Asynchronous Circuit Design

Chris J. Myers

Lecture 3: Communication Protocols
Chapter 3

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Handshaking Level Representation

library ieee;

use ieee.std _logic_1164.all;

use work.nondeterminism.all;

use work.handshake.all;

entity shopPA_dualrail is

port (bottlel:in std_logic;

bottlel:in std_logic;
ack_wine:buffer std_logic:='0';
shelfl:buffer std_logic:='0’;
shelf0:buffer std_logic:="0";
ack_patron:in std_logic);

end shopPA_dualrail;

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Naive Handshaking Level Representation

shopPA_dualrail:process
begin
wait until ack_patron = '0’;
wait until bottle0 = "1’ or bottlel = '1';
if bottle0="1’ then shelf(0<='1’ after delay(1,3);
elsif bottlel="1’ then shelfl<=’1’ after delay(1,3);
end if;
ack_wine <= "1’ after delay(1,3);
wait until ack_patron = '1’;
shelf0 <= '’ after delay(1,3);
shelfl <= ’(Q’ after delay(1,3);
wait until bottle0 = 0’ and bottlel <= '0’;
ack_wine <= "0’ after delay(1,3);
end process;

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Handshaking Level Representation

shopPA_dualrail:process

begin
guard (ack_patron,’0’);
guard_or (bottlel,’1’,bottlel,’1");
if bottle0 = "1’ then assign(shelf0,’1',1,3);
elsif bottlel = ’1’ then assign(shelfl,’1’,1,3);
end if;
assign(ack_wine,’1',1,3);
guard(ack_patron,’1");
vassign (shelf0,’0’,1,3,shelfl,’0",1,3);
guard_and (bottlel,’0’,bottlel,’0");
assign(ack_wine,’0’,1,3);

end process;

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Handshake Package: guard Procedures

@ guard(s,v) takes a signal, s, and a value, v, and replaces:

if (s /= v) then
wait until s = v;

end if;
@ guard_or(s1,v1,s2,v2,...) takes a set of signals and values, and
replaces:
if ((s1 /=vl) and (s2 /=v2) ... ) then
wait until (s1 = vl) or (s2 = v2) ...;
end if;

@ guard_and(s1,v1,s2,v2,...) takes a set of signals and a set of
values, and replaces:

if ((s1 /=vl) or (s2 /=v2) ... ) then
wait until s1 = vl and s2 = v2 ...;
end if;

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Handshake Package: assign Procedures

@ assign(s,v,l,u) takes a signal, s, a value, v, a lower bound of delay,
/, and an upper bound of delay, u, and replaces:
assert (s /= v)
report “Vacuous assignment!”
severity failure;
s <= v after delay(l,u);
wait until s = v;
@ assign(s1,v1,/1,ul,s2,v2,/2,u2) implements a parallel assignment
as follows:
assert ((sl /= vl) or (s2 /= v2))
report “Vacuous assignment!”
severity failure;
sl <= vl after delay(11,ul);
s2 <= v2 after delay(12,u2);
wait until (s1 = vl) and (s2 = v2);

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Handshake Package: vassign Procedures

@ Vacuous assign (vassign) procedure is defined below:

if (s /= v) then
s <= v after delay(l,u);
wait until s = v;
end if;
@ vassign procedure also allows parallel assignments:

if (s1 /= vl1) then
sl <= vl after delay(11l,ul);
end if;
if (s2 /= v2) then
s2 <= v2 after delay(12,u2);
end if;
if (s1 /= vl) or (s2 /= v2) then
wait until s1 = vl and s2 = v2;
end if;

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Active and Passive Ports

@ Channel has an active and a passive port.
@ Active port initiates communication.

@ Passive port must patiently wait.
°

If a process uses the probe function on a channel, it must connect to the
passive port.

If a channel is not probed, then the assignment is arbitrary.

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Active and Passive Ports

entity shopPA is
port (wine_delivery:inout channel:=passive;
wine_selling:inout channel:=active);
end shopPA;

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Passive/Active wine_shop using Bundled Data

WineryShop ShopPatron

Winery Shop Patron

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Passive/Active wine_shop using Bundled Data

req_wine req_patron
Winery bottle Shop shelf Patron

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Two-Phase Bundled-Data Datapath

