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Synchronous Systems

All events are synchronized to a single global clock.

INPUTS

OUTPUTS

STATE

CLOCK
R

eg
is

te
r

Logic
Comb.

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 2 / 69



Synchronous Advantages

Simple way to implement sequencing.

Widely taught and understood.

Available components.

Simple way to deal with noise and hazards.
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Synchronous Disadvantages

Clock distribution is difficult due to clock skew.

Worst-case design.

Sensitive to variations in physical parameters.

Not modular.

Power consumption.
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Asynchronous Systems

Synchronization is achieved without a global clock.
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Asynchronous Advantages - Most Often Cited (Al Davis)
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Asynchronous Challenges

Lack of mature computer-aided design tools.

Large area overhead for the removal of hazards.

Average-case delay can be large.

Lack of designer experience.
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Asynchronous Circuit History

Every design method traces its roots to one of two individuals:

Huffman - fundamental-mode circuits.

Muller - speed-independent circuits.
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Key Asynchronous Circuit Designs

ILLIAC (1952) and ILLAC2 (1962) - U. of Illinois

Atlas (1962) and MU-5 (1966) - U. of Manchester

Macromodules (60s-70s) - Washington U., St. Louis

First commercial graphics system (70s) - Evans & Sutherland

DDM dataflow computer (1978) - U. of Utah

First asynchronous microprocessor (1989) - Caltech

First code-compatible processor (1994) - U. of Manchester

Commercial pager (90s) - Phillips

RAPPID (1995-9) - Intel
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Asynchronous Startups

Handshake Solutions - Microcontrollers (Phillips)

Fulcrum - Ethernet Switches (Caltech)

Silistix - Self-timed interconnect (U. of Manchester)

Achronix Semiconductor - Asynchronous FPGAs (Cornell)
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Asynchronous Startups

Handshake Solutions - Microcontrollers (Phillips)

Fulcrum - Ethernet Switches (Caltech)← acquired by Intel

Silistix - Self-timed interconnect (U. of Manchester)

Achronix Semiconductor - Asynchronous FPGAs (Cornell)← founder left
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Wine Shop Problem Specification

Small winery and wine shop in Southern Utah.

Only a single wine patron.

Wine shop only has a single small shelf.

Synchronous versus asynchronous wine shopping.
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Channels of Communication

Winery Shop
WineryShop

Patron
ShopPatron
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Channels of Communication in VHDL

Winery:process

begin

send(WineryShop,bottle);

end process;

Shop:process

begin

receive(WineryShop,shelf);

send(ShopPatron,shelf);

end process;

Patron:process

begin

receive(ShopPatron,bag);

end process;
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Event Protocol

Shop:process

begin

req_wine; - call winery

ack_wine; - wine arrives

req_patron; - call patron

ack_patron; - patron buys wine

end process;
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Signal Protocol

Shop:process

begin

assign(req_wine,’1’); - call winery

guard(ack_wine,’1’); - wine arrives

assign(req_patron,’1’); - call patron

guard(ack_patron,’1’); - patron buys wine

end process;
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2-Phase Protocol

Shop_2Phase:process

begin

assign(req_wine,’1’); - call winery

guard(ack_wine,’1’); - wine arrives

assign(req_patron,’1’); - call patron

guard(ack_patron,’1’); - patron buys wine

assign(req_wine,’0’); - call winery

guard(ack_wine,’0’); - wine arrives

assign(req_patron,’0’); - call patron

guard(ack_patron,’0’); - patron buys wine

end process;
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Waveform for 2-Phase Protocol

ack_patron

req_wine

ack_wine

req_patron
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4-Phase Protocol: Active/Active

Shop_4Phase:process

begin

assign(req_wine,’1’); - call winery

guard(ack_wine,’1’); - wine arrives

assign(req_wine,’0’); - reset req_wine

guard(ack_wine,’0’); - ack_wine resets

assign(req_patron,’1’); - call patron

guard(ack_patron,’1’); - patron buys wine

assign(req_patron,’0’); - reset req_patron

guard(ack_patron,’0’); - ack_patron resets

end process;
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Waveform for 4-Phase Protocol
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4-Phase Protocol: Passive/Active

