
Asynchronous Circuit Design

Chris J. Myers

Lecture 1: Introduction

Preface and Chapter 1

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 1 / 69

Synchronous Systems

All events are synchronized to a single global clock.

INPUTS

OUTPUTS

STATE

CLOCK
R

eg
is

te
r

Logic
Comb.

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 2 / 69

Synchronous Advantages

Simple way to implement sequencing.

Widely taught and understood.

Available components.

Simple way to deal with noise and hazards.

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 3 / 69

Synchronous Disadvantages

Clock distribution is difficult due to clock skew.

Worst-case design.

Sensitive to variations in physical parameters.

Not modular.

Power consumption.

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 4 / 69

Asynchronous Systems

Synchronization is achieved without a global clock.

INPUTS

OUTPUTS

STATE

Logic
Comb.

D
el

ay

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 5 / 69

Asynchronous Advantages - Most Often Cited (Al Davis)

1

2

3

4

5

6

7

8

9

10

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 6 / 69

Asynchronous Advantages - Most Often Cited (Al Davis)

1

2

3

4

5

6

7

8

9

10 Global synchrony doesn’t exist anyway

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 6 / 69

Asynchronous Advantages - Most Often Cited (Al Davis)

1

2

3

4

5

6

7

8

9 Intrinsic elegance

10 Global synchrony doesn’t exist anyway

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 6 / 69

Asynchronous Advantages - Most Often Cited (Al Davis)

1

2

3

4

5

6

7

8 Intellectual challenge

9 Intrinsic elegance

10 Global synchrony doesn’t exist anyway

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 6 / 69

Asynchronous Advantages - Most Often Cited (Al Davis)

1

2

3

4

5

6

7 Easier to exploit concurrency

8 Intellectual challenge

9 Intrinsic elegance

10 Global synchrony doesn’t exist anyway

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 6 / 69

Asynchronous Advantages - Most Often Cited (Al Davis)

1

2

3

4

5

6 Avoid clock distribution costs

7 Easier to exploit concurrency

8 Intellectual challenge

9 Intrinsic elegance

10 Global synchrony doesn’t exist anyway

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 6 / 69

Asynchronous Advantages - Most Often Cited (Al Davis)

1

2

3

4

5 Metastability has time to end

6 Avoid clock distribution costs

7 Easier to exploit concurrency

8 Intellectual challenge

9 Intrinsic elegance

10 Global synchrony doesn’t exist anyway

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 6 / 69

Asynchronous Advantages - Most Often Cited (Al Davis)

1

2

3

4 No clock alignment at the interfaces

5 Metastability has time to end

6 Avoid clock distribution costs

7 Easier to exploit concurrency

8 Intellectual challenge

9 Intrinsic elegance

10 Global synchrony doesn’t exist anyway

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 6 / 69

Asynchronous Advantages - Most Often Cited (Al Davis)

1

2

3 Ease of modular composition

4 No clock alignment at the interfaces

5 Metastability has time to end

6 Avoid clock distribution costs

7 Easier to exploit concurrency

8 Intellectual challenge

9 Intrinsic elegance

10 Global synchrony doesn’t exist anyway

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 6 / 69

Asynchronous Advantages - Most Often Cited (Al Davis)

1

2 Power consumed only where needed

3 Ease of modular composition

4 No clock alignment at the interfaces

5 Metastability has time to end

6 Avoid clock distribution costs

7 Easier to exploit concurrency

8 Intellectual challenge

9 Intrinsic elegance

10 Global synchrony doesn’t exist anyway

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 6 / 69

Asynchronous Advantages - Most Often Cited (Al Davis)

1 Achieve average case performance

2 Power consumed only where needed

3 Ease of modular composition

4 No clock alignment at the interfaces

5 Metastability has time to end

6 Avoid clock distribution costs

7 Easier to exploit concurrency

8 Intellectual challenge

9 Intrinsic elegance

10 Global synchrony doesn’t exist anyway

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 6 / 69

Asynchronous Advantages - NOT Often Cited (Al Davis)

1

2

3

4

5

6

7

8

9

10

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 7 / 69

Asynchronous Advantages - NOT Often Cited (Al Davis)

1

2

3

4

5

6

7

8

9

10 It’s none of your business

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 7 / 69

Asynchronous Advantages - NOT Often Cited (Al Davis)

1

2

3

4

5

6

7

8

9 Clock radiation causes hair loss

10 It’s none of your business

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 7 / 69

Asynchronous Advantages - NOT Often Cited (Al Davis)

1

2

3

4

5

6

7

8 Synchronous design gives me gas

9 Clock radiation causes hair loss

10 It’s none of your business

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 7 / 69

Asynchronous Advantages - NOT Often Cited (Al Davis)

