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Preface

Static program analysis is the art of reasoning about the behavior of computer
programs without actually running them. This is useful not only in optimizing
compilers for producing efficient code but also for automatic error detection
and other tools that can help programmers. A static program analyzer is a pro-
gram that reasons about the behavior of other programs. For anyone interested
in programming, what can be more fun than writing programs that analyze
programs?

As known from Turing and Rice, all nontrivial properties of the behavior
of programs written in common programming languages are mathematically
undecidable. This means that automated reasoning of software generally must
involve approximation. It is also well known that testing, i.e. concretely running
programs and inspecting the output, may reveal errors but generally cannot
show their absence. In contrast, static program analysis can – with the right kind
of approximations – check all possible executions of the programs and provide
guarantees about their properties. One of the key challenges when developing
such analyses is how to ensure high precision and efficiency to be practically
useful.

These notes present principles and applications of static analysis of programs.
We cover basic type analysis, lattice theory, control flow graphs, dataflow ana-
lysis, fixed-point algorithms, narrowing and widening, path sensitivity, interpro-
cedural analysis and context sensitivity, control flow analysis, and several flavors
of pointer analysis. A tiny imperative programming language with pointers and
first-class functions is subjected to numerous different static analyses illustrating
the techniques that are presented.

We emphasize a constraint-based approach to static analysis where suitable
constraint systems conceptually divide the analysis task into a front-end that
generates constraints from program code and a back-end that solves the con-
straints to produce the analysis results. This approach enables separating the
analysis specification, which determines its precision, from the algorithmic as-
pects that are important for its performance. In practice when implementing
analyses, we often solve the constraints on-the-fly, as they are generated, without

iii



iv Preface

representing them explicitly.
We focus on analyses that are fully automatic (i.e., not involving programmer

guidance, for example in the form of loop invariants) and conservative (sound
but incomplete), and we only consider Turing complete languages (like most
programming languages used in ordinary software development).

The analyses that we cover are expressed using different kinds of constraint
systems, each with their own constraint solvers:

• term unification constraints, with an almost-linear union-find algorithm,

• conditional subset constraints, with a cubic algorithm, and

• monotone constraints over lattices, with variations of fixed-point solvers.

The style of presentation is intended to be precise but not overly formal.
The readers are assumed to be familiar with advanced programming language
concepts and the basics of compiler construction and computability theory.

The notes are accompanied by a web site that provides lecture slides, an
implementation (in Scala) of most of the algorithms we cover, and additional
exercises:

http://cs.au.dk/˜amoeller/spa/



Chapter 1

Introduction

Static program analysis has been used since the 1970’s in optimizing compilers.
More recently, it has proven useful also for bug finding and verification tools and
in IDEs to support, for example, navigation, code completion, refactoring, and
program understanding. Static program analysis aims to automatically answer
questions about a given program. There are many interesting such questions,
for example:

• Can input values from untrusted users flow unchecked to file system
operations? (That may have serious security implications.)

• Can secret information become publicly observable? (Similar to the previ-
ous example.)

• Does the program terminate on every input? (Most programs are intended
to have this property.)

• Can the program deadlock? (This is often a concern for multi-threaded
programs that use locks for synchronization.)
• How large can the heap become during execution? (Perhaps the program

needs to run on an embedded device where we do not want to put more
memory than necessary.)

• Does there exist an input that leads to a null pointer dereference, division-
by-zero, or arithmetic overflow? (Such situation are considered errors in
most programs, similar to nontermination.)

• Are all assertions guaranteed to succeed? (Assertions express program
specific correctness properties that are supposed to hold in all executions.)

• Are all variables initialized before they are read? (If not, the program may
be vulnerable to attacks by malicious users.)

• Are arrays always accessed within their bounds? (Similar to the previous
example, this is important for security reasons.)
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• Can there be dangling references, e.g. pointers to memory that has been
freed? (Yet another cause of security issues.)

• Does the program contain dead code, or more specifically, is function f
unreachable from main? (If so, the code size can be reduced.)

• Does the value of variable x depend on the program input? (If not, it could
be precomputed at compile time.)

• Is it possible that the value of x will be read in the future? (If so, it may be
worthwhile to cache the value.)
• Do p and q point to disjoint structures in the heap? (That may enable

parallel processing.)
• Are all resources properly released before the program terminates? (Oth-

erwise, the program may run out of resources at some point.)
• What types of values can variable x have? (Maybe some of those types are

not what the programmer intended.)
• At which program points could x be assigned its current value? (Pro-

grammers often ask this kind of question when trying to understand large
codebases.)

• Which functions may possibly be called on line 117? (Similar to the previ-
ous example.)

• What are the lower and upper bounds of the integer variable x? (The
answer may guide the choice of runtime representation of the variable.)

• Is function f always called before function g? (Perhaps the documentation
of those functions require this to be the case.)

• Can the value of variable x affect the value of variable y? (Such questions
often arise during debugging, when programmers try to understand why
a certain bug appears.)

Regarding correctness, programmers routinely use testing to gain confidence
that their programs work as intended, but as famously stated by Dijkstra: “Pro-
gram testing can be used to show the presence of bugs, but never to show their absence.”
Ideally we want guarantees about what our programs may do for all possible
inputs, and we want these guarantees to be provided automatically, that is, by
programs. A program analyzer is such a program that takes other programs as
input and decides whether or not they have a given property.

Rice’s theorem is a general result from 1953 which informally states that
all interesting questions about the behavior of programs (written in Turing-
complete programming languages1) are undecidable. This is easily seen for any
special case. Assume for example the existence of an analyzer that decides if a
variable in a program has a constant value in any execution. In other words, the
analyzer is a programA that takes as input a program T and one of T ’s variables
x, and decides whether or not x has a constant value whenever T is executed.

1From this point on, we only consider Turing complete languages.
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(T,x)

A

Is the value of variable 

in     always a constant

when     is executed?

T

T

x

yes

no

We could then exploit this analyzer to also decide the halting problem by
using as input the following program where TM(j) simulates the j’th Turing
machine on empty input:

x = 17; if (TM(j)) x = 18;

Here x has a constant value if and only if the j’th Turing machine does not
halt on empty input. If the hypothetical constant-value analyzer A exists, then
we have a decision procedure for the halting problem, which is known to be
impossible.

This seems like a discouraging result. However, our real goal is not to decide
such properties but rather to solve practical problems like making the program
run faster or use less space, or finding bugs in the program. The solution
is to settle for approximative answers that are still precise enough to fuel our
applications. While it is impossible to build an analysis that would correctly
decide a property for any analyzed program, it is often possible to build analysis
tools that give useful answers for most realistic programs. As the ideal analyzer
does not exist, there is always room for building more precise approximations
(which is colloquially called the full employment theorem for static program analysis
designers).