Shop_PA:process

begin

guard(req_wine,’1’); - winery calls

assign(ack_wine,’1’); - wine is received

guard(req_wine,’0’); - req_wine resets

assign(ack_wine,’0’); - reset ack_wine

assign(req_patron,’1’); - call patron

guard(ack_patron,’1’); - patron buys wine

assign(req_patron,’0’); - reset req_patron

guard(ack_patron,’0’); - ack_patron resets

end process;
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4-Phase Protocol: Passive/Passive

Shop_PP:process
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Active/Active Protocol

Shop_AA:process

begin

assign(req_wine,’1’); - call winery

guard(ack_wine,’1’); - wine arrives

assign(req_wine,’0’); - reset req_wine

guard(ack_wine,’0’); - ack_wine resets

assign(req_patron,’1’); - call patron

guard(ack_patron,’1’); - patron buys wine

assign(req_patron,’0’); - reset req_patron

guard(ack_patron,’0’); - ack_patron resets
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Active/Active Protocol

Shop_AA:process

begin

assign(req_wine,’1’); - call winery

guard(ack_wine,’1’); - wine arrives

assign(req_wine,’0’); - reset req_wine

guard(ack_wine,’0’); - ack_wine resets

⇒ state coding problem here

assign(req_patron,’1’); - call patron

guard(ack_patron,’1’); - patron buys wine

assign(req_patron,’0’); - reset req_patron

guard(ack_patron,’0’); - ack_patron resets

end process;
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Active/Active Reshuffled

Shop_AA_reshuffled:process

begin

assign(req_wine,’1’); - call winery

guard(ack_wine,’1’); - wine arrives

assign(req_patron,’1’); - call patron

guard(ack_patron,’1’); - patron buys wine

assign(req_wine,’0’); - reset req_wine

guard(ack_wine,’0’); - ack_wine resets

assign(req_patron,’0’); - reset req_patron

guard(ack_patron,’0’); - ack_patron resets

end process;
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Asynchronous Finite State Machine (AFSM) (A/A reshuffled)

Shop_AA_reshuffled:process

begin

assign(req_wine,’1’);

guard(ack_wine,’1’);

assign(req_patron,’1’);

guard(ack_patron,’1’);

assign(req_wine,’0’);

guard(ack_wine,’0’);

assign(req_patron,’0’);

guard(ack_patron,’0’);

end process;
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AFSM and Huffman Flow Table (A/A reshuffled)

ack_wine / ack_patron

00 01 11 10

0 1, 10 0✐, 00 − −

1 1✐, 10 − − 2, 11

2 − − 3, 01 2✐, 11

3 − 0, 00 3✐, 01 −

req_wine / req_patron
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AFSM and Huffman Flow Table (A/A reshuffled)

ack_wine / ack_patron

00 01 11 10

0 0✐, 10 0✐, 00 − 2,11

2 − − 3, 01 2✐, 11

3 − 0, 00 3✐, 01 −
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AFSM and Huffman Flow Table (A/A reshuffled)

ack_wine / ack_patron

00 01 11 10

0 0✐, 10 0✐, 00 3,01 0✐, 11

3 − 0, 00 3✐, 01 −

req_wine / req_patron
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AFSM and Huffman Flow Table (A/A reshuffled)

ack_wine / ack_patron

00 01 11 10

0 0✐, 10 0✐, 00 0✐, 01 0✐, 11

req_wine / req_patron
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Karnaugh Maps for Huffman’s A/A Reshuffled Circuit

ack_wine ack_wine

ack_patron

0 1

0 1 1

1 0 0

0 1

0 0 1

1 0 1

req_wine req_patron
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Active/Active Reshuffled Circuit

ack_patron

req_patron

req_wine

ack_wine

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 33 / 69



Active/Active Reshuffled Circuit

ack_patron

ack_wine

req_wine

req_patron

1

11

10 0

0 0
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Active/Active Reshuffled Circuit

ack_wine

req_wine

req_patron

ack_patron
0 1

1 10

1 0

0
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Active/Active Reshuffled Circuit
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Active/Active Reshuffled Circuit
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Active/Active Reshuffled Circuit

ack_wine

req_wine

req_patron
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0 0

0 0

1

1 1
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Active/Active Reshuffled Circuit

ack_patron

ack_wine

req_wine

req_patron

1

00

00 1

1 1
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Active/Active Reshuffled Circuit

ack_patron

ack_wine

req_wine

req_patron

1

01

00 1

0 1
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Active/Active Reshuffled Circuit

ack_patron

ack_wine

req_wine

req_patron

1

11

00 1

0 0

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 33 / 69



Active/Active Reshuffled Circuit

ack_patron

ack_wine

req_wine

req_patron

1

11

10 0

0 0
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Active/Active Reshuffled Circuit