1

2

3

4

5

6

7 World problems stem from glitches

8 Synchronous design gives me gas

9 Clock radiation causes hair loss

10 It’s none of your business

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 7 / 69

Asynchronous Advantages - NOT Often Cited (Al Davis)

1

2

3

4

5

6 I don’t understand synchronous circuits

7 World problems stem from glitches

8 Synchronous design gives me gas

9 Clock radiation causes hair loss

10 It’s none of your business

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 7 / 69

Asynchronous Advantages - NOT Often Cited (Al Davis)

1

2

3

4

5 People and circuits need to play by the same rules

6 I don’t understand synchronous circuits

7 World problems stem from glitches

8 Synchronous design gives me gas

9 Clock radiation causes hair loss

10 It’s none of your business

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 7 / 69

Asynchronous Advantages - NOT Often Cited (Al Davis)

1

2

3

4 Gee - I really don’t know

5 People and circuits need to play by the same rules

6 I don’t understand synchronous circuits

7 World problems stem from glitches

8 Synchronous design gives me gas

9 Clock radiation causes hair loss

10 It’s none of your business

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 7 / 69

Asynchronous Advantages - NOT Often Cited (Al Davis)

1

2

3 I like to be different

4 Gee - I really don’t know

5 People and circuits need to play by the same rules

6 I don’t understand synchronous circuits

7 World problems stem from glitches

8 Synchronous design gives me gas

9 Clock radiation causes hair loss

10 It’s none of your business

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 7 / 69

Asynchronous Advantages - NOT Often Cited (Al Davis)

1

2 I like reinventing wheels

3 I like to be different

4 Gee - I really don’t know

5 People and circuits need to play by the same rules

6 I don’t understand synchronous circuits

7 World problems stem from glitches

8 Synchronous design gives me gas

9 Clock radiation causes hair loss

10 It’s none of your business

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 7 / 69

Asynchronous Advantages - NOT Often Cited (Al Davis)

1 It really pisses my boss off

2 I like reinventing wheels

3 I like to be different

4 Gee - I really don’t know

5 People and circuits need to play by the same rules

6 I don’t understand synchronous circuits

7 World problems stem from glitches

8 Synchronous design gives me gas

9 Clock radiation causes hair loss

10 It’s none of your business

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 7 / 69

Asynchronous Challenges

Lack of mature computer-aided design tools.

Large area overhead for the removal of hazards.

Average-case delay can be large.

Lack of designer experience.

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 8 / 69

Asynchronous Circuit History

Every design method traces its roots to one of two individuals:

Huffman - fundamental-mode circuits.

Muller - speed-independent circuits.

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 9 / 69

Key Asynchronous Circuit Designs

ILLIAC (1952) and ILLAC2 (1962) - U. of Illinois

Atlas (1962) and MU-5 (1966) - U. of Manchester

Macromodules (60s-70s) - Washington U., St. Louis

First commercial graphics system (70s) - Evans & Sutherland

DDM dataflow computer (1978) - U. of Utah

First asynchronous microprocessor (1989) - Caltech

First code-compatible processor (1994) - U. of Manchester

Commercial pager (90s) - Phillips

RAPPID (1995-9) - Intel

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 10 / 69

Asynchronous Startups

Handshake Solutions - Microcontrollers (Phillips)

Fulcrum - Ethernet Switches (Caltech)

Silistix - Self-timed interconnect (U. of Manchester)

Achronix Semiconductor - Asynchronous FPGAs (Cornell)

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 11 / 69

Asynchronous Startups

Handshake Solutions - Microcontrollers (Phillips)

Fulcrum - Ethernet Switches (Caltech)← acquired by Intel

Silistix - Self-timed interconnect (U. of Manchester)

Achronix Semiconductor - Asynchronous FPGAs (Cornell)← founder left

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 12 / 69

Wine Shop Problem Specification

Small winery and wine shop in Southern Utah.

Only a single wine patron.

Wine shop only has a single small shelf.

Synchronous versus asynchronous wine shopping.

