices (or states).
E ⊆ V ×V is the set of edges (or transitions).
I = {x1, . . . ,xm} is the set of inputs.
O = {z1, . . . ,zn} is the set of outputs.
C = {c1, . . . ,cl} is the set of conditional signals.
v0 ∈ V is the start state.
in : V → {0,1,∗}m defines m inputs upon entry to each state.
out : V → {0,1}n defines n outputs upon entry to each state.
cond : E → {0,1,∗}l defines needed conditional inputs.

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 41 / 105

No XBM Machine

Shop_PA_lazy_active:process
begin
guard(req_wine,’1’); - winery calls
assign(ack_wine,’1’,1,3); - receives wine
guard(ack_patron,’0’); - ack_patron reset
assign(req_patron,’1’,1,3); - call patron
guard(req_wine,’0’); - req_wine reset
assign(ack_wine,’0’,1,3); - reset ack_wine
guard(ack_patron,’1’); - wine purchased
assign(req_patron,’0’,1,3); - reset req_patron

end process;

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 42 / 105

Illegal XBM Machine

s0

s1

req_wine+,ack_patron*/
ack_wine+

s2

req_wine*,ack_patron-/
req_patron+

s3

req_wine-,ack_patron*/
ack_wine-

req_wine*,ack_patron+/
req_patron-

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 43 / 105

Petri-Nets

A Petri-net is a bipartite digraph.
The vertex set is partitioned into two disjoint subsets:

P is the set of places.
T is the set of transitions.

The set of arcs, F , is composed of pairs where one element is from P and
the other is from T (i.e., F ⊆ (P×T)∪ (T ×P)).
A Petri-net is 〈P,T ,F ,M0〉 where M0 is the initial marking.

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 44 / 105

Petri-net for Shop with Infinite Shelf Space

produce

1

receive 2 send

2

consume

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 45 / 105

Presets and Postsets

The preset of a transition t ∈ T (denoted •t) is the set of places
connected to t (i.e., •t = {p ∈ P | (p, t) ∈ F}).
The postset of a transition t ∈ T (denoted t•) is the set of places t is
connected to (i.e., t• = {p ∈ P | (t,p) ∈ F}).
The preset of a place p ∈ P (denoted •p) is the set of transitions
connected to p (i.e., •p = {t ∈ T | (t,p) ∈ F}).
The postset of a place p ∈ P (denoted p•) is the set of transitions p is
connected to (i.e., p• = {t ∈ T | (p, t) ∈ F}).

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 46 / 105

Markings

A marking, M, for a Petri net is a function that maps places to natural
numbers (i.e., M : P → N).
Markings can be added or subtracted using vector arithmetic.
They can also be compared:

M ≥M ′ iff ∀p ∈ P . M(p) ≥M ′(p)

For a set of places, A⊆ P, CA denotes the characteristic marking of A:

CA(p) = if p ∈ A then 1 else 0.

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 47 / 105

Transition Firings

A transition t is enabled under the marking M if M ≥ C•t .
In other words, M(p) ≥ 1 for each p ∈ •t .
The firing transforms the marking as follows (denoted M[t〉M ′):

M ′ = M−C•t +Ct•

When a transition t fires, a token is removed from each place in its preset,
and a token is added to each place in its postset.

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 48 / 105

Reachable Markings

Firing of a transition transforms the marking of the Petri net into a new
marking.
A sequence of transition firings (σ= t1, t2, . . . , tn) produces a sequence of
markings (M0, M1, . . . , Mn).
If such a firing sequence exists, we say that the marking Mn is reachable
from M0 by σ (denoted M0[σ〉Mn).
We denote the set of all markings reachable from a given marking by [M〉.

