
2Convex Hulls
2.1 Definitions
Convexity is the key to understanding and simplifying geometry, and the
convex hull plays a role in geometry akin to the “sorted order” for a collection
of numbers.

So what is a convex set ? The easiest way to define it is in Euclidean space,
or more generally in a vector space over the reals.

Definition 2.1. A set of vectors 𝑆 in a vector space is said to be convex if for any
two vectors a,b ∈ 𝑆 and any 𝑡 ∈ [0, 1], the vector 𝑡a + (1 − 𝑡)b is also in 𝑆.

Figure 2.1: An example of a convex set and a nonconvex one.

Notes. This definition is not as fully general as it can be. The space can
be an ordered field in general. While the intuition behind the above definition
is that we draw a “straight line” between the two points, we could also draw
a geodesic when defining convexity in curved spaces. Topological convexity
can be defined axiomatically by using the closure properties of convex sets as
the definition of convexity.

Convex functions can be defined in terms of convex sets by looking at the
“shape” defined by the function.

Definition 2.2 (Convex Function). A function 𝑓 ∶ ℝ𝑑 → ℝ is said to be convex
if the set 𝑆 = {(x, 𝑦) ∣ 𝑦 ≥ 𝑓(x} is convex.

The set 𝑆 defined above is called the epigraph of 𝑓. Similarly, the set of
points below 𝑓 given by 𝑆 = {(x, 𝑦) ∣ 𝑦 ≤ 𝑓(x} is called its hypograph. A function
is concave if its hypograph is convex 1 .

Convex sets have some useful properties.
1Is the sphere convex ? Is it geodesically convex ?
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Figure 2.2: Convex and concave functions

• ∅ is convex, as is ℝ𝑑

• The intersection of any two convex sets is convex.
• In general, the union of two convex sets is not convex
If we have two points a1, a2, the set 𝑆 = {𝑡a1 + (1 − 𝑡)a2 ∣ 0 ≤ 𝑡 ≤ 1} is the

straight line connecting the two points. A more general way of writing this
is 𝑆 = {𝜆a1 +𝜆a2 ∣ 𝜆 +𝜆 = 1, 𝜆𝑖 ≥ 0}. For any fixed 𝜆𝑖 satisfying the above
constraints, the combination∑

𝑖 𝜆𝑖pi is called the convex combination.
This allows us to generalize the notion to more than two points.

Definition 2.3 (Convex Hull). The convex hull of a set of points is the set 𝑆 =
{∑𝑖 𝜆𝑖pi ∣ ∑𝜆𝑖 = 1, 𝜆𝑖 ≥ 0}. This is also called a convex polytope.

For two points, we’ve seen that this is the straight line connecting the
points. For three points, we get the triangle with the three points as corners.

The convex hull can also be defined as the smallest convex set containing
the points, where “smallest” here means that there is no other set contained
in the first that also contains the points. This alternate definition is useful if
we wish to define convexity in more general spaces.

H-representation. The representation of a convex set described above is of-
ten called the V-representation, since it’s expressed in terms of vertices of the
resulting convex polytope. There is an alternate view of a convex set that’s
equally important.

A hyperplane is described as 𝑆 = {x ∣ ⟨a, x⟩ = 𝑏}, where a is a normal to the
plane. A halfspace (one side of the hyperplane) can be described as ⟨a, x⟩ ≤ 𝑏.
Note that a halfspace is convex !

10



Suresh Venkatasubramanian Spring 2016

So let’s stack up a number of halfspaces and compute their intersection.
Since each halfspace is described by the pair ai, 𝑏𝑖, we canput themall together
in the matrix equation

𝐴x ≤ b
The space defined by these inequalities is called a polyhedron. We’ll say

that the polyhedron is bounded if it can be contained in some bounded region.
A deep result in the theory of polytopes says that bounded polyhedra and

polytopes are the same thing. Specifically,

Theorem 2.1 (Finite basis[4]). A set 𝑆 is a polytope iff it is a bounded polyhedron.