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 13 / 69

Channels of Communication

Winery Shop
WineryShop

Patron
ShopPatron

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 14 / 69

Channels of Communication in VHDL

Winery:process

begin

send(WineryShop,bottle);

end process;

Shop:process

begin

receive(WineryShop,shelf);

send(ShopPatron,shelf);

end process;

Patron:process

begin

receive(ShopPatron,bag);

end process;

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 15 / 69

Event Protocol

Shop:process

begin

req_wine; - call winery

ack_wine; - wine arrives

req_patron; - call patron

ack_patron; - patron buys wine

end process;

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 16 / 69

Signal Protocol

Shop:process

begin

assign(req_wine,’1’); - call winery

guard(ack_wine,’1’); - wine arrives

assign(req_patron,’1’); - call patron

guard(ack_patron,’1’); - patron buys wine

end process;

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 17 / 69

2-Phase Protocol

Shop_2Phase:process

begin

assign(req_wine,’1’); - call winery

guard(ack_wine,’1’); - wine arrives

assign(req_patron,’1’); - call patron

guard(ack_patron,’1’); - patron buys wine

assign(req_wine,’0’); - call winery

guard(ack_wine,’0’); - wine arrives

assign(req_patron,’0’); - call patron

guard(ack_patron,’0’); - patron buys wine

end process;

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 18 / 69

Waveform for 2-Phase Protocol

ack_patron

req_wine

ack_wine

req_patron

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 19 / 69

4-Phase Protocol: Active/Active

Shop_4Phase:process

begin

assign(req_wine,’1’); - call winery

guard(ack_wine,’1’); - wine arrives

assign(req_wine,’0’); - reset req_wine

guard(ack_wine,’0’); - ack_wine resets

assign(req_patron,’1’); - call patron

guard(ack_patron,’1’); - patron buys wine

assign(req_patron,’0’); - reset req_patron

guard(ack_patron,’0’); - ack_patron resets

end process;

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 20 / 69

Waveform for 4-Phase Protocol

ack_patron

req_wine

ack_wine

req_patron

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 21 / 69

4-Phase Protocol: Passive/Active

Shop_PA:process

begin

guard(req_wine,’1’); - winery calls

assign(ack_wine,’1’); - wine is received

guard(req_wine,’0’); - req_wine resets

assign(ack_wine,’0’); - reset ack_wine

assign(req_patron,’1’); - call patron

guard(ack_patron,’1’); - patron buys wine

assign(req_patron,’0’); - reset req_patron

guard(ack_patron,’0’); - ack_patron resets

end process;

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 22 / 69

4-Phase Protocol: Passive/Passive

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 23 / 69

4-Phase Protocol: Passive/Passive

Shop_PP:process

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 23 / 69

4-Phase Protocol: Passive/Passive

Shop_PP:process

begin

end process;

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 23 / 69

4-Phase Protocol: Passive/Passive

Shop_PP:process

begin

guard(req_wine,’1’); - winery calls

end process;

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 23 / 69

4-Phase Protocol: Passive/Passive

Shop_PP:process

begin

guard(req_wine,’1’); - winery calls

assign(ack_wine,’1’); - wine is received

end process;

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 23 / 69

4-Phase Protocol: Passive/Passive

Shop_PP:process

begin

guard(req_wine,’1’); - winery calls

assign(ack_wine,’1’); - wine is received

guard(req_wine,’0’); - req_wine resets

end process;

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 23 / 69

4-Phase Protocol: Passive/Passive

Shop_PP:process

begin

guard(req_wine,’1’); - winery calls

assign(ack_wine,’1’); - wine is received

guard(req_wine,’0’); - req_wine resets

assign(ack_wine,’0’); - reset ack_wine

end process;

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 23 / 69

4-Phase Protocol: Passive/Passive

Shop_PP:process

begin

guard(req_wine,’1’); - winery calls

assign(ack_wine,’1’); - wine is received

guard(req_wine,’0’); - req_wine resets

assign(ack_wine,’0’); - reset ack_wine

guard(req_patron,’1’); - patron calls

end process;

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 23 / 69

4-Phase Protocol: Passive/Passive

Shop_PP:process

begin

guard(req_wine,’1’); - winery calls

assign(ack_wine,’1’); - wine is received

guard(req_wine,’0’); - req_wine resets

assign(ack_wine,’0’); - reset ack_wine

guard(req_patron,’1’); - patron calls

assign(ack_patron,’1’); - sells wine

end process;

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 23 / 69

4-Phase Protocol: Passive/Passive

Shop_PP:process

begin

guard(req_wine,’1’); - winery calls

assign(ack_wine,’1’); - wine is received

guard(req_wine,’0’); - req_wine resets

assign(ack_wine,’0’); - reset ack_wine

guard(req_patron,’1’); - patron calls

assign(ack_patron,’1’); - sells wine

guard(req_patron,’0’); - req_patron resets

end process;