Approximative answers may be useful for finding bugs in programs, which
may be viewed as a weak form of program verification. As a case in point,
consider programming with pointers in the C language. This is fraught with
dangers such as null dereferences, dangling pointers, leaking memory, and
unintended aliases. Ordinary compilers offer little protection from pointer errors.
Consider the following small program which may perform every kind of error:

int main(int argc, char *argv[]) {

if (argc == 42) {

char *p,*q;

p = NULL;

printf("%s",p);

q = (char *)malloc(100);

p = q;

free(q);

*p = ’x’;

free(p);

p = (char *)malloc(100);

p = (char *)malloc(100);

q = p;
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strcat(p,q);

assert(argc > 87);

}

}

Standard compiler tools such as gcc -Wall detect no errors in this program.
Finding the errors by testing might miss the errors, unless we happen to have
a test case that runs the program with exactly 42 arguments. However, if we
had even approximative answers to questions about null values, pointer targets,
and branch conditions then many of the above errors could be caught statically,
without actually running the program.

Exercise 1.1: Describe all the pointer-related errors in the above program.

Ideally, the approximations we use are conservative (or safe), meaning that all
errors lean to the same side, which is determined by our intended application.
As an example, approximating the memory usage of programs is conservative if
the estimates are never lower than what is actually possible when the programs
are executed. Conservative approximations are closely related to the concept
of soundness of program analyzers. We say that a program analyzer is sound if
it never gives incorrect results (but it may answer maybe). Thus, the notion of
soundness depends on the intended application of the analysis output, which
may cause some confusion. For example, a verification tool is typically called
sound if it never misses any errors of the kinds it has been designed to detect, but
it is allowed to produce spurious warnings (also called false positives), whereas
an automated testing tool is called sound if all reported errors are genuine, but
it may miss errors.

Program analyses that are used for optimizations typically require soundness.
If given false information, the optimization may change the semantics of the
program. Conversely, if given trivial information, then the optimization fails to
do anything.

Consider again the problem of determining if a variable has a constant value.
If our intended application is to perform constant propagation optimization,
then the analysis may only answer yes if the variable really is a constant and
must answer maybe if the variable may or may not be a constant. The trivial
solution is of course to answer maybe all the time, so we are facing the engineering
challenge of answering yes as often as possible while obtaining a reasonable
analysis performance.

(T,x)

A

Is the value of variable 

in     always a constant

when     is executed?

T

T

x

yes, definitely!

maybe, don’t know

In the following chapters we focus on techniques for computing approxima-
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tions that are conservative with respect to the semantics of the programming
language.

1.1 Undecidability of Program Correctness

(This section requires familiarity with the concept of universal Turing machines;
it is not a prerequisite for the following chapters.)

The reduction from the halting problem presented above shows that some
static analysis problems are undecidable. However, halting is often the least of
the concerns programmers have about whether their programs work correctly.
For example, if we wish to ensure that the programs we write cannot crash with
null pointer errors, we may be willing to assume that the programs do not also
have problems with infinite loops.

Using a diagonalization argument we can show a very strong result: It is
impossible to build a static program analysis that can decide whether a given
program may fail when executed. Moreover, this result holds even if the analysis
is only required to work for programs that halt on all inputs. The halting problem
is not the only obstacle. Approximation is inevitable.

If we model programs as deterministic Turing machines, program failure can
be modeled using a special fail state.2 That is, on a given input, a Turing machine
will eventually halt in its accept state (intuitively returning “yes”), in its reject
state (intuitively returning “no”), in its fail state (meaning that the correctness
condition has been violated), or the machine diverges (i.e., never halts). A Turing
machine is correct if its fail state is unreachable.

We can show the undecidability result using an elegant proof by contradic-
tion. Assume P is a program that can decide whether or not any given total
Turing machine is correct. (If the input to P is not a total Turing machine, P ’s
output is unspecified – we only require it to correctly analyze Turing machines
that always halt.) Let us say that P halts in its accept state if and only if the given
Turing machine is correct, and it halts in the reject state otherwise. Our goal is
to show that P cannot exist.

If P exists, then we can also build another Turing machine, let us call it M ,
that takes as input the encoding e(T ) of a Turing machine T and then builds the
encoding e(ST ) of yet another Turing machine ST , which behaves as follows:
ST is essentially a universal Turing machine that is specialized to simulate T on
input e(T ). Let w denote the input to ST . Now ST is constructed such that it
simulates T on input e(T ) for at most |w|moves. If the simulation ends in T ’s
accept state, then ST goes to its fail state. It is obviously possible to create ST in
such a way that this is the only way it can reach its fail state. If the simulation does
not end in T ’s accept state (that is, |w|moves have been made, or the simulation
reaches T ’s reject or fail state), then ST goes to its accept state or its reject state
(which one we choose does not matter). This completes the explanation of how

2Technically, we here restrict ourselves to safety properties; liveness properties can be addressed
similarly using other models of computability.
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ST works relative to T and w. Note that ST never diverges, and it reaches its fail
state if and only if T accepts input e(T ) after at most |w|moves. After building
e(ST ), M passes it to our hypothetical program analyzer P . Assuming that P
works as promised, it ends in accept if ST is correct, in which case we also let M
halt in its accept state, and in reject otherwise, in which case M similarly halts
in its reject state.

P

M

e(T)
accept accept

reject reject

e(S  )T
construct 

from e(T)

e(S  )
T

We now ask: Does M accept input e(M)? That is, what happens if we run
M with T = M? If M does accept input e(M ), it must be the case that P
accepts input e(ST ), which in turn means that ST is correct, so its fail state is
unreachable. In other words, for any input w, no matter its length, ST does
not reach its fail state. This in turn means that T does not accept input e(T ).
However, we have T = M , so this contradicts our assumption that M accepts
input e(M). Conversely, if M rejects input e(M), then P rejects input e(ST ), so
the fail state of ST is reachable for some input v. This means that there must
exist some w such that the fail state of ST is reached in |w| steps on input v, so
T must accept input e(T ), and again we have a contradiction. By construction
M halts in either accept or reject on any input, but neither is possible for input
e(M). In conclusion, the ideal program correctness analyzer P cannot exist.

Exercise 1.2: In the above proof, the hypothetical program analyzer P is only
required to correctly analyze programs that always halt. How can the proof
be simplified if we want to prove the following weaker property? There exists
no Turing machine P that can decide whether or not the fail state is reachable
in a given Turing machine. (Note that the given Turing machine is now not
assumed to be total.)