One way to interpret this is as saying that any bounded polyhedron in a
finite-dimensional space can be generated as the convex hull of a finite set of
points.

The extension to unbounded polyhedra is not very different. The equiv-
alent characterization result says that a general polyhedron can always be
written as the sum of a polytope and a cone2

2.2 Computing planar convex hulls
Supposewe are a given a collection of points, andwish to compute the convex
hull. For now, let’s say that we’re in the plane. Here, the boundary of the
hull consists of line segments connecting points, and so the complexity of the
boundary is twice the number of points on it.

Jarvis March. The simplest algorithm to compute the convex hull is often
called the gift-wrapping algorithm, or the Jarvis march[2]. Imagine taking a
thread and winding it around a point that is sure to be on the hull. Then as
you wrap it around the point set, it will pick off the convex hull vertices one
by one.

This algorithm runs in time 𝑂(𝑛ℎ) if ℎ is the size of the convex hull. And
if you don’t know ℎ, just run it till you return to c. It works because c is
guaranteed to be on the hull, and at all times we are constructing a set of lines
that completely contain the point set on one side.

Andrew’s Algorithm The above algorithm is fine if ℎ is small. But since ℎ
can be 𝑛 (think of points on a circle), the worst-case running time is 𝑂(𝑛).
Can we do better ?

2I’ll explain this later
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Algorithm 1 The Jarvis March

Find the leftmost point p. Call it c. Set c to be a point vertically
above c
for 𝑖 = 2…ℎ do
Find point 𝑝 ∈ 𝑃 such that cip has smallest slope greater than
ci−1ci.
Set c𝑖 = p.

The next algorithm runs in time 𝑂(𝑛 log𝑛) regardless of the size of the
hull. The idea is to preprocess the input and use the order to help decide
which points to pick.

Algorithm 2 Andrew’s algorithm

Sort all the points by 𝑥-coordinate. Renumber so that p is the left-
most point.
/* Now compute the upper hull */
Push p,p,p onto a stack.
while there are unpushed points do
Pop top three points c−, c−, c on stack.
if they form a left turn then
Push c−, c back onto stack./* deleted c− */

else
Push the three points back and then push next point from
sorted list onto stack

Output contents of stack in order of insertion.
/* repeat backwards for lower hull */

The sorting takes𝑂(𝑛 log𝑛) time, and the rest of the procedure only takes
linear time ! This is easy to see by an indirect argument. Notice that each point
is touched at most twice. Once when it’s pushed onto the stack, and once if
it’s removed later on. This implies that the total amount of work involved is
linear in the input.
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Chan’s algorithm Both of the above algorithms work well under certain
circumstances and are inefficient under others. Can we design an algorithm
that is optimal for all inputs ?

This next algorithm due to Timothy Chan[1] is extremely simple. It com-
bines the above two methods in a clever way in order to achieve a bound of
𝑂(𝑛 log ℎ) for computing an ℎ-sized convex hull of 𝑛 points.

There are two key ideas. Firstly, we guess the size of the convex hull: call
this guess 𝑚. Later, we will see how to make this guess “correct”. A second
insight is that in the Jarvis march, finding the next point of the hull is a lot
easier if the set you’re searching over already has a convex hull, because you
can do a binary search over the boundary of the hull instead of examining all
the points.

We first partition the points arbitrarily into ⌈𝑛/𝑚⌉ groups of size𝑚. In each
group, we use Andrew’s algorithm to compute a convex hull. The overall
running time of this step is 𝑂((𝑛/𝑚) ⋅ 𝑚 log𝑚 = 𝑛 log𝑚).

Now we run the Jarvis march on the collection of hulls. At each step,
we need to pick a point such that the resulting slope is as small as possible
relative to our current direction. For each convex hull, this point can be found
using binary search in 𝑂(log𝑚) time (since each hull has size at most𝑚). The
overall running time of each iteration is therefore𝑂(𝑛/𝑚 ⋅ log𝑚), and the total
running time is 𝑂(𝑛 log𝑚) again (since we run it for 𝑚 steps).