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 23 / 69

4-Phase Protocol: Passive/Passive

Shop_PP:process

begin

guard(req_wine,’1’); - winery calls

assign(ack_wine,’1’); - wine is received

guard(req_wine,’0’); - req_wine resets

assign(ack_wine,’0’); - reset ack_wine

guard(req_patron,’1’); - patron calls

assign(ack_patron,’1’); - sells wine

guard(req_patron,’0’); - req_patron resets

assign(ack_patron,’0’); - reset ack_patron

end process;

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 23 / 69

Active/Active Protocol

Shop_AA:process

begin

assign(req_wine,’1’); - call winery

guard(ack_wine,’1’); - wine arrives

assign(req_wine,’0’); - reset req_wine

guard(ack_wine,’0’); - ack_wine resets

assign(req_patron,’1’); - call patron

guard(ack_patron,’1’); - patron buys wine

assign(req_patron,’0’); - reset req_patron

guard(ack_patron,’0’); - ack_patron resets

end process;

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 24 / 69

Active/Active Protocol

Shop_AA:process

begin

assign(req_wine,’1’); - call winery

guard(ack_wine,’1’); - wine arrives

assign(req_wine,’0’); - reset req_wine

guard(ack_wine,’0’); - ack_wine resets

⇒ state coding problem here

assign(req_patron,’1’); - call patron

guard(ack_patron,’1’); - patron buys wine

assign(req_patron,’0’); - reset req_patron

guard(ack_patron,’0’); - ack_patron resets

end process;

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 25 / 69

Active/Active Reshuffled

Shop_AA_reshuffled:process

begin

assign(req_wine,’1’); - call winery

guard(ack_wine,’1’); - wine arrives

assign(req_patron,’1’); - call patron

guard(ack_patron,’1’); - patron buys wine

assign(req_wine,’0’); - reset req_wine

guard(ack_wine,’0’); - ack_wine resets

assign(req_patron,’0’); - reset req_patron

guard(ack_patron,’0’); - ack_patron resets

end process;

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 26 / 69

Asynchronous Finite State Machine (AFSM) (A/A reshuffled)

Shop_AA_reshuffled:process

begin

assign(req_wine,’1’);

guard(ack_wine,’1’);

assign(req_patron,’1’);

guard(ack_patron,’1’);

assign(req_wine,’0’);

guard(ack_wine,’0’);

assign(req_patron,’0’);

guard(ack_patron,’0’);

end process;

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 27 / 69

AFSM and Huffman Flow Table (A/A reshuffled)

ack_wine / ack_patron

00 01 11 10

0 1, 10 0✐, 00 − −

1 1✐, 10 − − 2, 11

2 − − 3, 01 2✐, 11

3 − 0, 00 3✐, 01 −

req_wine / req_patron

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 28 / 69

AFSM and Huffman Flow Table (A/A reshuffled)

ack_wine / ack_patron

00 01 11 10

0 0✐, 10 0✐, 00 − 2,11

2 − − 3, 01 2✐, 11

3 − 0, 00 3✐, 01 −

req_wine / req_patron

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 29 / 69

AFSM and Huffman Flow Table (A/A reshuffled)

ack_wine / ack_patron

00 01 11 10

0 0✐, 10 0✐, 00 3,01 0✐, 11

3 − 0, 00 3✐, 01 −

req_wine / req_patron

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 30 / 69

AFSM and Huffman Flow Table (A/A reshuffled)

ack_wine / ack_patron

00 01 11 10

0 0✐, 10 0✐, 00 0✐, 01 0✐, 11

req_wine / req_patron

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 31 / 69

Karnaugh Maps for Huffman’s A/A Reshuffled Circuit

ack_wine ack_wine

ack_patron

0 1

0 1 1

1 0 0

0 1

0 0 1

1 0 1

req_wine req_patron

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 32 / 69

Active/Active Reshuffled Circuit

ack_patron

req_patron

req_wine

ack_wine

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 33 / 69

Active/Active Reshuffled Circuit

ack_patron

ack_wine

req_wine

req_patron

1

11

10 0

0 0

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 33 / 69

Active/Active Reshuffled Circuit

ack_wine

req_wine

req_patron

ack_patron
0 1

1 10

1 0

0

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 33 / 69

Active/Active Reshuffled Circuit

ack_wine

req_wine

req_patron

ack_patron
0 1

0 1

1

1

0

0

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 33 / 69

Active/Active Reshuffled Circuit

ack_wine

req_wine

req_patron

ack_patron
0 1

0 0

1

1 1

0

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 33 / 69

Active/Active Reshuffled Circuit

ack_wine

req_wine

req_patron

ack_patron
0 0

0 0

1

1 1

1

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 33 / 69

Active/Active Reshuffled Circuit

ack_patron

ack_wine

req_wine

req_patron

1

00

00 1

1 1

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 33 / 69

Active/Active Reshuffled Circuit

ack_patron

ack_wine

req_wine

req_patron

1

01

00 1

0 1

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 33 / 69

Active/Active Reshuffled Circuit

ack_patron

ack_wine

req_wine

req_patron

1

11

00 1

0 0

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 33 / 69

Active/Active Reshuffled Circuit

ack_patron

ack_wine

req_wine

req_patron

1

11

10 0

0 0

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 33 / 69

Active/Active Reshuffled Circuit

[0,inf] [0,inf]

[0,inf] [0,inf]

ack_patronreq_wine

 ack_wine req_patron

This circuit is delay-insensitive.

