Asynchronous Circuit Design

Chris J. Myers

Lecture 1: Introduction
Preface and Chapter 1

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Synchronous Systems

@ All events are synchronized to a single global clock.

INPUTS

OUTPUTS

Comb.
Logic

Register

STATE

CLOCK

Asynchronous Circuit Design

Chris J. Myers (Lecture 1: Introduction)

Synchronous Advantages

@ Simple way to implement sequencing.

@ Widely taught and understood.

@ Available components.

@ Simple way to deal with noise and hazards.

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Synchronous Disadvantages

@ Clock distribution is difficult due to clock skew.
@ Worst-case design.

@ Sensitive to variations in physical parameters.
@ Not modular.

@ Power consumption.

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Asynchronous Systems

@ Synchronization is achieved without a global clock.

INPUTS

-

Comb.

OUTPUTS

Logic

Delay

STATE

Chris J. Myers (Lecture 1: Introduction)

Asynchronous Circuit Design

Asynchronous Advantages - Most Often Cited (Al Davis)

o
2]
Q
o
o
o
o
Q
o
o

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Asynchronous Advantages - Most Often Cited (Al Davis)

Global synchrony doesn’t exist anyway

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Asynchronous Advantages - Most Often Cited (Al Davis)

©000000O06OC

Q Intrinsic elegance
@ Global synchrony doesn’t exist anyway

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Asynchronous Advantages - Most Often Cited (Al Davis)

©0000O0CO0C

Q Intellectual challenge
Q Intrinsic elegance
@ Global synchrony doesn’t exist anyway

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Asynchronous Advantages - Most Often Cited (Al Davis)

000000

@ Easier to exploit concurrency

Q Intellectual challenge

Q Intrinsic elegance

@ Global synchrony doesn’t exist anyway

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Asynchronous Advantages - Most Often Cited (Al Davis)

©000060C

@ Avoid clock distribution costs

@ Easier to exploit concurrency

Q Intellectual challenge

Q Intrinsic elegance

@ Global synchrony doesn’t exist anyway

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Asynchronous Advantages - Most Often Cited (Al Davis)

00O

@ Metastability has time to end

@ Avoid clock distribution costs

@ Easier to exploit concurrency

Q Intellectual challenge

Q Intrinsic elegance

@ Global synchrony doesn’t exist anyway

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Asynchronous Advantages - Most Often Cited (Al Davis)

o

© No clock alignment at the interfaces
@ Metastability has time to end

@ Avoid clock distribution costs

@ Easier to exploit concurrency

Q Intellectual challenge

Q Intrinsic elegance

@ Global synchrony doesn’t exist anyway

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Asynchronous Advantages - Most Often Cited (Al Davis)

o

(2]

© Ease of modular composition

© No clock alignment at the interfaces
@ Metastability has time to end

© Avoid clock distribution costs

@ Easier to exploit concurrency

Q Intellectual challenge

Q Intrinsic elegance

@ Global synchrony doesn’t exist anyway

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Asynchronous Advantages - Most Often Cited (Al Davis)

o

@ Power consumed only where needed
© Ease of modular composition

© No clock alignment at the interfaces
@ Metastability has time to end

© Avoid clock distribution costs

@ Easier to exploit concurrency

Q Intellectual challenge

Q Intrinsic elegance

@ Global synchrony doesn’t exist anyway

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Asynchronous Advantages - Most Often Cited (Al Davis)

@ Achieve average case performance

@ Power consumed only where needed
© Ease of modular composition

© No clock alignment at the interfaces
@ Metastability has time to end

@ Avoid clock distribution costs

@ Easier to exploit concurrency

Q Intellectual challenge

Q Intrinsic elegance

@ Global synchrony doesn’t exist anyway

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Asynchronous Advantages - NOT Often Cited (Al Davis)

o
2]
Q
o
o
o
o
Q
o
o

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Asynchronous Advantages - NOT Often Cited (Al Davis)

It's none of your business

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Asynchronous Advantages - NOT Often Cited (Al Davis)

©000000O06OC

©Q Clock radiation causes hair loss
@ It's none of your business

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Asynchronous Advantages - NOT Often Cited (Al Davis)

©0000O0CO0C

@ Synchronous design gives me gas
@ Clock radiation causes hair loss
@ It's none of your business