[0,inf] [0,inf]

[0,inf] [0,inf]

ack_patronreq_wine

   ack_wine req_patron

This circuit is delay-insensitive.
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Passive/Active

Shop_PA:process

begin

guard(req_wine,’1’); - winery calls

assign(ack_wine,’1’); - wine is received

guard(req_wine,’0’); - req_wine resets

assign(ack_wine,’0’); - reset ack_wine

assign(req_patron,’1’); - call patron

guard(ack_patron,’1’); - patron buys wine

assign(req_patron,’0’); - reset req_patron

guard(ack_patron,’0’); - ack_patron resets

end process;
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Passive/Active Reshuffled

Shop_PA_reshuffled:process

begin

guard(req_wine,’1’); - winery calls

assign(ack_wine,’1’); - receives wine

assign(req_patron,’1’); - call patron

guard(req_wine,’0’); - req_wine resets

assign(ack_wine,’0’); - reset ack_wine

guard(ack_patron,’1’); - patron buys wine

assign(req_patron,’0’); - reset req_patron

guard(ack_patron,’0’); - ack_patron resets

end process;
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Passive/Lazy-Active Reshuffled

Shop_PA_lazy_active:process

begin

guard(req_wine,’1’); - winery calls

assign(ack_wine,’1’); - receives wine

guard(ack_patron,’0’); - ack_patron resets

assign(req_patron,’1’); - call patron

guard(req_wine,’0’); - req_wine resets

assign(ack_wine,’0’); - reset ack_wine

guard(ack_patron,’1’); - patron buys wine

assign(req_patron,’0’); - reset req_patron

end process;
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Petri-net (P/LA reshuffled)

req_patron+

ack_wine- ack_patron+ ack_patron-

req_patron-req_wine+ req_wine-

ack_wine+
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Petri-net (P/LA reshuffled)

req_patron+

ack_wine- ack_patron+ ack_patron-

req_patron-req_wine+ req_wine-

ack_wine+
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Petri-net (P/LA reshuffled)

req_patron+

ack_wine- ack_patron+ ack_patron-

req_patron-req_wine+ req_wine-

ack_wine+
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Labeled Petri Net (LPN) (P/LA reshuffled)

Shop_PA_lazy_active:process

begin

guard(req_wine,’1’);

assign(ack_wine,’1’);

guard(ack_patron,’0’);

assign(req_patron,’1’);

guard(req_wine,’0’);

assign(ack_wine,’0’);

guard(ack_patron,’1’);

assign(req_patron,’0’);

end process;

{req_wine}
<ack_wine:=T>

{~req_wine}
<ack_wine:=F>

{~ack_patron}
<req_patron:=T>

{ack_patron}
<req_patron:=F>
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LPN (P/LA reshuffled)

{~ack_wine}
<req_wine:=T>

{req_patron}
<ack_patron:=T>

{ack_wine}
<req_wine:=F>

{~req_patron}
<ack_patron:=F>

{req_wine}
<ack_wine:=T>

{~req_wine}
<ack_wine:=F>

{~ack_patron}
<req_patron:=T>

{ack_patron}
<req_patron:=F>
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From LPN to State Graph to Circuit

{~ack_wine}
<req_wine:=T>

{req_patron}
<ack_patron:=T>

{ack_wine}
<req_wine:=F>

{~req_patron}
<ack_patron:=F>

{req_wine}
<ack_wine:=T>

{~req_wine}
<ack_wine:=F>

{~ack_patron}
<req_patron:=T>

{ack_patron}
<req_patron:=F>
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State Graph for P/LA Reshuffled (〈 rw, ap, aw, rp 〉)