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 33 / 69

Passive/Active

Shop_PA:process

begin

guard(req_wine,’1’); - winery calls

assign(ack_wine,’1’); - wine is received

guard(req_wine,’0’); - req_wine resets

assign(ack_wine,’0’); - reset ack_wine

assign(req_patron,’1’); - call patron

guard(ack_patron,’1’); - patron buys wine

assign(req_patron,’0’); - reset req_patron

guard(ack_patron,’0’); - ack_patron resets

end process;

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 34 / 69

Passive/Active Reshuffled

Shop_PA_reshuffled:process

begin

guard(req_wine,’1’); - winery calls

assign(ack_wine,’1’); - receives wine

assign(req_patron,’1’); - call patron

guard(req_wine,’0’); - req_wine resets

assign(ack_wine,’0’); - reset ack_wine

guard(ack_patron,’1’); - patron buys wine

assign(req_patron,’0’); - reset req_patron

guard(ack_patron,’0’); - ack_patron resets

end process;

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 35 / 69

Passive/Lazy-Active Reshuffled

Shop_PA_lazy_active:process

begin

guard(req_wine,’1’); - winery calls

assign(ack_wine,’1’); - receives wine

guard(ack_patron,’0’); - ack_patron resets

assign(req_patron,’1’); - call patron

guard(req_wine,’0’); - req_wine resets

assign(ack_wine,’0’); - reset ack_wine

guard(ack_patron,’1’); - patron buys wine

assign(req_patron,’0’); - reset req_patron

end process;

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 36 / 69

Petri-net (P/LA reshuffled)

req_patron+

ack_wine- ack_patron+ ack_patron-

req_patron-req_wine+ req_wine-

ack_wine+

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 37 / 69

Petri-net (P/LA reshuffled)

req_patron+

ack_wine- ack_patron+ ack_patron-

req_patron-req_wine+ req_wine-

ack_wine+

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 38 / 69

Petri-net (P/LA reshuffled)

req_patron+

ack_wine- ack_patron+ ack_patron-

req_patron-req_wine+ req_wine-

ack_wine+

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 39 / 69

Labeled Petri Net (LPN) (P/LA reshuffled)

Shop_PA_lazy_active:process

begin

guard(req_wine,’1’);

assign(ack_wine,’1’);

guard(ack_patron,’0’);

assign(req_patron,’1’);

guard(req_wine,’0’);

assign(ack_wine,’0’);

guard(ack_patron,’1’);

assign(req_patron,’0’);

end process;

{req_wine}
<ack_wine:=T>

{~req_wine}
<ack_wine:=F>

{~ack_patron}
<req_patron:=T>

{ack_patron}
<req_patron:=F>

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 40 / 69

LPN (P/LA reshuffled)

{~ack_wine}
<req_wine:=T>

{req_patron}
<ack_patron:=T>

{ack_wine}
<req_wine:=F>

{~req_patron}
<ack_patron:=F>

{req_wine}
<ack_wine:=T>

{~req_wine}
<ack_wine:=F>

{~ack_patron}
<req_patron:=T>

{ack_patron}
<req_patron:=F>

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 41 / 69

From LPN to State Graph to Circuit

{~ack_wine}
<req_wine:=T>

{req_patron}
<ack_patron:=T>

{ack_wine}
<req_wine:=F>

{~req_patron}
<ack_patron:=F>

{req_wine}
<ack_wine:=T>

{~req_wine}
<ack_wine:=F>

{~ack_patron}
<req_patron:=T>

{ack_patron}
<req_patron:=F>

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 42 / 69

State Graph for P/LA Reshuffled (〈 rw, ap, aw, rp 〉)