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Asynchronous Advantages - NOT Often Cited (Al Davis)

000000

@ World problems stem from glitches
@ Synchronous design gives me gas
@ Clock radiation causes hair loss
@ It's none of your business

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Asynchronous Advantages - NOT Often Cited (Al Davis)

©000060C

@ | don’t understand synchronous circuits
@ World problems stem from glitches

@ Synchronous design gives me gas

@ Clock radiation causes hair loss

@ It's none of your business

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Asynchronous Advantages - NOT Often Cited (Al Davis)

00O

@ People and circuits need to play by the same rules
@ | don’t understand synchronous circuits

@ World problems stem from glitches

@ Synchronous design gives me gas

@ Clock radiation causes hair loss

@ It's none of your business

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Asynchronous Advantages - NOT Often Cited (Al Davis)

o

© Gee - | really don’t know

@ People and circuits need to play by the same rules
@ | don’t understand synchronous circuits

@ World problems stem from glitches

@ Synchronous design gives me gas

@ Clock radiation causes hair loss

@ It's none of your business

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Asynchronous Advantages - NOT Often Cited (Al Davis)

o

(2]

© | like to be different

© Gee - | really don’t know

@ People and circuits need to play by the same rules
@ | don’t understand synchronous circuits

@ World problems stem from glitches

@ Synchronous design gives me gas

@ Clock radiation causes hair loss

@ It's none of your business

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Asynchronous Advantages - NOT Often Cited (Al Davis)

o

Q | like reinventing wheels

© | like to be different

© Gee - | really don’t know

@ People and circuits need to play by the same rules
@ | don’t understand synchronous circuits

@ World problems stem from glitches

@ Synchronous design gives me gas

@ Clock radiation causes hair loss

@ It's none of your business

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Asynchronous Advantages - NOT Often Cited (Al Davis)

@ lireally pisses my boss off

@ | like reinventing wheels

© | like to be different

© Gee - | really don’t know

@ People and circuits need to play by the same rules
@ | don’t understand synchronous circuits

@ World problems stem from glitches

@ Synchronous design gives me gas

@ Clock radiation causes hair loss

@ It's none of your business

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Asynchronous Challenges

@ Lack of mature computer-aided design tools.

@ Large area overhead for the removal of hazards.
@ Average-case delay can be large.

@ Lack of designer experience.

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Asynchronous Circuit History

@ Every design method traces its roots to one of two individuals:

o Huffman - fundamental-mode circuits.
@ Muller - speed-independent circuits.

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Key Asynchronous Circuit Designs

ILLIAC (1952) and ILLAC2 (1962) - U. of lllinois

Atlas (1962) and MU-5 (1966) - U. of Manchester
Macromodules (60s-70s) - Washington U., St. Louis

First commercial graphics system (70s) - Evans & Sutherland
DDM dataflow computer (1978) - U. of Utah

First asynchronous microprocessor (1989) - Caltech

First code-compatible processor (1994) - U. of Manchester
Commercial pager (90s) - Phillips

RAPPID (1995-9) - Intel

e € ¢ ¢ ¢ ¢ ¢ ¢ ¢

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Asynchronous Startups

@ Handshake Solutions - Microcontrollers (Phillips)

@ Fulcrum - Ethernet Switches (Caltech)

@ Silistix - Self-timed interconnect (U. of Manchester)

@ Achronix Semiconductor - Asynchronous FPGAs (Cornell)

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Asynchronous Startups

o Handshake Soluti M lors-(Phill

@ Fulcrum - Ethernet Switches (Caltech) <— acquired by Intel

o Sitistix—Self-timed- U ot Manel

@ Achronix Semiconductor - Asynchronous FPGAs (Cornell) <— founder left

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Wine Shop Problem Specification

@ Small winery and wine shop in Southern Utah.
@ Only a single wine patron.
@ Wine shop only has a single small shelf.

@ Synchronous versus asynchronous wine shopping.