0:R000

43:RR01

45:1R01

req_wine+/1

18:R10F

ack_patron+/1

32:001R

10:0RF1

req_patron+/1

ack_wine-/1

14:01F1

ack_patron+/1

1:10R0

req_wine+/1

3:F01R

ack_wine+/1

22:110F

ack_patron+/1

req_wine-/1

6:FR11

req_patron+/1

req_wine-/1

47:F111

ack_patron+/1

39:RF00

ack_patron-/1

24:1FR0

req_wine+/1

req_patron-/1 req_wine+/1

34:0F10

ack_patron-/1

ack_wine-/1

ack_patron-/1

req_patron-/1

27:FF10

ack_patron-/1 req_wine-/1

ack_wine+/1req_wine-/1

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 43 / 69



Karnaugh Maps for Passive/Lazy-Active Reshuffled

req_wine/ack_patron req_wine/ack_patron

ack_wine/

req_patron

00 01 11 10

00 0 0 1 1

01 0 0 0 0

11 0 0 1 1

10 1 1 1 1

00 01 11 10

00 0 0 0 0

01 1 0 0 1

11 1 1 1 1

10 1 0 0 1

ack_wine req_patron
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Passive/Lazy-Active Reshuffled Circuit

C

C

ack_wine

req_wine

req_patron

ack_patron
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Passive/Lazy-Active Reshuffled Circuit

C

ack_patron

req_patron

req_wine

ack_wine

C

1

1

1

1

0

0

0

0
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Passive/Lazy-Active Reshuffled Circuit

C
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req_patron

req_wine

ack_wine
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0

0
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Passive/Lazy-Active Reshuffled Circuit

C
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req_patron

req_wine

ack_wine
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1

0
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Passive/Lazy-Active Reshuffled Circuit
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Passive/Lazy-Active Reshuffled Circuit

C
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req_patron

req_wine

ack_wine

C

0

0

0

0

1
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Passive/Lazy-Active Reshuffled Circuit
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req_patron

req_wine

ack_wine
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Passive/Lazy-Active Reshuffled Circuit

C
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ack_wine
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Passive/Lazy-Active Reshuffled Circuit

C

ack_patron

req_patron

req_wine

ack_wine
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Passive/Lazy-Active Reshuffled Circuit

C

ack_patron

req_patron

req_wine

ack_wine

C

1
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1

1
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0

0

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 45 / 69



Passive/Lazy-Active Reshuffled Circuit

C

C

[0,inf]

[0,inf][0,inf]

[0,inf]

[0,inf]

[0,inf]

req_wine

req_patron

ack_patron

[0,inf]
ack_wine

This circuit is delay-insensitive.
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Active/Active Protocol

Shop_AA:process

begin

assign(req_wine,’1’); - call winery

guard(ack_wine,’1’); - wine arrives

assign(req_wine,’0’); - reset req_wine

guard(ack_wine,’0’); - ack_wine resets

assign(req_patron,’1’); - call patron

guard(ack_patron,’1’); - patron buys wine

assign(req_patron,’0’); - reset req_patron

guard(ack_patron,’0’); - ack_patron resets

end process;
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Active/Active State Variable

Shop_AA_state_variable:process

begin

assign(req_wine,’1’); - call winery

guard(ack_wine,’1’); - wine arrives

assign(x,’1’); - set state variable

assign(req_wine,’0’); - reset req_wine

guard(ack_wine,’0’); - ack_wine resets

assign(req_patron,’1’); - call patron

guard(ack_patron,’1’); - patron buys wine

assign(x,’0’); - reset state variable

assign(req_patron,’0’); - reset req_patron

guard(ack_patron,’0’); - ack_patron resets

end process;
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Active/Active State Variable Circuit

C

[0,inf]

[0,inf]

[0,inf]

[0,inf]

[0,inf]

[0,inf][0,inf]

[0,inf]

[0,inf]

ack_patron

req_patron

ack_wine

req_wine
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u6

[0,inf] x
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Active/Active State Variable Circuit

C

[0,inf]

[0,inf]

[0,inf]

[0,inf]

[0,inf]

[0,inf][0,inf]

[0,inf]

[0,inf]

ack_patron

req_patron

ack_wine

req_wine
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u2

u3
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u5
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[0,inf] x
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Active/Active State Variable Circuit

C

[0,inf]