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 49 / 105

Example Firing Sequence

produce

1

receive 2 send

2

consume

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 50 / 105

Example Firing Sequence

produce

1

receive 2 send

2

consume

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 50 / 105

Example Firing Sequence

produce

1

receive 3 send

2

consume

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 50 / 105

Example Firing Sequence

produce

1

receive 2 send

1

1

consume

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 50 / 105

Example Firing Sequence

produce

1

receive 1 send

2

consume

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 50 / 105

Example Firing Sequence

produce

1

receive 1 send

1

1

consume

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 50 / 105

Example Firing Sequence

produce

1

receive send

2

consume

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 50 / 105

k -Bounded Petri-Nets

A Petri net is k-bounded if there does not exist a reachable marking which
has a place with more than k tokens.
A 1-bounded Petri net is also called a safe Petri net (i.e.,
∀p ∈ P,∀M ∈ [M0〉.M(p) ≤ 1).
When working with safe Petri nets, a marking can be denoted as simply a
subset of places.
If M(p) = 1, p ∈M, and if M(p) = 0, we p %∈M.
M(p) cannot take on any other values in a safe Petri net.
Since a marking can only take on the values 1 and 0, the place can be
annotated with a token when 1 and without when 0.

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 51 / 105

k -Bounded Petri-net

produce

1

receive

2

send

2

consume

produce

1

receive

1

send

1

consume

produce receive send consume

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 52 / 105

Liveness

A Petri net is live if from every reachable marking, there exists a
sequence of transitions such that any transition can fire.

∀M ∈ [M0〉,∀t ∈ T ,∃M ′ ∈ [M〉.M ′ ≥ C•t

To determine if a Petri net is live, it is typically necessary to find all the
reachable markings.

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 53 / 105

Liveness

produce receive send consume

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 54 / 105

Liveness Categories

Different liveness categories can be determined more easily.
In particular, a transition t for a given Petri net is said to be:

1 dead (L0-live) if there does not exist a firing sequence in which t can be
fired.

2 L1-live (potentially firable) if there exists at least one firing sequence in
which t can be fired.

3 L2-live if t can be fired at least k times.
4 L3-live if t can be fired infinitely often in some firing sequence.
5 L4-live or live if t is L1-live in every marking reachable from the initial

marking.

A Petri net is Lk-live if every transition in the net is Lk-live.

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 55 / 105

Liveness Categories

produce 1 receivedeliver

consume

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 56 / 105

Reachability Graph

When a Petri net is bounded, the number of reachable markings is finite,
and a reachability graph (RG) can be found.
In an RG, the vertices, Φ, are the markings and the edges, Γ, are the
possible transition firings between two markings.
For safe Petri nets, vertices in RG are labeled with the subset of places
included in the marking.
The edges are labeled with the transition that fires to move the Petri net
from one marking to the next.

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 57 / 105

Algorithm to Find Reachability Graph

find_RG(Petri net 〈P,T ,F ,M0〉)
M =M0; Te = {t ∈ T |M ≥ C•t}; Φ= {M}; Γ= /0;
done = false;
while (¬ done)
t = select(Te);
if (Te−{t} %= /0) then push(M,Te−{t});
M ′ =M−C•t +Ct•;
if (M ′ %∈Φ) then
Φ=Φ∪{M ′}; Γ= Γ∪{(M,M ′)};
M =M ′; Te = {t ∈ T |M ≥ C•t};

else
Γ= Γ∪{(M,M ′)};
if (stack is not empty) then (M,Te) = pop();
else done = true;

return(Φ,Γ);

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 58 / 105

Safe Example

p1 p3 p5

produce receive send consume

p2 p4 p6

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 59 / 105

Example Reachability Graph

{p2,p4,p5}

{p1,p4,p5}

produce

{p2,p4,p6}

consume

{p2,p3,p5}

receive

{p1,p4,p6}

consume

{p2,p3,p6}

consume

{p1,p3,p5}

produce receive

send

{p1,p3,p6}

produce

produce

consume

send

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 60 / 105

Concurrency, Conflict, and Confusion

Two transitions t1 and t2 are concurrent when there exists markings
where both are enabled and can fire in either order.
Two transitions, t1 and t2, are in conflict when the firing of one disables
the firing of the other.
When concurrency and conflict are mixed, we get confusion.