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Channels of Communication

WineryShop ShopPatron

Winery = Patron

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Channels of Communication in VHDL

Winery:process
begin
send (WineryShop, bottle);
end process;
Shop:process
begin
receive (WineryShop, shelf);
send (ShopPatron, shelf);
end process;
Patron:process
begin
receive (ShopPatron, bag);
end process;

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Event Protocol

Shop:process

begin
req_wine; - call winery
ack_wine; - wine arrives

req_patron; - call patron
ack_patron; - patron buys wine
end process;

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Signal Protocol

Shop:process

begin
assign(req_wine,’1l’); - call winery
guard(ack_wine,’1’); - wine arrives
assign(req_patron,’1’); - call patron
guard(ack_patron,’1l’); - patron buys wine

end process;

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

2-Phase Protocol

Shop_2Phase:process

begin
assign(req_wine,’1l’); - call winery
guard(ack_wine,’1’); - wine arrives
assign(req_patron,’1’); - call patron
guard(ack_patron,’1l’); - patron buys wine
assign(req_wine,’0’); - call winery
guard(ack_wine,’0’); - wine arrives
assign(req_patron,’0’); - call patron
guard (ack_patron,’0’); - patron buys wine

end process;

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Waveform for 2-Phase Protocol

req_wine] |
ack_wine |
req_patron |
ack_patron | |

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

4-Phase Protocol: Active/Active

Shop_4Phase:process

begin
assign(req_wine,’1l’); - call winery
guard(ack_wine,’1’); - wine arrives
assign(req wine,’0’); - reset req wine
guard(ack_wine,’0’); - ack_wine resets
assign(req_patron,’1’); - call patron
guard (ack_patron,’1’); - patron buys wine
assign(req_patron,’0’); - reset reqg_patron
guard(ack_patron,’0’); - ack_patron resets

end process;

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Waveform for 4-Phase Protocol

req_wine I
ack wine []

req_patron L
ack_patron L

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

4-Phase Protocol: Passive/Active

Shop_PA:process

begin
guard(req wine,’1’); - winery calls
assign(ack_wine,’1’); - wine is received

guard(req wine,’0’); - req_wine resets

assign(ack_wine,’0’); - reset ack_wine

assign(req_patron,’1’); - call patron

guard (ack_patron,’1’); - patron buys wine

assign(req_patron,’0’); - reset reqg_patron

guard(ack_patron,’0’); - ack_patron resets
end process;

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

4-Phase Protocol: Passive/Passive

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

4-Phase Protocol: Passive/Passive

Shop_PP : process

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

4-Phase Protocol: Passive/Passive

Shop_PP:process
begin

end process;

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

4-Phase Protocol: Passive/Passive

Shop_PP : process
begin
guard(req wine,’1’); - winery calls

end process;

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

4-Phase Protocol: Passive/Passive

Shop_PP : process

begin
guard(req wine,’1’); - winery calls
assign(ack_wine,’1’); - wine is received

end process;

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

4-Phase Protocol: Passive/Passive

Shop_PP : process

begin
guard(req wine,’1’); - winery calls
assign(ack_wine,’1’); - wine is received

guard(req wine,’0’); - req_wine resets

end process;

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

4-Phase Protocol: Passive/Passive

Shop_PP : process

begin
guard(req wine,’1’); - winery calls
assign(ack_wine,’1’); - wine is received

guard(req wine,’0’); - req_wine resets
assign(ack_wine,’0’); - reset ack_wine

end process;

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

4-Phase Protocol: Passive/Passive

Shop_PP : process

begin
guard(req wine,’1’); - winery calls
assign(ack_wine,’1’); - wine is received

guard(req wine,’0’); - req_wine resets
assign(ack_wine,’0’); - reset ack_wine
guard(req_patron,’1l’); - patron calls

end process;

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

4-Phase Protocol: Passive/Passive

Shop_PP : process

begin
guard(req wine,’1’); - winery calls
assign(ack_wine,’1’); - wine is received

guard(req wine,’0’); - req_wine resets
assign(ack_wine,’0’); - reset ack_wine
guard(req_patron,’1l’); - patron calls
assign(ack_patron,’1’); - sells wine

end process;

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

4-Phase Protocol: Passive/Passive

Shop_PP : process

begin
guard(req wine,’1’); - winery calls
assign(ack_wine,’1’); - wine is received

guard(req wine,’0’); - req_wine resets
assign(ack_wine,’0’); - reset ack_wine
guard(req_patron,’1l’); - patron calls
assign(ack_patron,’1’); - sells wine
guard(req_patron,’0’); - req_patron resets

end process;