Chapter 2

A Tiny Imperative
Programming Language

We use a tiny imperative programming language, called TIP, throughout the
following chapters. It is designed to have a minimal syntax and yet to contain all
the constructions that make static analyses interesting and challenging. Different
language features are relevant for the different static analysis concepts, so in
each chapter we focus on a suitable fragment of the language.

2.1 The Syntax of TIP

In this section we present the formal syntax of the TIP language, based on
context-free grammars. TIP programs interact with the world simply by reading
input from a stream of integers (for example obtained from the user’s keyboard)
and writing output as another stream of integers (to the user’s screen). The
language lacks many features known from commonly used programming lan-
guages, for example, global variables, records, objects, nested functions, and
type annotations. We will consider some of those features in exercises in later
chapters.

Expressions
The basic expressions all denote integer values:

I→ 0 | 1 | -1 | 2 | -2 | . . .
X→ x | y | z | . . .
E→ I
| X
| E + E | E - E | E * E | E / E | E > E | E == E
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| ( E )
| input

Expressions E include integer constants I and variables X. The input expression
reads an integer from the input stream. The comparison operators yield 0 for
false and 1 for true. Function calls and pointer expressions will be added later.

Statements
The simple statements S are familiar:

S→ X = E;
| output E;
| S S
|
| if (E) { S }

[
else { S }

]?
| while (E) { S }

We use the notation
[
. . .
]? to indicate optional parts. In the conditions we

interpret 0 as false and all other values as true. The output statement writes an
integer value to the output stream.

Functions
A function declaration F contains a function name, a number of parameters,
local variable declarations, a body statement, and a return expression:

F→ X ( X,. . .,X ) {
[
var X,. . .,X;

]? S return E; }

The var block declares a collection of uninitialized local variables. Function calls
are an extra kind of expression:

E→ X ( E,. . .,E )

We sometimes treat var blocks and return instructions as statements.

Pointers
To allow dynamic memory allocation, we introduce heap pointers:

E→ alloc
| &X
| *E
| null

The first expression allocates a new cell in the heap, the second expression creates
a pointer to a variable (we refer to such pointers as heap pointers, even though
local variables may technically reside in the call stack), and the third expression
dereferences a pointer value. In order to assign values through pointers we
allow another form of assignment:
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S→ *X = E;

In such an assignment, if the variable on the left-hand-side holds a pointer to a
heap cell or local variable, then the value of the right-hand-side expression is
stored in that cell. Note that pointers and integers are distinct values, so pointer
arithmetic is not possible. It is of course limiting that alloc only allocates a
single heap cell, but this is sufficient to illustrate the challenges that pointers
impose.

We also allow another kind of pointer, namely function pointers, which
makes functions first-class values. The name of a function can be used as a
variable that points to the function. In order to use function pointers, we add a
generalized form of function calls (sometimes called computed function calls, in
contrast to the simple direct calls described earlier):

E→ (E)( E,. . .,E )

Unlike simple function calls, the function being called is now an expression
(enclosed by parentheses) that evaluates to a function pointer. Function pointers
serve as a primitive model for objects or higher-order functions.

Programs
A complete program is just a collection of functions:

P→ F . . .F

(We sometimes also refer to indivial functions or statements as programs.) For a
complete program, the function named main is the one that initiates execution.
Its arguments are supplied in sequence from the beginning of the input stream,
and the value that it returns is appended to the output stream.

To keep the presentation short, we deliberately have not specified all details
of the TIP language, neither the syntax nor the semantics.

Exercise 2.1: Identify some of the under-specified parts of the TIP language,
and propose meaningful choices to make it more well-defined.

2.2 Example Programs

The following TIP programs all compute the factorial of a given integer. The
first one is iterative:

iterate(n) {

var f;

f = 1;

while (n>0) {

f = f*n;

n = n-1;
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}

return f;

}

The second program is recursive:

recurse(n) {

var f;

if (n==0) { f=1; }

else { f=n*recurse(n-1); }

return f;

}

The third program is unnecessarily complicated:

foo(p,x) { main() {

var f,q; var n;

if (*p==0) { f=1; } n = input;

else { return foo(&n,foo);

q = alloc; }

*q = (*p)-1;

f=(*p)*((x)(q,x));

}

return f;

}

2.3 Normalization

A rich and flexible syntax is useful when writing programs, but when describing
and implementing static analyses, it is often convenient to work with a syntacti-
cally simpler language. For this reason we sometimes normalize programs by
transforming them into equivalent but syntactically simpler ones. A particularly
useful normalization is to flatten nested pointer expressions, such that pointer
dereferences are always of the form *X rather than the more general *E, and sim-
ilarly, computed function calls are always of the form (X)(X,. . .,X) rather than
(E)(E,. . .,E). It may also be useful to flatten arithmetic expressions, arguments
to direct calls, branch conditions, and return expressions.

Exercise 2.2: Argue that any program can be normalized so that there are no
nested expressions.

Exercise 2.3: Show how the following statement can be normalized:
x = (**f)(g()+h());
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Exercise 2.4: In the current syntax for TIP, heap assignments are restricted to
the form *X = E. Languages like C allow the more general *E1 = E2 where E1

is an expression that evaluates to a (non-function) pointer. Explain how the
statement **x=**y; can be normalized to fit the current TIP syntax.

TIP uses lexical scoping, however, we make the notationally simplifying as-
sumption that all declared variable and function names are unique in a program,
i.e. that no identifiers is declared more than once.

Exercise 2.5: Argue that any program can be normalized so that all declared
identifiers are unique.

2.4 Abstract Syntax Trees

Abstract syntax trees (ASTs) as known from compiler construction provide
a representation of programs that is suitable for flow-insensitive analysis, for
example, type analysis (Chapter 3), control flow analysis (Chapter 8), and pointer
analysis (Chapter 9). Such analyses ignore the execution order of statements
in a function or block, which makes ASTs a convenient representation. As an
example, the AST for the ite program can be illustrated as follows.

*

f n

f

var

n

f

return

f = ...>

n 0

while

−

n 1

n = ...

f = ...

1

ite

With this representation, it is easy to extract the set of statements and and their
structure for each function in the program.

2.5 Control Flow Graphs

For flow-sensitive analysis , in particular dataflow analysis (Chapter 5), where
statement order matters it is more convenient to view the program as a control
flow graph, which is a different representation of the program source.
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We first consider the subset of the TIP language consisting of a single function
body without pointers. Control flow graphs for programs comprising multiple
functions are treated in Chapters 7 and 8.