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 61 / 105

Example of Concurrency, Conflict, and Confusion

t1

t2 t3

t1

t2 t3 t1 t2 t3 t1

t2

t3

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 62 / 105

State Machines and Marked Graphs

A Petri-net is a state machine if and only if every transition has exactly
one place in its preset and one place in its postset.

∀t ∈ T : | • t| = |t • | = 1

State machines do not allow concurrency, but do allow conflict.
A Petri-net is a marked graph if and only if every place has exactly one
transition in its preset and one in its postset.

∀p ∈ P : | •p| = |p • | = 1

Marked graphs do not allow conflict, but do allow concurrency.

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 63 / 105

Example Nets

produce receive send consume

produce
receive1

receive2

send1

send2

consume1

consume2

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 64 / 105

Free Choice Nets

A Petri-net is free choice if and only if every pair of transitions that share a
common place in their preset have only a single place in their preset.

∀t, t ′ ∈ T , t %= t ′ : •t ∩•t ′ %= /0⇒ | • t| = | • t ′| = 1

∀p,p′ ∈ P,p %= p′ : p •∩p′• %= /0⇒ |p • | = |p′ • | = 1

∀p ∈ P,∀t ∈ T : (p, t) ∈ F ⇒ p• = {t}∨•t = {p}

Free choice nets allow concurrency and conflict, but do allow confusion.

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 65 / 105

Example Nets

produce
receive1

receive2

send1

send2

consume1

consume2

produce

receive1

receive2

send1

send2

consume

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 66 / 105

Extended Free Choice Nets

A Petri net is an extended free choice net if and only if every pair of
places that share common transitions in their postset have exactly the
same transitions in their postset.

∀p,p′ ∈ P . p •∩ p′• %= /0⇒ p• = p′•

Extended free-choice nets also allow concurrency and conflict, but they
do not allow confusion.

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 67 / 105

Example Nets

produce

receive1

receive2

send1

send2

consume

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 68 / 105

Asymmetric Choice Nets

A Petri net is an asymmetric choice net if and only if for every pair of
places that share common transitions in their postset, one has a subset of
the transitions of the other.

∀p,p′ ∈ P . p •∩ p′• %= /0⇒ p•⊆ p′ •∨ p′•⊆ p•

Asymmetric choice nets allow asymmetric confusion but not symmetric
confusion.

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 69 / 105

Example Nets

produce

receive1

receive2

send1

send2

consume

produce

receive1

receive2

send1

send2

consume1

consume2

recall

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 70 / 105

Checking Safety and Liveness

It is possible to check safety and liveness for certain restricted classes of
Petri nets using the theorems given below.
Theorem 4.1 A state machine is live and safe iff it is strongly connected
and M0 has exactly one token.
Theorem 4.2 (Commoner, 1971) A marked graph is live and safe iff it is
strongly connected and M0 places exactly one token on each simple
cycle.

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 71 / 105

Example Nets

produce receive send consume

produce
receive1

receive2

send1

send2

consume1

consume2

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 72 / 105

Siphons and Traps

A siphon is a nonempty subset of places, S, in which every transition
having a postset place in S also has a preset place in S (i.e., •S ⊆ S•).
If in some marking no place in S has a token, then in all future markings,
no place in S will ever have a token.
A trap is a nonempty subset of places, Q, in which every transition having
a preset place in Q also has a postset place in Q (i.e., Q•⊆ •Q).
If in some marking some place in Q has a token, then in all future
markings some place in Q will have a token.

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 73 / 105

Example Siphon and Trap

t2

t1

S

t1

t2

Q

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 74 / 105

Checking Liveness

Theorem 4.3 (Hack, 1972) A free-choice net, N, is live iff every siphon in N
contains a marked trap.
Theorem 4.4 (Commoner, 1972) An asymmetric choice net N is live if (but not
only if) every siphon in N contains a marked trap.