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

4-Phase Protocol: Passive/Passive

Shop_PP : process

begin
guard(req wine,’1’); - winery calls
assign(ack_wine,’1’); - wine is received

guard(req wine,’0’); - req_wine resets

assign(ack_wine,’0’); - reset ack_wine

guard(req_patron,’1l’); - patron calls

assign(ack_patron,’1’); - sells wine

guard(req_patron,’0’); - req_patron resets

assign(ack_patron,’0’); - reset ack_patron
end process;

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Active/Active Protocol

Shop_AA:process

begin
assign(req_wine,’1l’); - call winery
guard(ack_wine,’1’); - wine arrives
assign(req wine,’0’); - reset req wine
guard(ack_wine,’0’); - ack_wine resets
assign(req_patron,’1’); - call patron
guard (ack_patron,’1’); - patron buys wine
assign(req_patron,’0’); - reset reqg_patron
guard(ack_patron,’0’); - ack_patron resets

end process;

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Active/Active Protocol

Shop_AA:process

begin
assign(req_wine,’1’); - call winery
guard(ack_wine,’1’); - wine arrives
assign(req wine,’0’); - reset req wine
guard(ack_wine,’0’); - ack_wine resets

= state coding problem here
assign(req_patron,’1’); - call patron
guard (ack_patron,’1l’); - patron buys wine
assign(req_patron,’0’); - reset reqg_patron
guard (ack_patron,’0’); - ack_patron resets

end process;

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Active/Active Reshuffled

Shop_AA_reshuffled:process

begin
assign(req_wine,’1l’); - call winery
guard(ack_wine,’1’); - wine arrives
assign(req_patron,’1’); - call patron
guard(ack_patron,’1l’); - patron buys wine
assign(req_wine,’0’); - reset req _wine
guard(ack_wine,’0’); - ack_wine resets
assign(req_patron,’0’); - reset reqg_patron
guard(ack_patron,’0’); - ack_patron resets

end process;

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Asynchronous Finite State Machine (AFSM) (A/A reshuffled)

Shop_AA_reshuffled:process

begin
assign(req_wine,’1’);
guard(ack_wine,’1");
assign(req_patron,’1’);
guard(ack_patron,’1");
assign(req_wine,’0");
guard(ack_wine,’0");
assign(req_patron,’0");
guard (ack_patron,’0’);

end process;

01/00

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

AFSM and Huffman Flow Table (A/A reshuffled)

ack_wine / ack_patron

00 01 11 10

01/00 0] 1,10 [(©) 00 — —
1{@10] — — 2,11

2| — — 3,01 @11

3] — [o,00[@01]| —

req_wine / req_patron

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

AFSM and Huffman Flow Table (A/A reshuffled)

ack_wine / ack_patron

0 | o1 | 11 | 10
oo ToT@10 (@00 | — | 2,11
o — | = 301 @11
3] — |o0,00|®01]| —

req_wine / req_patron

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

AFSM and Huffman Flow Table (A/A reshuffled)

ack_wine [ack_patron

01/00 00 01 11 10
0|@© 10 [(©)00 | 3,01 [(O) 11
3 — 0,00 | @) 01 —

req_wine / req_patron

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

AFSM and Huffman Flow Table (A/A reshuffled)

ack_wine / ack_patron
00 | ot | 11 | 10
0|@10 [@o00 [@01 |@ 11 |

req_wine / req_patron

01/00

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Karnaugh Maps for Huffman’s A/A Reshuffled Circuit

ack_wine ack _wine

0|1 0|1

ack_patron o111 01011
11010 1101
req_wine req_patron

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Active/Active Reshuffled Circuit

req_ wine(| Q<} (| ack_patron
ack_wine|) } |) req_patron

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Active/Active Reshuffled Circuit

0 0
req wine(| o@ (| ack_patron
0 0

ack_wine| } | yreq_patron

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Active/Active Reshuffled Circuit

1 0
req wine(| o@ (| ack_patron
0 0

ack_wine| } | yreq_patron

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Active/Active Reshuffled Circuit

1 0
req wine(| o@ (| ack_patron
1 0

ack_wine| } | yreq_patron

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Active/Active Reshuffled Circuit