T ack_patror

ack_wine_ Ctrl | req_patror

_ deIayA
req_wine
vV

bottle shelf

—D QF—

Double—-edge Triggered Flip—flop

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Two-Phase Bundled-Data Winery (part |)

library ieee;
use ieee.std_logic_1164.all;
use work.nondeterminism.all;
use work.handshake.all;
entity winery_bundled is
port (req_wine:buffer std_logic:='0";
ack_wine:in std_logic;
bottle:buffer
std_logic_vector (2 downto 0):="000");
end winery_bundled;

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Two-Phase Bundled-Data Winery (part )

architecture two_phase of winery_bundled is
begin
winery_bundled_ 2phase:process
begin
bottle <= selection(8,3);
wait for delay(5,10);
assign(req_wine,not req wine,1,3); - call shop
guard(ack_wine,req_wine); - wine delivered
end process;
end two_phase;

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Two-Phase Bundled-Data Patron

patronP_bundled_Z2phase:process
begin
guard (req_patron,not ack_patron); - shop calls
bag <= shelf after delay(2,4);
wait for delay(5,10);
assign(ack_patron,not ack_patron,1,3); - buys wine
end process;

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Two-Phase Bundled-Data Shop

shop_bundled_2phase:process
begin
guard(req_wine,not ack_wine); - winery calls
shelf <= bottle after delay(2,4);
wait for delay(5,10);
assign(req_patron,not req patron,l,3);

- call patron
guard(ack_patron,req_patron); - patron buys wine
assign(ack_wine,not ack_wine,1,3); - wine sold

end process;

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Four-Phase Bundled-Data Datapath

T ack_patror

ack_wine_ Ctrl | req_patror

_ deIayA
req_wme—l
\Y

bottle shelf

—D Q—

Level-sensitive Latch

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Four-Phase Bundled-Data Winery

winery_bundled_4phase:process
begin
bottle <= selection(8, 3);
wait for delay(5,10);

assign(req wine,’1’,1,3); - call shop
guard(ack_wine,"1"); - wine delivered
assign(req wine,’0’,1,3); - reset reqg wine
guard(ack_wine,’0"); - ack_wine resets

end process;

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Four-Phase Bundled-Data Patron

patronP_bundled_4phase:process

begin
guard(req_patron,’1’); - shop calls
bag <= shelf after delay(2,4);
wait for delay (5,10);

assign(ack_patron,’1’,1,3); - patron buys wine
guard(req_patron,’0'); - reqg_patron resets
assign(ack_patron,’0’,1,3); - reset ack_patron

end process;

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Four-Phase Bundled-Data Shop

shop_bundled_4phase:process

begin
guard(req _wine,’'1"); - winery calls
shelf <= bottle after delay(2,4);
wait for delay (5,10);

assign(ack_wine,’1’,1,3); - shop receives wine
guard(reqg_wine,’0"); - reg_wine resets
assign(ack_wine,’0’,1,3); - reset ack_wine
assign(req_patron,’1’,1,3); - call patron

guard (ack_patron,’1’); - patron buys wine
assign(req_patron,’0’,1,3); - reset reqg_patron
guard(ack_patron,’0"); - ack_patron resets

end process;

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Reshuffled Shop

Shop_PA_reshuffled:process
begin

guard(req_wine,"1’); - winery calls
shelf <= bottle after delay(2,4);
wait for delay(5,10);

assign(ack_wine,’1’,1,3); - shop receives wine
assign(req patron,’1’,1,3); - call patron
guard(reqg_wine,’0"); - reg_wine resets
assign(ack_wine,’0’,1,3); - reset ack_wine
guard (ack_patron,’1’); - patron buys wine
assign(req_patron,’0’,1,3); - reset reqg_patron
guard(ack_patron,’0"); - ack_patron resets

end process;

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Lazy-Active Shop

Shop_PA_lazy_active:process
begin

guard(req_wine,"1’); - winery calls
shelf <= bottle after delay(2,4);
wait for delay(5,10);

assign(ack_wine,’1’,1,3); - shop receives wine
guard(ack_patron,’0’); - ack_patron resets
assign(req patron,’1’,1,3); - call patron
guard(reqg_wine,’0"); - reg_wine resets
assign(ack_wine,’0’,1,3); - reset ack_wine
guard (ack_patron,’1’); - patron buys wine

assign(req_patron,’0’,1,3); - reset req_ patron

end process;

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Four-Phase Bundled-Data Datapath

T ack_patror

ack_wine_ Ctrl | req_patror

_ deIayA
req_wme—l
\Y

bottle shelf

—D Q—

Level-sensitive Latch

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Four-Phase Bundled-Data Early Protocol

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Lazy-Active Shop (Early Protocol)