A control flow graph (CFG) is a directed graph, in which nodes correspond
to statements and edges represent possible flow of control. For convenience, and
without loss of generality, we can assume a CFG to always have a single point of
entry, denoted entry, and a single point of exit, denoted exit. We may think of
these as no-op statements.

If v is a node in a CFG then pred(v) denotes the set of predecessor nodes and
succ(v) the set of successor nodes.

Control Flow Graphs for Statements
For now, we only consider simple statements, for which CFGs may be constructed
in an inductive manner. The CFGs for assignments, output, return statements,
and declarations look as follows:

EreturnEoutputid = E var id

For the sequence S1 S2, we eliminate the exit node of S1 and the entry node of
S2 and glue the statements together:

S

S

1

2

Similarly, the other control structures are modeled by inductive graph construc-
tions (sometimes with branch edges labeled with true and false):

E

S S1 2

E

S

false

truetrue

false
E

S

true false
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Using this systematic approach, the iterative factorial function results in the
following CFG:

false

true

var f

f=1

n>0

return f

f=f*n

n=n−1

Exercise 2.6: Draw the AST and the CFG for the rec program from Section 2.2.

Exercise 2.7: If TIP were to be extended with a do-while construct (as in
do { x=x-1; } while(x>0)), what would the corresponding control flow
graphs look like?





Chapter 3

Type Analysis

The TIP programming language does not have explicit type declarations, but
of course the various operations are intended to be applied only to certain
arguments. Specifically, the following restrictions seem reasonable:

• arithmetic operations and comparisons apply only to integers;

• conditions in control structures must be integers;

• only integers can be input and output of the main function;

• only functions can be called, and with correct number of arguments; and

• the unary * operator only applies to heap pointers.

We assume that their violation results in runtime errors. Thus, for a given
program we would like to know that these requirements hold during execution.
Since this is an nontrivial question, we immediately know (Section 1.1) that it is
undecidable.

We resort to a conservative approximation: typability. A program is typable if
it satisfies a collection of type constraints that is systematically derived, typically
from the program AST. The type constraints are constructed in such a way
that the above requirements are guaranteed to hold during execution, but the
converse is not true. Thus, our type checker will be conservative and reject some
programs that in fact will not violate any requirements during execution.

Exercise 3.1: Type checking also in mainstream languages like Java may reject
programs that cannot encounter runtime type errors. Give an example of
such a program. To make the exercise more interesting, every instruction in
your program should be reachable by some input.
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Exercise 3.2: Even popular programming languages may have static type
systems that are unsound. Inform yourself about Java’s covariant typing of
arrays. Construct an example Java program that passes all of javac’s type
checks but generates a runtime error due to this covariant typing. (Note that,
because you do receive runtime errors, Java’s dynamic type system is sound,
which is important to avert malicious attacks, e.g. through type confusion or
memory corruption.)

3.1 Types
We first define a language of types that will describe possible values:

τ → int
| &τ
| (τ,. . .,τ)->τ

These type terms describe respectively integers, heap pointers, and functions.
As an example, we can assign the type (int)->int to the iterate function from
Section 2.2 and the type &int to the first parameter p of the foo function. Each
kind of term is characterized by a term constructor with some arity. For example,
& is a term constructor with arity 1 as it has one sub-term, and the arity of a
function type constructor (. . . )->. . . is the number of function parameters plus
one for the return type.

The grammar would normally generate finite types, but for recursive func-
tions and data structures we need regular types. Those are defined as regular
trees defined over the above constructors. Recall that a possibly infinite tree is
regular if it contains only finitely many different subtrees.

For example, we need infinite types to describe the type of the foo function
from Section 2.2, since the second parameter x may refer to the foo function
itself:

(&int,(&int,(&int,(&int,...)->int)->int)->int)->int

To express such recursive types consisely, we add the µ operator and type
variables α to the language of types:

τ → µα.τ
| α

α→ x1 | x2 | . . .

A type of the form µα.τ [α] is considered identical to the type τ [µα.τ/α].1 With
this extra notation, the type of the foo function can be expressed like this:

1Think of a term µα.τ as a quantifier that binds the type variable α in the sub-term τ . An
occurrence of α in a term τ is free if it is not bound by an enclosing µ. The notation τ1[τ2/α] denotes
a copy of τ1 where all free occurrences of α have been substituted by τ2.
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µx1.(&int,x1)->int

Exercise 3.3: Show how regular types can be represented by finite automata
so that two types are equal if their automata accept the same language.

We allow type variables not to be bound by an enclosing µ. Such type
variables are implicitly universally quantified, meaning that they represent any
type. Consider for example the following function:

store(x,y) {

*y = x;

return 0;

}

It has type (τ1,&τ1)->int for any type τ1, which corresponds to the polymorphic
behavior it displays. Note that such type variables are not necessarily entirely
unconstrained: the type of x may be anything, but it must match the type of
whatever y points to. The more restricted type (int,&int)->int is also a valid
type for the store function, but we are usually interested in the most general
solutions.

Exercise 3.4: What are the types of rec, f, and n in the recursive factorial
program from Section 2.2?

Exercise 3.5: Write a TIP program that contains a function with type
((int)->int)->(int,int)->int.

Type variables are not only useful for expressing recursive types; we also use
them in the following section to express systems of type constraints.

3.2 Type Constraints

For a given program we generate a constraint system and define the program
to be typable when the constraints are solvable. In our case we only need to
consider equality constraints over regular type terms with variables. This class
of constraints can be efficiently solved using a unification algorithm.

For each identifier (i.e. local variable, function parameter, or function name)
X we introduce a type variable [[X]], and for each occurrence of a non-identifier
expression E a type variable [[E]]. Here, E refers to a concrete node in the ab-
stract syntax tree—not to the syntax it corresponds to. This makes our notation
slightly ambiguous but simpler than a pedantically correct description. (To avoid
ambiguity, one could, for example, use the notation [[E]]v where v is a unique
ID of the syntax tree node.) Assuming that all declared identifiers are unique
(see Exercise 2.5), there is no need to use different type variables for different
occurrences of the same identifier.