1 0
req wine(| o@ (| ack_patron
1 1

ack_wine| } | yreq_patron

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Active/Active Reshuffled Circuit

1 1
req wine(| o@ (| ack_patron
1 1

ack_wine| } | yreq_patron

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Active/Active Reshuffled Circuit

0 1
req wine(| o@ (| ack_patron
1 1

ack_wine| } | yreq_patron

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Active/Active Reshuffled Circuit

0 1
req wine(| o@ (| ack_patron
0 1

ack_wine| } | yreq_patron

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Active/Active Reshuffled Circuit

0 1
req wine(| o@ (| ack_patron
0 0

ack_wine| } | yreq_patron

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Active/Active Reshuffled Circuit

0 0
req wine(| o@ (| ack_patron
0 0

ack_wine| } | yreq_patron

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Active/Active Reshuffled Circuit

[0,inf] ack_patron [0,inf]

» o<

req_wine

[0,inf] [0,inf]

Vi

ack_wine reg_patron

This circuit is delay-insensitive.

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Passive/Active

Shop_PA:process

begin
guard(req wine,’1’); - winery calls
assign(ack_wine,’1’); - wine is received

guard(req wine,’0’); - req_wine resets

assign(ack_wine,’0’); - reset ack_wine

assign(req_patron,’1’); - call patron

guard (ack_patron,’1’); - patron buys wine

assign(req_patron,’0’); - reset reqg_patron

guard(ack_patron,’0’); - ack_patron resets
end process;

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Passive/Active Reshuffled

Shop_PA_reshuffled:process

begin
guard(req wine,’1’); - winery calls
assign(ack_wine,’1’); - receives wine

assign(req_patron,’1’); - call patron

guard(req _wine,’0’); - reg_wine resets

assign(ack_wine,’0’); - reset ack_wine

guard (ack_patron,’1’); - patron buys wine

assign(req_patron,’0’); - reset reqg_patron

guard(ack_patron,’0’); - ack_patron resets
end process;

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Passive/Lazy-Active Reshuffled

Shop_PA_lazy_active:process

begin
guard(req wine,’1’); - winery calls
assign(ack_wine,’1’); - receives wine

guard(ack_patron,’0’); - ack_patron resets

assign(req_patron,’1’); - call patron

guard(req_wine,’0’); - reg_wine resets

assign(ack_wine,’0’); - reset ack_wine

guard (ack_patron,’1’); - patron buys wine

assign(req_patron,’0’); - reset reqg_patron
end process;

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Petri-net (P/LA reshuffled)

req_patron+
ack_wine- ack_patron+ ack_patron-

RN

req_wine+ req_wine- req_patron-

Y

ack_winet+

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Petri-net (P/LA reshuffled)

req_patron+
ack_wine- ack_patron+ ack_patron-

N

req_wine+ req_wine- req_patron-

Ay

ack_winet

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Petri-net (P/LA reshuffled)

req_patron+
ack_wine- ack_patron+ ack_patron-

N

req_wine+ req_wine- req_patron-

Ry

ack_winet

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Labeled Petri Net (LPN) (P/LA reshuffled)

Shop_PA_lazy_active:process

begm {req_wine} {ack_patron}
guard(req wine,’1"); <ack_wine:=T> <req_patron:=F>
assign(ack_wine,’1");
guard (ack_patron,’0");
assign(req_patron,’1’);
guard(req_wine,'0’);
assign(ack_wine,’07); {~ack_patron} {~req wing}

guard (ack_patron,’1’); <req_patron:=T> <ack_wine:=F>
assign(req_patron,’0');
end process;

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

LPN (P/LA reshuffled)

..

{~ack_wine} {ack_wine} {req_wine} {’ack_patron}
<req_W|ne =T> <req_wine:=F> <ack_wine:=T> <req_patron:=F>
{~ack_patron} {~reg_wine}
<req_patron =T> <ack_wine:=F>
{req_patron} {~req_patron}

<ack_patron:=T> <ack_patron:=F>

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

From LPN to State Graph to Circuit

{~ack_wine} {ack_wine} {req_wine} {’ack_patron}
<req_wine:=T> <reg_wine:=F> <ack_wine:=T> <reg_patron:=F>
{~ack_patron} {~req_wine}
<reg_patron:=T> <ack_wine:=F>
{req_patron} {~req_patron}