0:R000

43:RR01

45:1R01

req_wine+/1

18:R10F

ack_patron+/1

32:001R

10:0RF1

req_patron+/1

ack_wine-/1

14:01F1

ack_patron+/1

1:10R0

req_wine+/1

3:F01R

ack_wine+/1

22:110F

ack_patron+/1

req_wine-/1

6:FR11

req_patron+/1

req_wine-/1

47:F111

ack_patron+/1

39:RF00

ack_patron-/1

24:1FR0

req_wine+/1

req_patron-/1 req_wine+/1

34:0F10

ack_patron-/1

ack_wine-/1

ack_patron-/1

req_patron-/1

27:FF10

ack_patron-/1 req_wine-/1

ack_wine+/1req_wine-/1

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 43 / 69

Karnaugh Maps for Passive/Lazy-Active Reshuffled

req_wine/ack_patron req_wine/ack_patron

ack_wine/

req_patron

00 01 11 10

00 0 0 1 1

01 0 0 0 0

11 0 0 1 1

10 1 1 1 1

00 01 11 10

00 0 0 0 0

01 1 0 0 1

11 1 1 1 1

10 1 0 0 1

ack_wine req_patron

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 44 / 69

Passive/Lazy-Active Reshuffled Circuit

C

C

ack_wine

req_wine

req_patron

ack_patron

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 45 / 69

Passive/Lazy-Active Reshuffled Circuit

C

ack_patron

req_patron

req_wine

ack_wine

C

1

1

1

1

0

0

0

0

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 45 / 69

Passive/Lazy-Active Reshuffled Circuit

C

ack_patron

req_patron

req_wine

ack_wine

C

1

0

1

1

1

0

0

0

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 45 / 69

Passive/Lazy-Active Reshuffled Circuit

C

ack_patron

req_patron

req_wine

ack_wine

C

1

0

0

1

1

0

0

1

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 45 / 69

Passive/Lazy-Active Reshuffled Circuit

C

ack_patron

req_patron

req_wine

ack_wine

C

1

0

0

0

1

1

0

1

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 45 / 69

Passive/Lazy-Active Reshuffled Circuit

C

ack_patron

req_patron

req_wine

ack_wine

C

0

0

0

0

1

1

1

1

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 45 / 69

Passive/Lazy-Active Reshuffled Circuit

C

ack_patron

req_patron

req_wine

ack_wine

C

0

0

0

10

1

1

1

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 45 / 69

Passive/Lazy-Active Reshuffled Circuit

C

ack_patron

req_patron

req_wine

ack_wine

C

0

0

1

1

0

0

1

1

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 45 / 69

Passive/Lazy-Active Reshuffled Circuit

C

ack_patron

req_patron

req_wine

ack_wine

C

1

1

1

01

0

0

0

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 45 / 69

Passive/Lazy-Active Reshuffled Circuit

C

ack_patron

req_patron

req_wine

ack_wine

C

1

1

1

1

0

0

0

0

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 45 / 69

Passive/Lazy-Active Reshuffled Circuit

C

C

[0,inf]

[0,inf][0,inf]

[0,inf]

[0,inf]

[0,inf]

req_wine

req_patron

ack_patron

[0,inf]
ack_wine

This circuit is delay-insensitive.

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 45 / 69

Active/Active Protocol

Shop_AA:process

begin

assign(req_wine,’1’); - call winery

guard(ack_wine,’1’); - wine arrives

assign(req_wine,’0’); - reset req_wine

guard(ack_wine,’0’); - ack_wine resets

assign(req_patron,’1’); - call patron

guard(ack_patron,’1’); - patron buys wine

assign(req_patron,’0’); - reset req_patron

guard(ack_patron,’0’); - ack_patron resets

end process;

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 46 / 69

Active/Active State Variable

Shop_AA_state_variable:process

begin

assign(req_wine,’1’); - call winery

guard(ack_wine,’1’); - wine arrives

assign(x,’1’); - set state variable

assign(req_wine,’0’); - reset req_wine

guard(ack_wine,’0’); - ack_wine resets

assign(req_patron,’1’); - call patron

guard(ack_patron,’1’); - patron buys wine

assign(x,’0’); - reset state variable

assign(req_patron,’0’); - reset req_patron

guard(ack_patron,’0’); - ack_patron resets

end process;

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 47 / 69

Active/Active State Variable Circuit

C

[0,inf]

[0,inf]

[0,inf]

[0,inf]

[0,inf]

[0,inf][0,inf]

[0,inf]

[0,inf]

ack_patron

req_patron

ack_wine

req_wine

u1

u2

u3

u4

u5

u6

[0,inf] x

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 48 / 69

Active/Active State Variable Circuit

C

[0,inf]

[0,inf]

[0,inf]

[0,inf]

[0,inf]

[0,inf][0,inf]

[0,inf]