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 75 / 105

State Machine Components

A state machine component of a net, N, is a subnet in which each
transition has at most one place in its preset and one place in its postset
and is generated by these places.
The net generated by a set of places includes these places, all transitions
in their preset and postset, and all connecting arcs.
A net N is said to be covered by a set of SM-components when the set of
components includes all places, transitions, and arcs from N.
Theorem 4.5 (Hack, 1972) A live free-choice net, N, is safe iff N is
covered by strongly connected SM-components each of which has
exactly one token in M0.

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 76 / 105

Marked Graph Components

A marked graph component of a net, N, is a subnet in which each place
has at most one transition in its preset and one transition in its postset
and is generated by these transitions.
The net generated by a set of transitions includes these transitions, all
places in their preset and postset, and all connecting arcs.
A net N is said to be covered by a set of MG-components when the set of
components includes all places, transitions, and arcs from N.
Theorem 4.6 If N is a live and safe free-choice net then N is covered by
strongly connected MG-components.

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 77 / 105

Signal Transition Graphs (STG)

To use a Petri net to model asynchronous circuits, must relate transitions
to events on signal wires.
Several variants of Petri nets accomplish this: M-nets, I-nets, and change
diagrams.
A signal transition graph (STG) is a labeled safe Petri net which is
modeled by 〈P,T ,F ,M0,N,s0,λT 〉, where:

N = I∪O is the set of signals where I is the set of input signals and O is
the set of output signals.
s0 is the initial value for each signal in the initial state.
λT : T → N×{+,−} is the transition labeling function.

Each transition is labeled with either a rising transition, s+, or falling
transition, s−.
A STG imposes explicit restrictions on the environment.

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 78 / 105

Example Signal Transition Graph (STG)

C

x

y

z

z+

x- y-x+ y+

z-

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 79 / 105

STG Restrictions

STGs are often restricted to a synthesizable subset.
Synthesis methods often restrict the STG to be live and safe.
Some synthesis methods require STGs to be persistent.
A STG is persistent if for all a∗→ b∗, there exist other arcs that ensure
that b∗ fires before the opposite transition of a∗.
Other methods require single-cycle transitions.
A STG has single-cycle transitions if each signal name appears in exactly
one rising and one falling transition.
None of these restrictions is actually a necessary requirement for a circuit
implementation to exist.
These restrictions can simplify the synthesis algorithms.

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 80 / 105

Liveness

reset

r+

x+

y+

y-

x-

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 81 / 105

Safety

x+

y+ s+

x- r-

y-

r+

s-

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 82 / 105

Persistency

x+

z+ y+

x-

z-

y-

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 83 / 105

Single-Cycle Transitions

y+ z+ x+

x- w+ x-

y- z-

w-
Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 84 / 105

State Graphs (SG)

To design a circuit from an STG, must find its state graph.
A SG is modeled by the tuple 〈 S, δ, λS 〉.

S is the set of states.
δ ⊆ S × T × S is the set of state transitions.
λS : S→ (N → {0,1}) is the state labeling function.

Each state s is labeled with a vector 〈s(0),s(1), . . . ,s(n)〉, where s(i) is
either 0 or 1, indicating value returned by λS .
We use s(i) interchangeably with λS(s)(i).

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 85 / 105

Implied State

If in si , there exists a transition on signal ui to sj [i.e.,
∃(si , t,sj) ∈ δ . λT (t) = ui +∨ λT (t) = ui−], then ui is excited.
Otherwise, the signal ui is in equilibrium.
The value each signal is tending to is called its implied value.
If the signal is excited, the implied value of ui is s(i).
If the signal is in equilibrium, the implied value of ui is s(i).
The implied state, s′ is labeled with a binary vector 〈s′(0), s′(1), . . . ,
s′(n)〉 of the implied values.
The function X : S→ 2N returns the set of excited signals in a given state
[i.e., X(s) = {ui ∈ S | s(i) %= s′(i)}].
When ui ∈ X(s) and s(i) = 0, s(i) in SG is marked with “R”.
When ui ∈ X(s) and s(i) = 1, s(i) in SG is marked with “F”.