<ack_patron:=T> <ack_patron:=F>

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

State Graph for P/LA Reshuffled ({ rw, ap, aw, rp))

req_wine+/1 i Wi fack_wine+/1

Karnaugh Maps for Passive/Lazy-Active Reshuffled

req_wine/ack_patron req_wine/ack_patron
00 |01 | 11 |10 00 |01 |11] 10
ack wine/ 00| O 0 1 1 o0 OO0 O
req _p atron 01| 0 0 0 0 01] 1 0|0 1
- 11| 0 0 1 1 11| 1 1 1 1
10 | 1 1 1 1 10 | 1 0|0 1
ack_wine req_patron

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Passive/Lazy-Active Reshuffled Circuit

req wine [>

ack_wine { ———

c [> req_patron

r O<} (] ack_patron

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Passive/Lazy-Active Reshuffled Circuit

0
req wine | >

0
ack_wine J——

0

O<} {_Jack_patron

0
c [req_patron
[

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Passive/Lazy-Active Reshuffled Circuit

1
req wine | >

0
ack_wine J——

0

O<} {_Jack_patron

0
c [req_patron
[

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Passive/Lazy-Active Reshuffled Circuit

1
req wine | >

1

ack_wine J——

0

O<} {_Jack_patron

0
c [req_patron
[

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Passive/Lazy-Active Reshuffled Circuit

1
req wine | >

1

ack_wine J——

0

O<} {_Jack_patron

1
c [req_patron
[

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Passive/Lazy-Active Reshuffled Circuit

1
req wine | >

1

ack_wine J——

1

O<} {_Jack_patron

1
c [req_patron
[

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Passive/Lazy-Active Reshuffled Circuit

0
req wine | >

1

ack_wine J——

1

O<} {_Jack_patron

1
c [req_patron
[

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Passive/Lazy-Active Reshuffled Circuit

0
req wine | >

0
ack_wine J——

1

O<} {_Jack_patron

1
c [req_patron
[

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Passive/Lazy-Active Reshuffled Circuit

0
req wine [>

0
ack_wine J——

1

O<} {_Jack_patron

0
c [req_patron
[

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Passive/Lazy-Active Reshuffled Circuit

0
req wine | >

0
ack_wine J——

0

O<} {_Jack_patron

0
c [req_patron
[

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Passive/Lazy-Active Reshuffled Circuit

[0,inf] req wine

ack | wine [Q.inf]

[0,inf]
\

req |patron

ack_patron

This circuit is delay-insensitive.

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Active/Active Protocol

Shop_AA:process

begin
assign(req_wine,’1l’); - call winery
guard(ack_wine,’1’); - wine arrives
assign(req wine,’0’); - reset req wine
guard(ack_wine,’0’); - ack_wine resets
assign(req_patron,’1’); - call patron
guard (ack_patron,’1’); - patron buys wine
assign(req_patron,’0’); - reset reqg_patron
guard(ack_patron,’0’); - ack_patron resets

end process;

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Active/Active State Variable

Shop_AA_state_variable:process

begin
assign(req_wine,’1’); - call winery
guard(ack_wine,’1’); - wine arrives
assign(x,’1’); - set state variable
assign(req wine,’0’); - reset req wine
guard(ack_wine,’0’); - ack_wine resets
assign(req patron,’1’); - call patron
guard(ack_patron,’1l’); - patron buys wine
assign(x,’0’); - reset state variable
assign(req_patron,’0’); - reset req_patron
guard (ack_patron,’0’); - ack_patron resets

end process;

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Active/Active State Variable Circuit

[0,inf] [0,inf]

req_wine us
d \

[0;inf]

ack_wine

[0inf]

3 [0;inf] ‘

[0,inf] req patron

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Active/Active State Variable Circuit

[0,inf] [0,inf]

req_wine ué
d \

[0;inf]

ack_wine

[0inf]

3 [0;inf] ‘

[0,inf] req patron

ack_patron

req_wine+, ack_wine+, x+, req_wine-, ack_wine-, req_patron+, ack_patron+

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Active/Active State Variable Circuit

[0,inf] [0,inf]

req_wine ué
d \

[0;inf]

ack_wine

[0inf]

3 [0;inf] ‘

[0,inf] req patron

ack_patron

req_wine+, ack_wine+, x+, req_wine-, ack_wine-, req_patron+, ack_patron+
ut-, u2-, x-, u4+, ué-

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Active/Active State Variable Circuit

[0,inf] [0,inf]

req_wine ué
d \

[0;inf]

ack_wine

[0inf]

3 [0;inf] ‘

[0,inf] req patron

ack_patron

req_wine+, ack_wine+, x+, req_wine-, ack_wine-, req_patron+, ack_patron+
ut-, u2-, x-, u4+, ué-
req_wine glitches!