[0,inf]

[0,inf]

[0,inf]

[0,inf]

[0,inf][0,inf]

[0,inf]

[0,inf]

ack_patron

req_patron

ack_wine

req_wine

u1

u2

u3

u4

u5

u6

[0,inf] x
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Active/Active State Variable Circuit

C

[0,inf]

[0,inf]

[0,inf]

[0,inf]

[0,inf]

[0,inf][0,inf]

[0,inf]

[0,inf]

ack_patron

req_patron

ack_wine

req_wine

u1

u2

u3

u4

u5

u6

[0,inf] x

req_wine+, ack_wine+, x+, req_wine-, ack_wine-, req_patron+, ack_patron+

u1-, u2-, x-, u4+, u6-

req_wine glitches!
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Huffman Circuits

David Huffman

Bounded gate and wire delay model.

Circuit does not need to be closed.

Single-input change fundamental mode.

One input changes→ output changes→
state changes.

May need to add delay in fed back state

variables.
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Active/Active Protocol

Shop_AA:process

begin

assign(req_wine,’1’); - call winery

guard(ack_wine,’1’); - wine arrives

assign(req_wine,’0’); - reset req_wine

guard(ack_wine,’0’); - ack_wine resets

assign(req_patron,’1’); - call patron

guard(ack_patron,’1’); - patron buys wine

assign(req_patron,’0’); - reset req_patron

guard(ack_patron,’0’); - ack_patron resets

end process;
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AFSM and Huffman Flow Table (A/A)

ack_wine / ack_patron

00 01 11 10

0 1, −0 0✐, 00 − −

1 1✐, 10 − − 2, −0

2 3, 0− − − 2✐, 00

3 3✐, 01 0, 0− − −

req_wine / req_patron
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Reduced AFSM and Huffman Flow Table (A/A)

ack_wine / ack_patron

00 01 11 10

0 0✐, 10 0✐, 00 − 1, −0

1 1✐, 01 0, 0− − 1✐, 00

req_wine / req_patron
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Karnaugh Maps for Huffman’s A/A Circuit

ack_wine/ack_patron ack_wine/ack_patron

x 00 01 11 10

0 1 0 − −

1 0 0 − 0

x 00 01 11 10

0 0 0 − 0

1 1 − − 0

req_wine req_patron

ack_wine/ack_patron

x 00 01 11 10

0 0 0 − 1

1 1 0 − 1

x
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Huffman’s Active/Active Circuit

req_wine

u1

u5

u4

u6

u3

[0,U]

[0,U]

[0,U]

[0,U]

[0,U]

[0,U]

[0,U]

[0,U]

[0,U]

[0,U]

[0,U]

X

ack_wine

req_patron

x

ack_patron

u7

u2
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Huffman’s Active/Active Circuit

req_wine

u1

u5

u4

u6

u3

[0,U]

[0,U]

[0,U]

[0,U]

[0,U]

[0,U]

[0,U]

[0,U]

[0,U]

[0,U]

[0,U]

X

ack_wine

req_patron

x

ack_patron

u7

u2

req_wine+, ack_wine+, X+, x+, req_wine-, ack_wine-, req_patron+,

ack_patron+
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Huffman’s Active/Active Circuit

req_wine

u1

u5

u4

u6

u3

[0,U]

[0,U]

[0,U]

[0,U]

[0,U]

[0,U]

[0,U]

[0,U]

[0,U]

[0,U]

[0,U]

X

ack_wine

req_patron

x

ack_patron

u7

u2

req_wine+, ack_wine+, X+, x+, req_wine-, ack_wine-, req_patron+,

ack_patron+

x will not go low until after both u2- and u6- due to feedback delay assumption.
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Muller Circuits

David Muller

Unbounded gate delay model.

Wire delays are assumed to be negligible.

Forks are assumed to be isochronic.