Shop_PA_lazy_active:process

begin
guard(req _wine,’'1"); - winery calls
shelf <= bottle after delay(2,4);
wait for delay(5,10);

guard(ack_patron,’0"); - ack_patron resets
assign(req patron,’1’,1,3); - call patron

guard (ack_patron,’1’); - patron buys wine
assign(req_patron,’0’,1,3); - reset req patron
assign(ack_wine,’1’,1,3); - shop receives wine
guard(req_wine,’'0"); - reg_wine resets
assign(ack_wine,’0',1,3); - reset ack_wine

end process;

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Four-Phase Bundled-Data Late Protocol

(k)

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Lazy-Active Shop (Late Protocol)

Shop_PA_lazy_active:process

begin
guard(req _wine,’'1"); - winery calls
assign(req_patron,’1’,1,3); - call patron
guard (ack_patron,’1’); - patron buys wine
assign(ack_wine,’1’,1,3); - shop receives wine
guard(reqg_wine,’0"); - reg_wine resets

shelf <= bottle after delay(2,4);
wait for delay(5,10);
assign(req_patron,’0’,1,3); - reset req_ patron
guard (ack_patron,’0"); - ack_patron resets
assign(ack_wine,’0’,1,3); - reset ack_wine

end process;

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Four-Phase Bundled-Data Broad Protocol

Y f

.-o-'-"-‘_ Y

! , \ "|
II -
\ k_,_.—r”"- P h__d_d-
F.lﬂ‘k—|—-' Y
| L)
|r i

I
I | f
. |
bidud g{ 1st data %{ 2nd data )@

Chris J. Myers (Lecture 3: Protocols)

Asynchronous Circuit Design




Lazy-Active Shop (Broad Protocol)

Shop_PA_lazy_active:process

begin
guard(req wine,’"1"); - winery calls
shelf <= bottle after delay(2,4);
wait for delay(5,10);

assign(ack_wine,’1’,1,3); - shop receives wine
guard(ack_patron,’0"); - ack_patron resets
assign(req_patron,’1’,1,3); - call patron
guard(req _wine, ' 0"); - reqg_wine resets
guard(ack_patron,’1"); - patron buys wine
assign(ack_wine,’0’,1,3); - reset ack_wine

assign(req patron,’0’,1,3); - reset req patron
end process;

Need edge-triggered flip-flop

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Deadlock

Winery_Patron:process

begin
bottle <= selection(8, 3);
wait for delay(5,10);

assign(req wine,’1’,1,3); - call shop
guard(ack_wine,’1"); - wine delivered
guard(req_patron,’1’); - shop calls patron

bag <= shelf after delay(2,4);
wait for delay(5,10);
assign(ack_patron,’1’,1,3); - patron buys wine

guard(req_patron,’0'); - reqg_patron resets
assign(ack_patron,’0’,1,3); - reset ack_patron
assign(req wine,’0’,1,3); - reset req wine
guard(ack_wine,’0"); - ack_wine resets

end process;

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



State Variable Insertion

Shop_PA_SV:process

begin
guard(req _wine,'1’); - winery calls
shelf <= bottle after delay(2,4);
wait for delay(5,10);

assign(ack_wine,’1’,1,3); - shop receives wine
assign(x,’1',1,3); - set x
guard(req_wine,’'0"); - reg_wine resets
assign(ack_wine,’0’,1,3); - reset ack_wine
assign(req_patron,’1’,1,3); - call patron

guard (ack_patron,’1’); - patron buys wine
assign(x,’0’,1,3); - reset x
assign(req_patron,’0’,1,3); - reset req_patron
guard (ack_patron,’0’); - ack_patron resets

end process;

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Passive/Active wine_shop using Dual-Rail (1 bit)

bottlel shelfl
Winery bottle0 » Shop shelf0 » Patron

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Dual-Rail Winery

winery_dual_rail:process
variable z:integer;

begin
z:=selection(2);
case z is
when 1 =>

assign(bottlel,’1’,1,3);
when others =>
assign(bottlel,’1",1,3);
end case;
guard(ack_wine,"1’);
vassign (bottlel,’0’,1,3,bottlel,’0",1,3);
guard(ack_wine, " 0");
end process;

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Dual-Rail Shop

shopPA_dual_rail:process

begin
guard(ack_patron,’0");
guard_or (bottle0,’1’,bottlel,’1");
if bottle0 = "1’ then assign(shelf0,’1',1,3);
elsif bottlel = ’1’ then assign(shelfl,’1’,1,3);
end if;
assign(ack_wine,’1’,1,3);
guard(ack_patron,’1’);
vassign (shelf0,’0’,1,3,shelfl,’0',1,3);
guard_and (bottlel,’0’,bottlel,’0");
assign(ack_wine,’0",1,3);

end process;