The constraints are systematically defined for each construct in our language:
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I: [[I]] = int
E1 op E2: [[E1]] = [[E2]] = [[E1 op E2]] = int
E1==E2: [[E1]] = [[E2]] ∧ [[E1==E2]] = int
input: [[input]] = int
X = E: [[X]] = [[E]]

output E: [[E]]= int
if (E) S: [[E]]= int

if (E) S1 else S2: [[E]]= int
while (E) S: [[E]]= int

X(X1,. . .,Xn){ . . .return E; }: [[X]] = ([[X1]],. . .,[[Xn]])->[[E]]
X(E1,. . .,En): [[X]] = ([[E1]],. . .,[[En]])->[[X(E1,. . .,En)]]
(E)(E1,. . .,En): [[E]] = ([[E1]],. . .,[[En]])->[[(E)(E1,. . .,En)]]

&X: [[&X]]= &[[X]]
alloc: [[alloc]]= &α
null: [[null]]= &α
*E: [[E]]= &[[*E]]

*X = E: [[X]]= &[[E]]

In the above rules, each occurrence of α denotes a fresh type variable. Note
that variable references and declarations do not yield any constraints and that
parenthesized expression are not present in the abstract syntax.

For the program

short() {

var x, y, z;

x = input;

y = alloc;

*y = x;

z = *y;

return z;

}

we obtain the following constraints:

[[short]]= ()->[[z]]
[[input]] = int
[[x]] = [[input]]
[[alloc]] = &x1
[[y]] = [[alloc]]
[[y]] = &[[x]]
[[z]] = [[*y]]
[[y]] = &[[*y]]

Most of the constraint rules are straightforward. For example, for any syntac-
tic occurrence of E1==E2 in the program being analyzed, the two
sub-expressions E1 and E2 must have the same type, and the result is always of
type integer.
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Exercise 3.6: Explain each of the above type constraint rules, most importantly
those involving functions and heap pointers.

All term constructors furthermore satisfy the general term equality axiom:

c(t1, . . . , tn) = c′(t′1, . . . , t
′
n) ⇒ ti = t′i for each i

where c and c′ are term constructors and each ti and t′i is a sub-term. In the
previous example two of the constraints are [[y]] = &[[x]]and [[y]] = &[[*y]], so by the
term equality axiom we also have [[x]]= [[*y]].

In this way, a given program gives rise to a collection of equality constraints
on type terms with variables, and the collection of constraints can be built by a
simple traversal of the AST of the program being analyzed.

A solution assigns to each type variable a type, such that all equality con-
straints are satisfied. The correctness claim for the type analysis is that the
existence of a solution implies that the specified runtime errors cannot occur
during execution. A solution for the short program is the following:
[[short]] = ()->int
[[x]] = int
[[y]] = &int
[[z]] = int

Exercise 3.7: Assume y = alloc in the short function is changed to
y = 42. Show that the resulting constraints are unsolvable.

Exercise 3.8: Extend TIP with procedures, which, unlike functions, do not
return anything. Show how to extend the language of types and the type
constraint rules accordingly.

3.3 Solving Constraints with Unification

If solutions exist, then they can be computed in almost linear time using a
unification algorithm for regular terms as explained below. Since the constraints
may also be extracted in linear time, the whole type analysis is quite efficient.

The unification algorithm is based on the familiar union-find data structure
(also called a disjoint-set data structure) for representing and manipulating
equivalence relations. This data structure consists of a directed graph of nodes
that each have exactly one edge to its parent node (which may be the node itself
in which case it is called a root). Two nodes are equivalent if they have a common
ancestor, and each root is the canonical representative of its equivalence class.
Three operations are provided:2

2We here consider a simple version of union-find without union-by-rank; for a description of the
full version with almost-linear worst case time complexity see a textbook on data structures.
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• MakeSet(x): adds a new node x that initially is its own parent.
• Find(x): finds the canonical representative of x by traversing the path to the

root, performing path compression on the way (meaning that the parent
of each node on the traversed path is set to the canonical representative).

• Union(x,y): finds the canonical representatives of x and y, and makes one
parent of the other unless they are already equivalent.

In pseudo-code:

procedure MakeSet(x)
x.parent := x

end procedure

procedure Find(x)
if x.parent 6= x then

x.parent := Find(x.parent)
end if
return x.parent

end procedure

procedure Union(x, y)
xr := Find(x)
yr := Find(y)
if xr 6= yr then

xr.parent := yr
end if

end procedure

The unification algorithm uses union-find by associating a node with each term
(including sub-terms) in the constraint system. For each term τ we initially
invoke MakeSet(τ ). Note that each term at this point is either a type variable or
a proper type (i.e. integer, heap pointer, or function); µ terms are only produced
for presenting solutions to constraints, as explained below. For each constraint
τ1 = τ2 we invoke Unify(τ1, τ2), which unifies the two terms if possible and
enforces the general term equality axiom by unifiying sub-terms recursively:

procedure Unify(τ1,τ2)
τ r1 := Find(τ1)
τ r2 := Find(τ2)
if τ r1 6= τ r2 then

if τ r1 and τ r2 are both type variables then
Union(τ r1 , τ r2 )

else if τ r1 is a type variable and τ r2 is a proper type then
Union(τ r1 , τ r2 )

else if τ r1 is a proper type and τ r2 is a type variable then



3.3 SOLVING CONSTRAINTS WITH UNIFICATION 21

Union(τ r2 , τ r1 )
else if τ r1 and τ r2 are proper types with same type constructor then

Union(τ r1 , τ r2 )
for each pair of sub-terms τ ′1 and τ ′2 of τ r1 and τ r2 , respectively do

Unify(τ ′1, τ ′2)
end for

else
unification failure

end if
end if

end procedure

Unification fails if attempting to unify two terms with different constructors
(where function constructors are considered different if they have different arity).

Note that the Union(x, y) operation is asymmetric: it always picks the canon-
ical representative of the resulting equivalence class as the one from equivalence
class of the second argument y. Also, Unify is carefully constructed such that
the second argument to Union can only be a type variable if the first argument
is also a type variable. This means that proper types take precedence over type
variables for becoming canonical representatives, which makes it easier to read
off the solution after all constraints have been processed: For each type vari-
able, simply invoke Find to find the canonical representative of its equivalence
class. The only complication arises if the canonical representative is itself a type
variable, in which case the desired type is recursive, so we introduce a µ term
accordingly.

Exercise 3.9: Argue that the unification algorithm works correctly, in the
sense that it finds a solution to the given constraints if one exists. Additionally,
argue that if multiple solutions exist, the algorithm finds the uniquely most
general one.