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 86 / 105

Algorithm to Find SG

find_SG(〈P,T ,F ,M0,N,s0,λT 〉)
M =M0; s = s0; S = {M}; λS(M) = s;
Te = {t ∈ T |M ⊆ •t}; done = false;
while (¬ done)
t = select(Te);
if (Te−{t} %= /0) then push(M,s,Te−{t});
if ((M−•t)∩ t• %= /0) then return(“Not safe.”);
M ′ = (M−•t)∪ t•; s′ = s;
if (λT (t) = u+) then s′(u) = 1;
else if (λT (t) = u−) then s′(u) = 0;
if (M ′ %∈ S) then
S = S∪{M ′}; λS(M ′) = s′ δ= δ∪{(M, t,M ′)};
M =M ′; s = s′; Te = {t ∈ T |M ⊆ •t};

else
if (λS(M ′) %= s′) then return(“Inconsistent.”);
if (stack is not empty) then (M,s,Te) = pop();
else done = true;

return(〈S,δ,λS〉);

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 87 / 105

Example Signal Transition Graph (STG)

C

x

y

z

z+

x- y-x+ y+

z-

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 88 / 105

SG for C-Element

RR0

1R0

x+

R10

y+

11R

y+ x+

FF1

z+

0F1

x-

F01

y-

00F

y- x-

z-

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 89 / 105

Consistent State Assignment

A well-formed SG, must have a consistent state assignment.
A SG has a consistent state assignment if for each state transition
(si , t,sj) ∈ δ exactly one signal changes value, and its value is consistent
with the transition.

∀(si , t,sj) ∈ δ.∀u ∈ N . (λT (t) %= u ∗∧ si(u) = sj(u))
∨ (λT (t) = u+∧ si(u) = 0∧ sj(u) = 1)
∨ (λT (t) = u−∧ si(u) = 1∧ sj(u) = 0)

where “∗” represents either “+” or “−”.
A STG produces a SG with a consistent state assignment if in any firing
sequence, transitions of a signal strictly alternate between +’s and −’s.

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 90 / 105

Consistent State Assignment

x+

y+ z+

y-

z-
Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 91 / 105

Unique State Code

A SG has a unique state assignment (USC) if no two different states (i.e.,
markings) have identical values for all signals [i.e.,
∀si ,sj ∈ S,si %= sj . λ(si) %= λ(sj)].
Some synthesis methods are restricted to STGs that produce SGs with
USC.

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 92 / 105

Unique State Code

x-

z- y- y+ z+

x+

x+

w+

w-

x-

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 93 / 105

Reshuffled Passive/Lazy-Active Wine Shop

Shop_PA_lazy_active:process
begin
guard(req_wine,’1’); - winery calls
assign(ack_wine,’1’,1,3); - receives wine
guard(ack_patron,’0’); - ack_patron reset
assign(req_patron,’1’,1,3); - call patron
guard(req_wine,’0’); - req_wine reset
assign(ack_wine,’0’,1,3); - reset ack_wine
guard(ack_patron,’1’); - wine purchased
assign(req_patron,’0’,1,3); - reset req_patron

end process;

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 94 / 105

STG for Reshuffled Passive/Lazy-Active Wine Shop

req_patron-

ack_patron-

ack_wine+

ack_patron+

req_patron+ req_wine- req_wine+

ack_wine-

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 95 / 105

Wine Shop with Two Patrons

Shop_PA_2:process
begin
guard(req_wine,’1’);
shelf <= bottle after delay(2,4);
wait for delay(5,10);
assign(ack_wine,’1’,1,3);
guard(req_wine,’0’);
if (shelf = ’0’) then
assign(ack_wine,’0’,1,3,req_patron1,’1’,1,3);
guard(ack_patron1,’1’);
assign(req_patron1,’0’,1,3);
guard(ack_patron1,’0’);