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Huffman Circuits

Bounded gate and wire delay model.
Circuit does not need to be closed.
Single-input change fundamental mode.

e 6 ¢ ¢

One input changes — output changes —
state changes.

(]

May need to add delay in fed back state

variables.
David Huffman

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Active/Active Protocol

Shop_AA:process

begin
assign(req_wine,’1l’); - call winery
guard(ack_wine,’1’); - wine arrives
assign(req wine,’0’); - reset req wine
guard(ack_wine,’0’); - ack_wine resets
assign(req_patron,’1’); - call patron
guard (ack_patron,’1’); - patron buys wine
assign(req_patron,’0’); - reset reqg_patron
guard(ack_patron,’0’); - ack_patron resets

end process;

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

AFSM and Huffman Flow Table (A/A)

ack_wine / ack_patron

00 o1 |11] 10
01, —0|@oo0 | — | —
01400 1@ — [=1]2-0
2(3,0—-|] — | = |@o0
3/@o1 [o,0— | — | —

req_wine / req_patron

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Reduced AFSM and Huffman Flow Table (A/A)

Chris J. Myers (Lecture 1: Introduction)

ack_wine | ack_patron

00 | o1 |11] 10
0|@10 | @00 | — |1, -0
1[@Mo1 [0,0— | — [@o0

Asynchronous Circuit Design

req_wine/ req_patron

Karnaugh Maps for Huffman’s A/A Circuit

ack_wine/ack_patron ack_wine/ack_patron
x [00|01]11]10 x| 00|01 |11 |10
0] 1 0| — 1 — 0|0 o —-1020
1100 | —1]0 1] 1 — | =10
req_wine req_patron

ack_wine/ack_patron

x| 00|01 |11] 10

o0 |0 | — |1

1] 1 o — 11
X

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Huffman’s Active/Active Circuit

u4 ‘[O'U] > j]
req_wine
Y] |
d m—— o g —C
. ack_patron
ack_wine
D
L
X (o]
d |
LU L R

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Huffman’s Active/Active Circuit

w A0Ul

req_wine [oU] ‘ ‘[OU] >—O<]77<]

d (] w1 E]—G
ack_wine

= [oU]

O—11> ‘

X [0U]

G I

[[0U] - T (o] ‘ ’eq—PE‘>'°”

req_wine+, ack_wine+, X+, X+, req_wine-, ack_wine-, req_patron+,
ack_patron+

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Huffman’s Active/Active Circuit

w A0

req_wine [oU] ‘ ‘[OU] >—O<]77<]
d (] w1 ﬁ@
ack_wine

= (o]

O [

X [ou]

] [

req_wine+, ack_wine+, X+, X+, req_wine-, ack_wine-, req_patron+,
ack_patron+
x will not go low until after both u2- and u6- due to feedback delay assumption.

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Muller Circuits

@ Unbounded gate delay model.

@ Wire delays are assumed to be negligible.
@ Forks are assumed to be isochronic.

@ Model called speed-independent.

David Muller

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Muller’s Active/Active Circuit

X

_ o] G
req_wine [0,inf] ack_patron
- T G o] G
ack_wine
L — E y

X [0,inf]
J—

[0,inf] req_patron

[>o | D

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Muller’s Active/Active Circuit

X
o]]
req_wine [0,inf] ack_patron
- e G o]]
ack_wine
D
X [0,inf]
T
[0,inf] req_patron
[>o | D

req_wine+, ack_wine+, x+, req_wine-, ack_wine-, req_patron+, ack_patron+

Chris J. Myers (Lecture 1: Introduction)

Asynchronous Circuit Design

Muller’s Active/Active Circuit

X

. o] d
req_wine [0,inf] ack_patron

o] -

ack_wine

>

X [0,inf]
—

[0,inf] req_patron

req_wine+, ack_wine+, x+, req_wine-, ack_wine-, req_patron+, ack_patron+
ack_patron change felt at both x and req_wine gates simultaneously due to
isochronic fork assumption.