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Dual-Rail Patron

patronP_dualrail:process

begin
guard_or (shelfl,”1’,shelf0,'1");
assign(ack_patron,’1’,1,3);
guard_and(shelfl,’0’,shelf0,’0");
assign(ack_patron,’0’,1,3);

end process;

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Passive/Active wine_shop using Dual-Rail

Winery

bottle2_1 shelf2_1
bottle2 0 Shop2 shelf2_0
ack_wine2 ack_patron2
bottlel 1 shelfl_1
bottlel_0 Shop1 shelfl_0
ack_winel ack_patronl
bottle0_1 shelf0_1
bottle0_0 Shopo shelf0_0
ack_wine0 ack_patronO

Chris J. Myers (Lecture 3: Protocols)

Asynchronous Circuit Design

Patron




Dual-Rail Winery (part I)

winery_dual_rail:process
variable z:integer;

begin
z:=selection(8);
case z is
when 1 =>

assign(bottle2_0,"1',1,3,bottlel _0,"1",1,3,
bottle0_0,"1",1,3);
when 2 =>
assign(bottle2_0,"1",1,3,bottlel_0,"1",1,3,
bottle0_1,"1",1,3);
when 3 =>
assign(bottle2_0,"1",1,3,bottlel_1,"1",1,3,
bottle0_0,"1",1,3);

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Dual-Rail Winery (part Il)

when 4 =>
assign(bottle2_0,"1’,1,3,bottlel_1,"1",1,3,
bottle0_1,"1",1,3);
when 5 =>
assign(bottle2_1,"1",1,3,bottlel_0,"1",1,3,
bottle0_0,"1",1,3);
when 6 =>
assign(bottle2_1,"1",1,3,bottlel _0,"1",1,3,
bottlel_1,"1",1,3);
when 7 =>
assign(bottle2_1,"1’,1,3,bottlel_1,"1",1,3,
bottle0_0,"1",1,3);
when others =>
assign(bottle2_1,"1",1,3,bottlel_1,"1",1,3,
bottlel_1,71",1,3);

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Dual-Rail Winery (part Ill)

end case;
guard_and(ack_wine2,’1’,ack_winel,’1’,
ack_wine0,’1");
vassign (bottle2_0,'0",1,3,bottlel_0,'0",1,3,
bottlel0_0,’0",1,3);
vassign (bottle2_1,70",1,3,bottlel_1,’0",1,3,
bottle0_1,’0",1,3);
guard_and (ack_wine2,’0’,ack_winel,’0’,
ack_wine0,’0");
end process;

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Dual-Rail Patron

patronP_dualrail:process
begin
guard_or (shelf2_1,"1",shelf2_0,'1");
guard_or (shelfl_1,"1’,shelfl_0,’1");
guard_or (shelf0_1,"1",shelf0_0,"1");
assign(ack_patron2,’1’,1,3,ack_patronl,’1’,1,3,
ack_patron0,’1’,1,3);
guard_and(shelf2_1,’0",shelf2_0,'0");
guard_and(shelfl_1,'0’,shelfl 0,’0");
guard_and(shelf0_1,’0",shelf0_0,"0");
assign(ack_patron2,’0’,1,3,ack_patronl,’0’,1,3,
ack_patron0,’0’,1,3);
end process;

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Two Wine Shops

WineryOldShop OldShop OldShopPatron

Winer . Patron
y WineryNewShop NewShopPatron atro
/

T . NewShop

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Two Wine Shops

req_winel req_patronl
ack_winel oldShop ack patronl
bottlel shelfl
Winery Patron
req_wine2 req_patron2
ack_wine2 NewShop ack patron2
bottle2 shelf2

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Winery for Two Wine Shops

winery5:process
variable z:integer;
begin
bottle <= selection(8, 3);
wait for delay(5,10);
z:=selection(2);
case z is
when 1 =>
send (WineryNewShop, bottle);
when others =>
send (WineryOldShop, bottle);
end case;
end process winery5;

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Winery for Two Wine Shops (part I)

winery:process

variable z : integer;
begin
z := selection(2);

bottle <= selection(8,3);
wait for delay(5,10);
case z is
when 1 =>
bottlel <= bottle after delay(2,4);
wait for 5 ns;

assign(req winel,”1’,1,3); - call winery
guard(ack_winel,’1’); - wine delivered
assign(req winel,’0’,1,3); - reset reqg wine
guard(ack_winel,’0"); - ack_wine resets