The complicated factorial program from Section 2.2 generates the following
constraints (duplicates omitted):

[[foo]] = ([[p]],[[x]])->[[f]] [[*p==0]] = int
[[*p]] = int [[f]] = [[1]]
[[1]] = int [[0]] = int
[[p]] = &[[*p]] [[q]] = [[alloc]]
[[alloc]] = &α [[q]] = &[[(*p)-1]]
[[q]] = &[[*q]] [[*p]] = int
[[f]] = [[(*p)*((x)(q,x))]] [[(*p)*((x)(q,x))]] = int
[[(x)(q,x)]] = int [[x]] = ([[q]],[[x]])->[[(x)(q,x)]]
[[input]] = int [[main]] = ()->[[foo(&n,foo)]]
[[n]] = [[input]] [[&n]] = &[[n]]
[[foo]] = ([[&n]],[[foo]])->[[foo(&n,foo)]] [[*p]] = [[0]]

These constraints have a solution, where most variables are assigned int, except
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these:

[[p]] = &int
[[q]] = &int
[[alloc]] = &int
[[x]] = µx1.(&int,x1)->int
[[foo]] = µx1.(&int,x1)->int
[[&n]] = &int
[[main]] = ()->int

As mentioned in Section 3.1, recursive types are needed for the foo function
and the x parameter. Since a solution exists, we conclude that our program is
type correct.

Exercise 3.10: Check (by hand or using the Scala implementation) that the
constraints and the solution shown above are correct for the complicated
factorial program.

Recursive types are also required when analyzing TIP programs that manip-
ulate data structures. The example program

var p;

p = alloc;

*p = p;

creates these constraints:

[[p]] = &x1
[[p]] = &[[p]]

which has the solution [[p]] = µx2.&x2 that can be unfolded to [[p]] = &&&&&&&. . . .

Exercise 3.11: Generate and solve the constraints for the iterate example
program from Section 2.2.
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Exercise 3.12: Generate and solve the type constraints for this program:

map(l,f,z) {

var r;

if (l==null) r=z;

else r=(f)(map(*l,f,z));

return r;

}

foo(i) {

return i+1;

}

main() {

var h,t,n;

t = null;

n = 42;

while (n>0) {

n = n-1;

h = alloc;

*h = t;

t = h;

}

return map(h,foo,0);

}

What is the output from running the program?
(Try to find the solutions manually; you can then use the Scala implementation
to check that they are correct.)

3.4 Limitations of the Type Analysis

The type analysis is of course only approximate, which means that certain
programs will be unfairly rejected. A simple example is this:

f() {

var x;

x = alloc;

x = 42;

return x + 87;

}

This program has no type errors at runtime, but it is rejected by our type checker
because the analysis is flow-insensitive: the order of execution of the program
instructions is abstracted away by the analysis, so intuitively it does not know
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that xmust be an integer at the return expression. In the following chapters we
shall see how to perform flow-sensitive analysis that does distinguish between
the different program points.

Another example is

bar(g,x) {

var r;

if (x==0) { r=g; } else { r=bar(2,0); }

return r+1;

}

main() {

return bar(null,1);

}

which never causes an error but is not typable since it among others generates
constraints equivalent to

int = [[r]] = [[g]] = &α

which are clearly unsolvable.

Exercise 3.13: Explain the runtime behavior of this program, and why it is
unfairly rejected by our type analysis.

It is possible to use a more powerful polymorphic type analysis to accept the
above program, but infinitely many other examples will inevitably remain re-
jected.

Another problem is that this type system ignores several other runtime errors,
such as dereference of null pointers, reading of uninitialized variables, division
by zero, and the more subtle escaping stack cell demonstrated by this program:

baz() {

var x;

return &x;

}

main() {

var p;

p = baz();

*p = 1;

return *p;

}

The problem is that *p denotes a stack cell that has escaped from the baz function.
As we shall see in the following chapters, these problems can instead be handled
by other kinds of static analysis.
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Exercise 3.14: We extend the TIP language with array operations. Array
values are constructed using a new form of expressions:

E→ { E1, E2, . . .,Ek }

(for k ≥ 0), and individual elements are read and written as follows:

E→ E1[E2]

S→ E1[E2] = E3

The type system is extended accordingly with an array type constructor:

τ → τ[]

Give appropriate type constraints for array operations. Then use the type
analysis to check that the following program is typable and infer the type of
each variable:

var x,y,z,t;

x = {2,4,8,16,32,64};

y = x[x[3]];

z = {{},x};

t = z[1];

t[2] = y;





Chapter 4

Lattice Theory

The technique for static analysis that we will study next is based on the mathe-
matical theory of lattices, which we briefly review in this chapter.

4.1 Motivating Example: Sign Analysis

As a motivating example, assume that we wish to design an analysis that can find
out the possible signs of the integer values of variables and expressions in a given
program. In concrete executions, values can be arbitrary integers. In contrast,
our analysis considers an abstraction of the integer values by grouping them
into the three categories, or abstract values: positive (+), negative (-), and zero (0).
Similar to the analysis we considered in Chapter 3, we circumvent undecidability
by introducing approximation. That is, the analysis must be prepared to handle
uncertain information, in this case situations where it does not know the sign
of some expression, so we add a special abstract value (?) representing “don’t
know”. We must also decide what information we are interested in for the cases
where the sign of some expression is, for example, positive in some executions
but not in others. For this example, let us assume we are interested in definite
information, that is, the analysis should only report + for a given expression
if it is certain that this expression will evaluate to a positive number in every
execution of that expression and ? otherwise. In addition, it turns out to be
beneficial to also introduce an abstract value ⊥ for expressions whose values
are not numbers (but instead, say, pointers) or have no value in any execution
because they are unreachable from the program entry.

Consider this program:

var a,b,c;

a = 42;

b = 87;
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if (input) {

c = a + b;

} else {

c = a - b;

}

Here, the analysis could conclude that a and b are positive numbers in all
possible executions at the end of the program. The sign of c is either positive or
negative depending on the concrete execution, so the analysis must report ? for
that variable.

For this analysis we have an abstract domain consisting of the five abstract
values {+, -, 0, ?,⊥}, which we can organize as follows with the least precise
information at the top and the most precise information at the bottom:

?

+ 0 −

The ordering reflects the fact that ⊥ represents the empty set of integer values
and ? represents the set of all integer values. Note that ?may arise for different
reasons: (1) In the example above, there exist executions where c is positive and
executions where c is negative, so, for this choice of abstract domain, ? is the
only sound option. (2) Due to undecidability, imperfect precision is inevitable,
so no matter how we design the analysis there will be programs where, for
example, some variable can only have a positive value in any execution but the
analysis is not able to show that it could not also have a negative value (recall
the TM(j) example from Chapter 1).

The five-element abstract domain shown above is an example of a so-called
lattice. We continue the development of the sign analysis in Section 5.1, but we
first need the mathematical foundation in place.