Chris J. Myers (Lecture 1: Introduction)

Asynchronous Circuit Design

Timed Wine Shop

Shop_AA_timed:process

begin
assign(req wine,’1’,0,1); - call winery
assign(req patron,’1’,0,1); - call patron
- wine arrives and patron arrives
guard_and (ack_wine,’1’,ack_patron,’1’);
assign(req_wine,’0",0,1);
assign(req_patron,’0’,0,1);
- walt for ack_wine and ack_patron to reset
guard_and (ack_wine,’0’,ack_patron,’0’);

end process;

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Timed Winery and Patron

winery:process

begin
guard(req wine,’1’); - wine requested
assign(ack_wine,’1’,2,3); - deliver wine

guard(req_wine,"0’);
assign(ack_wine,’0",2,3);

end process;

patron:process

begin
guard(req_patron,’l’); - shop called
assign(ack_patron,’1’,5,inf); - buy wine
guard(req_patron,’0’);
assign(ack_patron,’0’,5,7);

end process;

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

LPN for Timed Wine Shop Example

.

A

{req_wine} {~reg_wine} {~ack_wi ne& ~ack __patron} [0.1]
2,3] [2,3]
<ack_wine:=T> <ack_wine:=F> <req_wme =T> <req_patron:=F>

0o

[0.4] {ack_\ wme& ack _patron}
<req_patron:=T> req»wme =F>

{req_patron} {~req_patron}
[5,inf] [5,7]
<ack_patron:=T> <ack_patron:=F>

e

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

LPN for Timed Wine Shop Example

RN

{req_wine} {~reg_wine} {~ack_wi ne& ~ack __patron} [0.1]
(23] (2.3] <r atron:=F>
<ack_wine:=T> <ack_wine:=F> <req_wme =T> eLp

0o

{ack_\ wme& a\ck _patron}
<req_patron:=T> req_wme =F>

{req_patron} {~req_patron}
[5,inf] [57]
<ack_patron:=T> <ack_patron:=F>

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

State Graph for Timed Wine Shop Example

req_wine+ req_patron+

ack_patron- ack_winet
OF00 1R11
ack_patron+

ack_wine-

e petron e ine

State vector: (ack_wine, ack_patron, req_wine, req_patron)

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Karnaugh Maps for Timed Circuit

ack_wine/ack_patron ack_wine/ack_patron
00 | 01| 11| 10 00| 01|11 |10
req_wine/ 00 | 1 0| 0| — 60| 0| OO0 | —
req_patron ol -1=-10/- o -1 =-101-
- 11 | 1 — 10 1 11 | 1 — |1 1
10 | 1 — | =1 = 10 | 1 - | =] =
req_wine req_patron

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Timed Circuit

req wine ‘ [0.1] ack_patron ‘[5,i nf; 5,7]
C

[0.1] req_patron

M

[2.3] ack_wine

VoV

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Performance Analysis

@ Cycle time is the delay from when the patron gets one bottle of wine until

he can get another.

@ Assuming the timed circuit delays are uniformly distributed except that the
patron is extremely unlikely to take more then 10 minutes, we obtain the
following cycle times:

@ Muller and Huffman'’s circuits (A/A SV) - 21.5 minutes
@ Original (A/A reshuffled) - 20.6 minutes
@ Timed circuit - 15.8 minutes

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Validation versus Verification

@ Validation is simulation of interesting situations.
@ Verification is exhaustive checks of all possible situations.

@ Can check that circuit conforms to the specification.
@ Can check that protocol has certain properties.

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Sample Properties

@ The wine arrives before the patron:
o Always(ack_patron = ack_wine)

@ When the wine is requested, it eventually arrives:
e req_wine = Eventually(ack_wine)

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

Summary of Course Topics

Communication Channels

Communication Protocols

Graphical Representations
Huffman Circuits

Muller Circuits

Timed Circuits

Verification

e &6 6 © 6 ¢ ¢ ¢

Applications

Chris J. Myers (Lecture 1: Introduction) Asynchronous Circuit Design

