CS 6160: Voronoi Diagrams

Due Date: .

This assignment has 6 questions, for a total of 100 points and 20 bonus points. Unless otherwise specified, complete and reasoned arguments will be expected for all answers.

Question	Points	Bonus Points	Score
Distances	20	0	
Properties	30	0	
Reconstruction	20	0	
Farthest Point Diagrams	20	0	
Minimum Enclosing ball	10	0	
More Reconstruction	0	20	
Total:	100	20	

- - $d(\mathbf{p}, \mathbf{p}) = |p_x q_x| + |p_y q_y|$
 - $d(\mathbf{p}, \mathbf{p}) = max(|p_x q_x|, |p_y q_y|)$

- (a) [10] Prove that a Voronoi cell is unbounded if and only if the site associated with that cell lies on the convex hull of the set of sites.
- (b) [10] Prove that a Voronoi cell under the Euclidean distance must be convex.
- (c) [5] Can you describe a distance function for which a Voronoi cell is not convex?
- (d) [5] Argue for why computing the Voronoi diagram in the plane must take at least $\Omega(n \log n)$ time.

HINT: Consider a single cell and a Voronoi vertex on its boundary. Find a way to determine the site corresponding to that cell.