4.2 Lattices

A partial order is a set S equipped with a binary relation v where the following
conditions are satisfied:

• reflexivity: ∀x ∈ S : x v x
• transitivity: ∀x, y, z ∈ S : x v y ∧ y v z ⇒ x v z
• anti-symmetry: ∀x, y ∈ S : x v y ∧ y v x⇒ x = y

When x v y we say that y is a safe approximation of x, or that x is at least as precise
as y. Formally, a lattice is a pair (S,v), but we sometimes use the same name
for the lattice and its underlying set.
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Let X ⊆ S. We say that y ∈ S is an upper bound for X , written X v y, if we
have ∀x ∈ X : x v y. Similarly, y ∈ S is a lower bound for X , written y v X , if
∀x ∈ X : y v x. A least upper bound, written tX , is defined by:

X v tX ∧ ∀y ∈ S : X v y ⇒ tX v y

Dually, a greatest lower bound, written uX , is defined by:

uX v X ∧ ∀y ∈ S : y v X ⇒ y v uX

For pairs of elements, we sometimes use the infix notation xty instead oft{x, y}
and x u y instead of u{x, y}.

Exercise 4.1: Prove that if
⊔
X exists, then it must be unique.

Exercise 4.2: Prove that if xt y exists then x v y ⇔ xt y = y, and conversely,
if x u y exists then x v y ⇔ x u y = x.

A lattice is a partial order in which tX and uX exist for all X ⊆ S.1

Exercise 4.3: Argue that the abstract domain presented in Section 4.1 is indeed
a lattice.

Any finite partial order may be illustrated by a Hasse diagram in which
the elements are nodes and the order relation is the transitive closure of edges
leading from lower to higher nodes. With this notation, all of the following
partial orders are also lattices:

whereas these partial orders are not lattices:

1 This definition of a lattice we use here is typically called a complete lattice in the literature, but we
choose to use the shorter name. Also, for our purposes it often suffices to consider join semi-lattices
which have tX but not necessarily uX for all X ⊆ S. Many lattices are finite. For those the lattice
requirements reduce to observing that⊥ and> exist and that every pair of elements x and y have a
least upper bound x t y and a greatest lower bound x u y.
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Exercise 4.4: Why do these two diagrams not define lattices?

Every lattice has a unique largest element denoted > and a unique smallest
element denoted ⊥.

Exercise 4.5: Prove that tS and uS are the unique largest element and the
unique smallest element, respectively, in S. In other words, we have > = tS
and ⊥ = uS.

Exercise 4.6: Prove that tS = u∅ and that uS = t∅.

The height of a lattice is defined to be the length of the longest path from ⊥
to >. As an example, the height of the sign analysis lattice from Section 4.1 is 2.
For some lattices the height is infinite.

4.3 Constructing Lattices

Every finite set A defines a lattice (2A,⊆), where ⊥ = ∅, > = A, x t y = x ∪ y,
and x u y = x ∩ y. We call this the powerset lattice for A. For a set with four
elements, the powerset lattice looks like this:

{0,1}

{0} {1} {2} {3}

{1,3} {2,3}{1,2}{0,3}{0,2}

{0,1,2} {0,1,3} {0,2,3} {1,2,3}

{0,1,2,3}

Ø

The above powerset lattice has height 4. In general, the lattice (2A,⊆) has height
|A|.

If L1, L2, . . . , Ln are lattices, then so is the product:

L1 × L2 × . . .× Ln = {(x1, x2, . . . , xn) | xi ∈ Li}

where the lattice order v is defined pointwise:2

(x1, x2, . . . , xn) v (x′1, x
′
2, . . . , x

′
n) ⇔ ∀i = 1, 2, . . . , n : xi v x′i

2We often abuse notation by using the same symbol v for many different order relations, in this
case from the n+ 1 different lattices, but it should always be clear from the context which lattice it
belongs to. The same applies to the other operators w, t, u and the top/bottom symbols >, ⊥.



4.3 CONSTRUCTING LATTICES 31

Products of n identical lattices may be written consisely asLn = L× L× . . .× L︸ ︷︷ ︸
n

.

Exercise 4.7: Show that the t and u operators for a product lattice L1 × L2 ×
. . .× Ln can be computed pointwise (i.e. in terms of the t and u operators
from L1, L2, . . . , Lk).

Exercise 4.8: Show that height(L1× . . .×Ln) = height(L1)+ . . .+height(Ln).

If L is a lattice, then so is lift(L), which is a copy of L but with a new bottom
element:
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It has height(lift(L)) = height(L) + 1 if L has finite height.
If A is a set (not necessarily a lattice), then flat(A) illustrated by

a
...

a a
1 2 n

is a lattice with height 2.
Finally, if A is a set and L is a lattice, then we obtain a map lattice consisting

of the set of functions from A to L, ordered pointwise:3

A→ L =
{
[a1 7→ x1, a2 7→ x2, . . .]

∣∣ A = {a1, a2, . . .} ∧ x1, x2, . . . ∈ L
}

f v g ⇔ ∀ai ∈ A : f(ai) v g(ai) where f, g ∈ A→ L

Exercise 4.9: Show that the t and u operators for a map lattice A→ L can be
computed pointwise (i.e. in terms of the t and u operators from L).

3The notation [a1 7→ x1, a2 7→ x2, . . .] means the function that maps a1 to x1, a2 to x2, etc.
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Exercise 4.10: Show that if A is finite and L has finite height then the height
of the map lattice A→ L is height(A→ L) = |A| · height(L).

If L1 and L2 are lattices, then a function f : L1 → L2 is a homomorphism
if ∀x, y ∈ L1 : f(x t y) = f(x) t f(y) ∧ f(x u y) = f(x) u f(y). A bijective
homomorphism is called an isomorphism. Two lattices are isomorphic if there
exists an isomorphism from one to the other.

Exercise 4.11: Argue that every product lattice Ln is isomorphic to a map
lattice A→ L for some choice of A, and vice versa.

We have already seen that the set Sign = {+, -, 0, ?,⊥} with the ordering
described in Section 4.1 forms a lattice that we use for describing abstract values
in the sign analysis. An example of a map lattice is StateSigns = Vars 7→ Sign
where Vars is the set of variable names occurring in the program that we wish
to analyze. Elements of this lattice describe abstract states that provide abstract
values for all variables. An example of a product lattice is ProgramSigns =
StateSignsn where n is the number of nodes in the CFG of the program. We
shall use this lattice, which can describe abstract states for all nodes of the
program CFG, in Section 5.1 for building a flow-sensitive sign analysis. Note
that by Exercise 4.11 the lattice StateSignsn is isomorphic to Nodes → StateSigns
where Nodes is the set of CFG nodes, so which of the two variants we use when
describing the sign analysis is only a matter of preferences. This example also
illustrates that the lattices we use may depend on the program being analyzed:
the sign analysis depends on the set of variables that occur in the program and
also on its CFG nodes.