Algorithm 3 FindHull(𝑃,𝑚)

Partition 𝑃 into 𝑛/𝑚 groups 𝑃𝑖
for 𝑖 = 1…𝑛/𝑚 do
ℋ𝑖 = ConvexHull(𝑃𝑖)

Run Jarvis march on {ℋ𝑖} for 𝑚 steps
if we get a complete hull then
return success

else
return fail

But how do we make our guess ? Notice that if our guess 𝑚 is less than
the true hull size ℎ, then at some point we will have picked 𝑚 points to be on
the hull, but we would not have reached our starting point. So it’s possible to
detect if𝑚 ≤ ℎ. However, we don’t want to overshoot ℎ by toomuch, because
the running time might become too large.
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Since the overall running time for a guess𝑚 is𝑂(𝑛 log𝑚), we merely need
to make sure that log𝑚 = 𝑂(log ℎ). This can be achieved by repeatedly guess-
ing values of log𝑚, and doubling our guess each time. If we overshoot, then
log𝑚 ≤ 2 log ℎ.

Algorithm 4 Chan’s algorithm

𝑖 = 0
while FindHull(𝑃, 2𝑖) fails do
𝑖 ← 𝑖 + 1

Sowe set log𝑚 = 2, 4, 8, … , log ℎ, which corresponds to setting𝑚 = 2𝑖 , 0 ≤
𝑖 ≤ log log ℎ. The overall running time is then

𝑇(𝑛) =
log log ℎ

𝑖=

𝑛 log 2𝑖

= 𝑛
log log ℎ

𝑖=

2𝑖

≤ 𝑛2log log ℎ+

= 𝑛 log ℎ

2.3 Higher Dimensions
The above algorithm generalizes to three dimensions, and there are other
techniques you can apply as well. When things get to high dimensions, the
problem gets harder.

First of all, let’s talk about the representation. In 𝑑 dimensions, a poly-
tope admits facets of all dimensions: vertices are 0-dimensional, lines are 1-
dimensional, and so on. The convex hull is then written as the set of all the
facets and their adjacency relationships.

Since all faces are atmost 𝑑-dimensional, there’s a clear𝑂(𝑛𝑑)upper bound
on the total complexity of all the facets. But this is no good even in two di-
mensions.
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Three Dimensions
What about three dimensions? Here, we can make use of a well known theo-
rem by Steinitz. Consider any convex polytope (in particular the convex hull
of 𝑛 points in three dimensions). The skeleton of the polytope is the undirected
graph whose vertices are the vertices (𝑂-dimensional faces) of the polytope
and whose edges are the edges (1-dimensional faces) of the polytope.

Theorem 2.2 (Steinitz[]). A graph𝐺 is the skeleton of a convex polytope if and only
if it is planar and 3-connected.

Without going into details, the proof works as follows. To show that the
skeleton of a convex polytope is planar and 3-connected, you perform a series
of transformations to replace a “Y” in the polytope by a “Δ”, progressively
removing vertices while retaining the structure of the polytope. It can be
shown that this ends in a tetrahedron whose skeleton is the planar graph 𝐾.
A more informal and geometric way of seeing this is to orient the polytope
so that a face normal points in the upward 𝑧-direction and place a light at the
center of the face. The “shadow” of the skeleton will form a planar graph
(and the face surrounding the light will be the “infinite” face of the planar
graph). The other direction (showing that any planar 3-connected graph can
act as the skeleton of some convex polytope) is trickier, and relies in part on
the fact that any planar graph can be expressed in terms of contacts between
disks of different radii (coins) in the plane.