Model called speed-independent.
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Muller’s Active/Active Circuit

[0,inf]

[0,inf]

[0,inf]

req_wine

ack_wine

x

req_patron

ack_patron

x
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Muller’s Active/Active Circuit

[0,inf]

[0,inf]

[0,inf]

req_wine

ack_wine

x

req_patron

ack_patron

x

req_wine+, ack_wine+, x+, req_wine-, ack_wine-, req_patron+, ack_patron+
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Muller’s Active/Active Circuit

[0,inf]

[0,inf]

[0,inf]

req_wine

ack_wine

x

req_patron

ack_patron

x

req_wine+, ack_wine+, x+, req_wine-, ack_wine-, req_patron+, ack_patron+

ack_patron change felt at both x and req_wine gates simultaneously due to

isochronic fork assumption.
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Timed Wine Shop

Shop_AA_timed:process

begin

assign(req_wine,’1’,0,1); - call winery

assign(req_patron,’1’,0,1); - call patron

- wine arrives and patron arrives

guard_and(ack_wine,’1’,ack_patron,’1’);

assign(req_wine,’0’,0,1);

assign(req_patron,’0’,0,1);

- wait for ack_wine and ack_patron to reset

guard_and(ack_wine,’0’,ack_patron,’0’);

end process;
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Timed Winery and Patron

winery:process

begin

guard(req_wine,’1’); - wine requested

assign(ack_wine,’1’,2,3); - deliver wine

guard(req_wine,’0’);

assign(ack_wine,’0’,2,3);

end process;

patron:process

begin

guard(req_patron,’1’); - shop called

assign(ack_patron,’1’,5,inf); - buy wine

guard(req_patron,’0’);

assign(ack_patron,’0’,5,7);

end process;
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LPN for Timed Wine Shop Example

{req_wine}
[2,3]

<ack_wine:=T>

{req_patron}
[5,inf]

<ack_patron:=T>

{~req_wine}
[2,3]

<ack_wine:=F>

{~req_patron}
[5,7]

<ack_patron:=F>

{~ack_wine & ~ack_patron}
[0,1]

<req_wine:=T>

[0,1]
<req_patron:=T>

{ack_wine & ack_patron}
[0,1]

<req_wine:=F>

[0,1]
<req_patron:=F>
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LPN for Timed Wine Shop Example

{req_wine}
[2,3]

<ack_wine:=T>

{req_patron}
[5,inf]

<ack_patron:=T>

{~req_wine}
[2,3]

<ack_wine:=F>

{~req_patron}
[5,7]

<ack_patron:=F>

{~ack_wine & ~ack_patron}
[0,1]

<req_wine:=T>

[0,1]
<req_patron:=T>

{ack_wine & ack_patron}
[0,1]

<req_wine:=F>

[0,1]
<req_patron:=F>
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State Graph for Timed Wine Shop Example

ack_patron- ack_wine+

ack_patron+
ack_wine-

req_patron+00R0

1R11

RR11

11F1FF00

0F00

req_wine-F10F

R01R

req_patron-

req_wine +

State vector: (ack_wine, ack_patron, req_wine, req_patron)
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Karnaugh Maps for Timed Circuit

ack_wine/ack_patron ack_wine/ack_patron

req_wine/

req_patron

00 01 11 10

00 1 0 0 −

01 − − 0 −

11 1 − 0 1

10 1 − − −

00 01 11 10

00 0 0 0 −

01 − − 0 −

11 1 − 1 1

10 1 − − −

req_wine req_patron
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Timed Circuit

ack_wine

req_wine ack_patron

req_patron

[5,inf; 5,7][0,1]

[0,1]

[2,3]
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Performance Analysis

Cycle time is the delay from when the patron gets one bottle of wine until

he can get another.

Assuming the timed circuit delays are uniformly distributed except that the

patron is extremely unlikely to take more then 10 minutes, we obtain the

following cycle times:

Muller and Huffman’s circuits (A/A SV) - 21.5 minutes

Original (A/A reshuffled) - 20.6 minutes

Timed circuit - 15.8 minutes

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 66 / 69



Validation versus Verification

Validation is simulation of interesting situations.

Verification is exhaustive checks of all possible situations.

Can check that circuit conforms to the specification.

Can check that protocol has certain properties.
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Sample Properties

The wine arrives before the patron:

Always(ack_patron⇒ ack_wine)

When the wine is requested, it eventually arrives:

req_wine⇒ Eventually(ack_wine)
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Summary of Course Topics

Communication Channels

Communication Protocols

Graphical Representations

Huffman Circuits

Muller Circuits

Timed Circuits

Verification

Applications
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