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 96 / 105

Wine Shop with Two Patrons

elsif (shelf = ’1’) then
assign(ack_wine,’0’,1,3,req_patron2,’1’,1,3);
guard(ack_patron2,’1’);
assign(req_patron2,’0’,1,3);
guard(ack_patron2,’0’);

end if;
end process;

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 97 / 105

STG for Wine Shop with Two Patrons

shelf-

ack_wine+

ack_wine+

shelf+

ack_wine+

ack_wine+

req_wine+

req_wine-

req_wine-

skip

req_patron1+

shelf-

ack_wine- ack_patron1+

req_patron1-

req_patron2-

ack_patron1-

ack_patron2-

shelf+ack_patron2+

req_patron2+

skip

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 98 / 105

Labeled Petri nets

AFSMs cannot model arbitrary concurrency.
Petri-nets have difficulty to express signal levels.
Labeled Petri nets are a hybrid graphical representation method which
are both capable of modelling arbitrary concurrency and signal levels.

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 99 / 105

Labeled Petri Nets (LPN)

A LPN is a tuple 〈P,T ,B,F ,L,M0,S0〉 where:
P is a finite set of places;

T is a finite set of transitions;

B is a finite set of Boolean variables;

F ⊆ (P×T)∪ (T ×P) is the flow relation;

L is a tuple of labels;

M0 ⊆ P is the set of initially marked places; and

S0 is the set of initial Boolean variable values.

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 100 / 105

Labels

Each transition t ∈ T has the following labels:
En : T → P - the enabling condition;

D : T → Q× (Q∪{∞}) - the delay asssignment; and

BA : T ×B→ P - Boolean variable assignments.

The language for the P is defined as follows:

φ ::= true | false | bi | ¬φ | φ∧φ | φ∨φ

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 101 / 105

Semantics

A transition t is enabled to fire when its preset (•t) is marked and its
enabling condition (En(t)) evaluates to true in the current state.
Once a transition is enabled it fires sometime between the lower and
upper bound associated with its delay assignment (D(t)).
When a transition fires, the marking is updated and the Boolean
assignments associated with the transition (BA(t,v)) are executed.

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 102 / 105

LPN for a C-Element

t0
{~z}

<x:=true>

p1

t1
{z}

<x:=false>

p0

t2
{~z}

<y:=true>

p3

t3
{z}

<y:=false>

p2

t4
{x&y}
<z:=true>

p5

t5
{~x&~y}
<z:=false>

p4

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 103 / 105

LPN for Wine Shop with Two Patrons

req_patron1M1
[1,3]

<req_patron1:=false>

ip0

req_patron2M1
[1,3]

<req_patron2:=false>

ip1

req_patron1P1
[1,3]

<req_patron1:=true>

ip2

req_patron2P1
[1,3]

<req_patron2:=true>

ip3

d_0P1
{req_wine}
[0,0]

ip4

d_2P1
{~(req_wine)}

[0,0]

p_8

d_3P1
{ack_patron1}

[0,0]

ip5

d_4P1
{~(ack_patron1)}

[0,0]

d_5P1
{ack_patron2}

[0,0]

ip6

d_6P1
{~(ack_patron2)}

[0,0]

p_11

d_7P1
{~shelf}
[0,0]

ip7ip8

d_8P1
{shelf}
[0,0]

ip9 ip10

ack_wineM1
[1,3]

<ack_wine:=false>

ip11

ack_wineM2
[1,3]

<ack_wine:=false>

ip12

ack_wineP1
[6,13]

<ack_wine:=true>

ip13

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 104 / 105

Summary

Finite state machines (AFSMs, BM, and XBM).
Petri-nets, STGs, and LPNs.

Chris J. Myers (Lecture 4: Graphs) Asynchronous Circuit Design 105 / 105