Taking Steinitz’s theorem as given yields the desired bound. Note that
any planar graph on 𝑛 vertices has at most 3𝑛−6 edges and 2𝑛−4 faces by Eu-
ler’s theorem. Therefore, the total complexity of the convex hull of 𝑛 vertices
in three dimensions is at most 6𝑛 − 10 = 𝑂(𝑛).

𝑑Dimensions
The reasoning above is specific to three dimensions and does not generalize.
It turns out that generalizing to higher dimensions is much harder. Fortu-
nately, the Upper Bound Theorem due to McMullen[3] states that the total
complexity of the convex hull of 𝑛 points in 𝑑 dimensions is 𝑂(𝑛⌊𝑑/⌋). The
proof is quite complicated and involves the idea of a shelling of a polytope.

But we can ask a simpler question: how many vertices can a polytope
defined by 𝑛 inequalities have ? Here, Seidel gave a beautiful two-line proof
(the proof is in fact in the abstract of his paper[5]).

The idea is as follows. Each vertex of the polytope is defined by the inter-
section of 𝑑 halfplanes. In particular, each vertex has 𝑑 edges (1-faces) emanat-

15



Computational Geometry

ing from it. Fix some direction so that all vertices are at different “heights”.
Now each vertex has 𝑑 edges emanating from it, and at least ⌈𝑑/2⌉ of these
edges point “up” or “down”. These edges will define a face of the polytope
(why?). Therefore, the total number of vertices is at most the sum of the num-
ber of facets of dimension at least ⌈𝑑/2⌉. There can be at most ( 𝑛

𝑑−𝑘) facets of
dimension 𝑘. Summing up, we get the desired bound.

Lowerbounds. The above bound is tight. In fact,McMullen showed a stronger
result; namely that the complexity of a polytope with 𝑛 vertices in 𝑑 dimen-
sions is at most the complexity of the cyclic polytope.

The cyclic polytope is constructed as follows. Define the moment curve
𝑓(𝑡) ∶ ℝ → ℝ𝑑 as the curve

𝑓(𝑡) = (𝑡, 𝑡, … , 𝑡𝑑)

Take any 𝑛 points on this curve and compute their convex hull. This is the
cyclic polytope. It has the property that any set of ⌊𝑑/2⌋ points define a face
(see Exercise 2.5). Also note that this is the dual of the bound we are looking
for: it lower bounds the complexity of the number of faces of a polytope on 𝑛
vertices, rather than bounding the number of vertices of a polyhedron defined
by 𝑛 inequalities. We’ll talk about geometric duality a little later.

2.4 The Data Connection
The convex hull is a basic data structure that we use in computational geom-
etry. It’s also a way to reduce data size. Consider the problem of finding the
diameter of a point set: the maximum distance between any two points in
the set. A little thought reveals that this distance must be achieved by two
points on the boundary of the convex hull and that these two points must
be on “opposite sides” of the hull. This is the basis for the rotating calipers
method[6].

Consider now the problem of classification. In (linear) binary classifica-
tion, you’re given two sets of points andmust find a hyperplane that separates
them by as large a margin as possible. Again, a little thought reveals that this
is the problem of finding the closest pair of points between two polytopes:
one being the convex hull of one set, the other being the convex hull of the
other. This insight leads to many algorithms for solving the binary classifica-
tion problem.
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Figure 2.3: Classification and convex hulls

2.5 After Notes
The curse of dimensionality. The bound for the 𝑑-dimensional convex hull
is our first encounter with the curse of dimensionality. This is the principle that
many geometric structures of interest grow exponentiallywith the dimension,
and here we see this to be true for the complexity of the convex hull.

What this means is that if we want to retain the benefits of the convex
hull in high dimensions, we will need to find a way to avoid computing the
convex hull explicitly.

Convex, Affine, Linear and Conic Combinations. Convex combinations
are only one of four different ways to combine points. Depending on the
conditions we place on the 𝜆𝑖, we get different types of combinations. These
can be summarized in a convenient table.