[0,inf]

ack_patron

req_patron

ack_wine

req_wine

u1

u2

u3

u4

u5

u6

[0,inf] x

req_wine+, ack_wine+, x+, req_wine-, ack_wine-, req_patron+, ack_patron+

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 48 / 69

Active/Active State Variable Circuit

C

[0,inf]

[0,inf]

[0,inf]

[0,inf]

[0,inf]

[0,inf][0,inf]

[0,inf]

[0,inf]

ack_patron

req_patron

ack_wine

req_wine

u1

u2

u3

u4

u5

u6

[0,inf] x

req_wine+, ack_wine+, x+, req_wine-, ack_wine-, req_patron+, ack_patron+

u1-, u2-, x-, u4+, u6-

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 48 / 69

Active/Active State Variable Circuit

C

[0,inf]

[0,inf]

[0,inf]

[0,inf]

[0,inf]

[0,inf][0,inf]

[0,inf]

[0,inf]

ack_patron

req_patron

ack_wine

req_wine

u1

u2

u3

u4

u5

u6

[0,inf] x

req_wine+, ack_wine+, x+, req_wine-, ack_wine-, req_patron+, ack_patron+

u1-, u2-, x-, u4+, u6-

req_wine glitches!

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 48 / 69

Huffman Circuits

David Huffman

Bounded gate and wire delay model.

Circuit does not need to be closed.

Single-input change fundamental mode.

One input changes→ output changes→
state changes.

May need to add delay in fed back state

variables.

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 49 / 69

Active/Active Protocol

Shop_AA:process

begin

assign(req_wine,’1’); - call winery

guard(ack_wine,’1’); - wine arrives

assign(req_wine,’0’); - reset req_wine

guard(ack_wine,’0’); - ack_wine resets

assign(req_patron,’1’); - call patron

guard(ack_patron,’1’); - patron buys wine

assign(req_patron,’0’); - reset req_patron

guard(ack_patron,’0’); - ack_patron resets

end process;

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 50 / 69

AFSM and Huffman Flow Table (A/A)

ack_wine / ack_patron

00 01 11 10

0 1, −0 0✐, 00 − −

1 1✐, 10 − − 2, −0

2 3, 0− − − 2✐, 00

3 3✐, 01 0, 0− − −

req_wine / req_patron

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 51 / 69

Reduced AFSM and Huffman Flow Table (A/A)

ack_wine / ack_patron

00 01 11 10

0 0✐, 10 0✐, 00 − 1, −0

1 1✐, 01 0, 0− − 1✐, 00

req_wine / req_patron

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 52 / 69

Karnaugh Maps for Huffman’s A/A Circuit

ack_wine/ack_patron ack_wine/ack_patron

x 00 01 11 10

0 1 0 − −

1 0 0 − 0

x 00 01 11 10

0 0 0 − 0

1 1 − − 0

req_wine req_patron

ack_wine/ack_patron

x 00 01 11 10

0 0 0 − 1

1 1 0 − 1

x

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 53 / 69

Huffman’s Active/Active Circuit

req_wine

u1

u5

u4

u6

u3

[0,U]

[0,U]

[0,U]

[0,U]

[0,U]

[0,U]

[0,U]

[0,U]

[0,U]

[0,U]

[0,U]

X

ack_wine

req_patron

x

ack_patron

u7

u2

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 54 / 69

Huffman’s Active/Active Circuit

req_wine

u1

u5

u4

u6

u3

[0,U]

[0,U]

[0,U]

[0,U]

[0,U]

[0,U]

[0,U]

[0,U]

[0,U]

[0,U]

[0,U]

X

ack_wine

req_patron

x

ack_patron

u7

u2

req_wine+, ack_wine+, X+, x+, req_wine-, ack_wine-, req_patron+,

ack_patron+

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 55 / 69

Huffman’s Active/Active Circuit

req_wine

u1

u5

u4

u6

u3

[0,U]

[0,U]

[0,U]

[0,U]

[0,U]

[0,U]

[0,U]

[0,U]

[0,U]

[0,U]

[0,U]

X

ack_wine

req_patron

x

ack_patron

u7

u2

req_wine+, ack_wine+, X+, x+, req_wine-, ack_wine-, req_patron+,

ack_patron+

x will not go low until after both u2- and u6- due to feedback delay assumption.

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 55 / 69

Muller Circuits

David Muller

Unbounded gate delay model.

Wire delays are assumed to be negligible.

Forks are assumed to be isochronic.

Model called speed-independent.