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Winery for Two Wine Shops (part Il)

when others =>
bottle2 <= bottle after delay(2,4);
wait for 5 ns;

assign(req_wine2,’1’,1,3); - call winery

guard (ack_wine2,’1"); - wine delivered

assign(req_wine2,’0’,1,3); - reset req wine

guard (ack_wine2,’0"); - ack_wine resets
end case;

end process;

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Shop for Two Wine Shops

shop:process
begin
receive (WineryShop, shelf);
send (ShopPatron, shelf);
end process shop;

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Shop for Two Wine Shops

Shop_PA_lazy_active:process
begin

guard(req_wine,"1’); - winery calls
shelf <= bottle after delay(2,4);
wait for delay(5,10);

assign(ack_wine,’1’,1,3); - shop receives wine
guard(ack_patron,’0’); - ack_patron resets
assign(req patron,’1’,1,3); - call patron
guard(reqg_wine,’0"); - reg_wine resets
guard (ack_patron,’1’); - patron buys wine
assign(ack_wine,’0’,1,3); - reset ack_wine

assign(req_patron,’0’,1,3); - reset req_ patron

end process;

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Patron for Two Wine Shops

patron2:process
begin
if (probe (01dShopPatron)) then
receive (0OldShopPatron, bag);
wine_drunk <= wine_list’val (conv_integer (bag));
elsif (probe (NewShopPatron)) then
receive (NewShopPatron, bag) ;
wine_drunk <= wine_list’val(conv_integer (bag));
end if;
wait for delay(5,10);
end process patron2;

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Patron for Two Wine Shops (part I)

patronP :process
begin
if (req_patronl = '1') then

bag <= shelfl after delay(2,4);
wait for delay(5,10);
assign(ack_patronl,’1’,1,3); - patron buys wine
guard(req_patronl,’0"); - reg_patron resets
assign(ack_patronl,’0’,1,3); - reset ack_patron
wine_drunk <= wine_list’val (conv_integer (bag));

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Patron for Two Wine Shops (part Il)

elsif (req_patron2 = ’1’) then
bag <= shelf2 after delay(2,4);
wait for delay(5,10);
assign(ack_patron2,’1’,1,3); - patron buys wine
guard(req_patronz,’0"); - req_patron resets
assign(ack_patron2,’0’,1,3); - reset ack_patron
wine_drunk <= wine_list’val(conv_integer (bag));

end if;

wait for delay(1,2);

end process;

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Example for Syntax-Directed Translation

shop:process
begin
receive (WineryShop, shelf);
send (ShopPatron, shelf);
end process shop;

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Circuit for Looping Constructs

T loop body

F — ack

rmw

req :

cond

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Circuit for Process Statement

s T loop body
E

TRUE = ack
TRUE

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Circuit for Assignment to shelf

req ack

IN —— EN Call

datain

shelf

O m:=D

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Circuit for Assignment from Two Locations

INl——— EN —
Call

. : E Out

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Circuit for Receive Procedure

req
Call
ack
3 M Y, ‘
> A ——— shell
: R 3
3 data ‘

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Circuit for Send Procedure

req ack

shelf ———— gy Call

patron

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Conditional Statements

if (condl) then
S1;

elsif (cond2) then
S2;

else
S3;

end if;

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Circuit for Selection Statement

s T S1
req——— E
L = T S2 M ack

—mw

condl cond2

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Circuit for Sequential Composition

(D)D)

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Circuit for Receive followed by Send

req
ack
Call
:
R
patron
data

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Circuit for Parallel Composition

req ack

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Unoptimized Circuit for the wine_shop

TRUE

ol

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Circuit after CALL Module Optimization

winery

R
E shelf F EN patron
G
¥ s T
true M E
\Z/ L
F ack
TRUE

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



Circuit after SEL and Merge Module Optimizations

winery ’:

s

start

EN

shelf

L
Om=x

EN

Chris J. Myers (Lecture 3: Protocols)

Asynchronous Circuit Design

=)




Final Circuit for the wine_shop

shelf

GO m=x

Y

winery |

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



guard, assign, and delay functions
Active and passive protocols
Handshaking expansion
Reshuffling

State variable insertion

Dual-rail data encoding

¢ 6 6 ¢ ¢ ¢ ¢

Syntax-directed translation

Chris J. Myers (Lecture 3: Protocols) Asynchronous Circuit Design