∑𝜆𝑖 = 1
True False

𝜆𝑖 ≥ 0 True Convex Conic
False Affine Linear

Table 2.1: Different combinations of points. In each case, we compute the set
𝑆 = {∑𝜆𝑖p𝑖}

2.6 Lower Bounds
It’s natural to ask whether the 𝑂(𝑛 log ℎ) bound for computing a convex hull
can be improved. Could we get 𝑂(𝑛 log log ℎ) or even 𝑂(𝑛)? The answer, in
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the right model of computation, turns out to be NO, for the same reason that
we can’t do better for sorting.

There’s a simple relation between convex hulls and sorting. Supposewe’re
given a set of numbers 𝑥, … , 𝑥𝑛 to sort. Construct the point set 𝑃 = {(𝑥𝑖, 𝑥𝑖 ) ∣
1 ≤ 𝑖 ≤ 𝑛}. Then it is easy to see that the convex hull of 𝑃 yields the numbers
in sorted order (technically, it wraps around at the end). The trick here is that
we’ve lifted the points to the parabola 𝑦 = 𝑥, which guarantees that they are
all in convex position and will therefore all lie on the convex hull in order
from left to right.

Figure 2.4: Lifting points to the parabola

Weknow that any comparison-based sorting algorithmmustmake atΩ(𝑛 log𝑛)
comparisons. In particular, these comparisons could be arbitrary functions
of the input numbers. So no matter what geometric operations we perform,
these are permissible operations in the comparison-based model and there-
fore the lower bound of Ω(𝑛 log𝑛) applies.

Algebraic Computation Trees
Most geometric algorithms operate in a relatively simple computationalmodel
that we call the algebraic computation tree. The tree is labeled with opera-
tions that can either be arithmetic operations (the basic operators and√ ) or
test operators (≤,≥, =). It is not hard to see that the convex hull algorithms
described above can all be expressed using these operators. Note that we do
not charge for the representation of intermediate values: it is entirely possible
that the computation tree involves 𝑛 squaring operations that would blow up
the size of a variable. The subtlety with these operators is that we forbid the
use of the floor function ⌊⋅⌋. The combination of the floor function and con-
stant time arithmetic operations is in fact sufficient to collapse P and PSPACE
[?]. Be warned!

Exercises.

2.1. Andrew’s algorithm requires points to be sorted, and this is the source
of the 𝑂(𝑛 log𝑛) bound. Maybe we could do better without a sorted order.
Suppose we had a simple polygon, and we ran the algorithm in the order of
the points on the boundary of the polygon. Would it work ?
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2.2. We are given three points in ℝ. Describe their convex hull, affine hull,
conic hull, and linear hull. Remember that the 𝑥-hull is formed by taking all
possible 𝑥-combinations of the points.

2.3. Describe a divide-and-conquer-based strategy to compute the convex
hull of 𝑛 points in the plane in 𝑂(𝑛 log𝑛) time.

2.4. How does the problem of finding a maximum margin classifier sep-
arating two sets of points reduce to the problem of finding the closest pair
between two polytopes ? You may explain your answer in the plane.

2.5. Prove that if we take the convex hull of any 𝑛 points on the moment
curve, then

• Any set of ⌊𝑑/2⌋ points forms a face.
• (Gale Evenness criterion): Let the set of points be 𝑃 = 𝑡, 𝑡, … , 𝑡𝑛. Then
any 𝑑-subset 𝑇 of 𝑃 is a facet if and only any two elements of 𝑃 − 𝑇 are
separated by an even number of points from 𝑇 in the sequence 𝑡, … , 𝑡𝑛.

2.6. Let 𝑃 be a set of 𝑛 points in the plane. We define the width of 𝑃 as the
minimum distance between two parallel lines that enclose all of 𝑃 between
them.

Figure 2.5: The width of a point set
Design an algorithm running in𝑂(𝑛 log 𝑛) time to compute the width of a

point set. HINT: Think about the convex hull.
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