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 56 / 69

Muller’s Active/Active Circuit

[0,inf]

[0,inf]

[0,inf]

req_wine

ack_wine

x

req_patron

ack_patron

x

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 57 / 69

Muller’s Active/Active Circuit

[0,inf]

[0,inf]

[0,inf]

req_wine

ack_wine

x

req_patron

ack_patron

x

req_wine+, ack_wine+, x+, req_wine-, ack_wine-, req_patron+, ack_patron+

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 58 / 69

Muller’s Active/Active Circuit

[0,inf]

[0,inf]

[0,inf]

req_wine

ack_wine

x

req_patron

ack_patron

x

req_wine+, ack_wine+, x+, req_wine-, ack_wine-, req_patron+, ack_patron+

ack_patron change felt at both x and req_wine gates simultaneously due to

isochronic fork assumption.

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 58 / 69

Timed Wine Shop

Shop_AA_timed:process

begin

assign(req_wine,’1’,0,1); - call winery

assign(req_patron,’1’,0,1); - call patron

- wine arrives and patron arrives

guard_and(ack_wine,’1’,ack_patron,’1’);

assign(req_wine,’0’,0,1);

assign(req_patron,’0’,0,1);

- wait for ack_wine and ack_patron to reset

guard_and(ack_wine,’0’,ack_patron,’0’);

end process;

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 59 / 69

Timed Winery and Patron

winery:process

begin

guard(req_wine,’1’); - wine requested

assign(ack_wine,’1’,2,3); - deliver wine

guard(req_wine,’0’);

assign(ack_wine,’0’,2,3);

end process;

patron:process

begin

guard(req_patron,’1’); - shop called

assign(ack_patron,’1’,5,inf); - buy wine

guard(req_patron,’0’);

assign(ack_patron,’0’,5,7);

end process;

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 60 / 69

LPN for Timed Wine Shop Example

{req_wine}
[2,3]

<ack_wine:=T>

{req_patron}
[5,inf]

<ack_patron:=T>

{~req_wine}
[2,3]

<ack_wine:=F>

{~req_patron}
[5,7]

<ack_patron:=F>

{~ack_wine & ~ack_patron}
[0,1]

<req_wine:=T>

[0,1]
<req_patron:=T>

{ack_wine & ack_patron}
[0,1]

<req_wine:=F>

[0,1]
<req_patron:=F>

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 61 / 69

LPN for Timed Wine Shop Example

{req_wine}
[2,3]

<ack_wine:=T>

{req_patron}
[5,inf]

<ack_patron:=T>

{~req_wine}
[2,3]

<ack_wine:=F>

{~req_patron}
[5,7]

<ack_patron:=F>

{~ack_wine & ~ack_patron}
[0,1]

<req_wine:=T>

[0,1]
<req_patron:=T>

{ack_wine & ack_patron}
[0,1]

<req_wine:=F>

[0,1]
<req_patron:=F>

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 62 / 69

State Graph for Timed Wine Shop Example

ack_patron- ack_wine+

ack_patron+
ack_wine-

req_patron+00R0

1R11

RR11

11F1FF00

0F00

req_wine-F10F

R01R

req_patron-

req_wine +

State vector: (ack_wine, ack_patron, req_wine, req_patron)

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 63 / 69

Karnaugh Maps for Timed Circuit

ack_wine/ack_patron ack_wine/ack_patron

req_wine/

req_patron

00 01 11 10

00 1 0 0 −

01 − − 0 −

11 1 − 0 1

10 1 − − −

00 01 11 10

00 0 0 0 −

01 − − 0 −

11 1 − 1 1

10 1 − − −

req_wine req_patron

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 64 / 69

Timed Circuit

ack_wine

req_wine ack_patron

req_patron

[5,inf; 5,7][0,1]

[0,1]

[2,3]

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 65 / 69

Performance Analysis

Cycle time is the delay from when the patron gets one bottle of wine until

he can get another.

Assuming the timed circuit delays are uniformly distributed except that the

patron is extremely unlikely to take more then 10 minutes, we obtain the

following cycle times:

Muller and Huffman’s circuits (A/A SV) - 21.5 minutes

Original (A/A reshuffled) - 20.6 minutes

Timed circuit - 15.8 minutes

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 66 / 69

Validation versus Verification

Validation is simulation of interesting situations.

Verification is exhaustive checks of all possible situations.

Can check that circuit conforms to the specification.

Can check that protocol has certain properties.

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 67 / 69

Sample Properties

The wine arrives before the patron:

Always(ack_patron⇒ ack_wine)

When the wine is requested, it eventually arrives:

req_wine⇒ Eventually(ack_wine)

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 68 / 69

Summary of Course Topics

Communication Channels

Communication Protocols

Graphical Representations

Huffman Circuits

Muller Circuits

Timed Circuits

Verification

Applications

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design 69 / 69