4.4 Equations, Monotonicity, and Fixed-Points

Continuing the sign analysis from Section 4.1, what are the signs of the variables
at each line of the following simple program?

var a,b; // 1

a = 42; // 2

b = a + input; // 3

a = a - b; // 4

We can derive a system of equations with one constraint variable for each pro-
gram variable and line number from the program:4

a1 = ?
b1 = ?
a2 = +

4We use the term constraint variable to denote variables that appear in mathematical constraint
systems, to avoid confusion with program variables that appear in TIP programs.
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b2 = b1
a3 = a2
b3 = a2 + ?
a4 = a3 - b3
b4 = b3

For example, a2 denotes the abstract value of a at the program point immediately
after line 2. The operators + and - here work on abstract values, which we return
to in Section 5.1. In this constraint system, the constraint variables have values
from the abstract value lattice Sign defined in Section 4.3. We can alternatively
derive the following equivalent constraint system where each constraint variable
instead has a value from the abstract state lattice StateSigns from Section 4.3:5

x1 = [a 7→ ?, b 7→ ?]
x2 = x1[a 7→ +]
x3 = x2[b 7→ x2(a) + ?]
x4 = x3[a 7→ x3(a) - x3(b)]

Here, each constraint variable models the abstract state at a program point; for
example, x1 models the abstract state at the program point immediately after line
1. Notice that each equation only depends on preceding ones for this example
program, so in this case the solution can be found by simple substition. However,
mutually recursive equations may appear, for example for programs that contain
loops (see Section 5.1).

Exercise 4.12: Give a solution to the constraint system above (that is, values
for x1, . . . , x4 that satisfy the four equations).

Exercise 4.13: Why is the unification solver from Chapter 3 not suitable for
this kind of constraints?

We now show how to solve such constraint systems in a general setting.

A function f : L1 → L2 where L1 and L2 are lattices is monotone (or order-
preserving) when ∀x, y ∈ L1 : x v y ⇒ f(x) v f(y). As the lattice order when
used in program analysis represents precision of information, the intuition of
monotonicity is that “more precise input does not result in less precise output”.

5The notation f [a1 7→ xn, . . . , an 7→ xn] means the function that maps ai to xi, for each
i = 1, . . . , n and for all other inputs gives the same output as the function f .
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Exercise 4.14: A function f : L → L where L is a lattice is extensive when
∀x ∈ L : x v f(x). Assume L is the powerset lattice 2{0,1,2,3,4} Give examples
of different functions L→ L that are, respectively,

(a) extensive and monotone,

(b) extensive but not monotone,

(c) not extensive but monotone, and

(d) not extensive and not monotone.

Exercise 4.15: Prove that every constant function is monotone.

Exercise 4.16: A function f : L1 → L2 where L1 and L2 are lattices is distribu-
tive when ∀x, y ∈ L1 : f(x) ∪ f(y) = f(x t y).

(a) Show that every distributive function is also monotone.

(b) Show that not every monotone function is also distributive.

Exercise 4.17: Prove that a function f : L1 → L2 where L1 and L2 are lattices
is monotone if and only if ∀x, y ∈ L1 : f(x) t f(y) v f(x t y).

Exercise 4.18: Prove that function composition preserves monotonicity. That
is, if f : L1 → L2 and g : L2 → L3 are monotone, then so is their composition
g ◦ f , which is defined by (g ◦ f)(x) = g(f(x)).

The definition of monotonicity generalizes naturally to functions with multi-
ple arguments: for example, a function with two arguments f : L1 × L2 → L3

where L1, L2, and L3 are lattices is monotone when ∀x1, y1 ∈ L1, x2 ∈ L2 : x1 v
y1 ⇒ f(x1, x2) v f(y1, x2) and ∀x1 ∈ L1, x2, y2 ∈ L2 : x2 v y2 ⇒ f(x1, x2) v
f(x1, y2).

Exercise 4.19: The operators t and u can be viewed as functions. For example,
t{x1, x2} where x1, x2 ∈ L returns an element from L. Show that t and u
are monotone.
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Exercise 4.20: Let f : Ln → Ln be a function n arguments over a lattice L.
We can view such a function in different ways: either as function with n
arguments from L, or as a function with single argument from the product
lattice Ln. Argue that this does not matter for the definition of monotonicity.

Exercise 4.21: Show that set difference, X\Y , as a function with two argu-
ments over a powerset lattice is monotone in the first argument X but not in
the second argument Y .

Exercise 4.22: Recall that f [a 7→ x] denotes the function that is identical to
f except that it maps a to x. Assume f : L1 → (A → L2) and g : L1 → L2

are monotone functions where L1 and L2 are lattices and A is a set, and let
a ∈ A. (Note that the codomain of f is a map lattice.) Show that the function
h : L1 → (A→ L2) defined by h(x) = f(x)[a 7→ g(x)] is monotone.

Also show that the following claim is wrong: The map update operation
preserves monotonicity in the sense that if f : L→ L is monotone then so is
f [a 7→ x] for any lattice L and a, x ∈ L.

We say that x ∈ L is a fixed-point for f if f(x) = x. A least fixed-point x for f
is a fixed-point for f where x v y for every fixed-point y for f .

Let L be a lattice. An equation system over L is of the form

x1 = f1(x1, . . . , xn)
x2 = f2(x1, . . . , xn)
...
xn = fn(x1, . . . , xn)

where xi are variables and fi : L
n → L is a collection of functions. A solution

to an equation system provides a value from L for each variable such that all
equations are satisfied.

We can combine the n functions into one, f : Ln → Ln,

f(x1, . . . , xn) =
(
f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)

)
in which case the equation system looks like

x = f(x)

where x ∈ Ln. This clearly shows that a solution to an equation system is the
same as a fixed-point of its functions. As we aim for the most precise solutions,
we want least fixed-points.

Exercise 4.23: Show that f is monotone if and only if each f1, . . . , fn is mono-
tone, where f is defined from f1, . . . , fn as above.

As an example, for the equation system from earlier in this section
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x1 = [a 7→ ?, b 7→ ?]
x2 = x1[a 7→ +]
x3 = x2[b 7→ x2(a) + ?]
x4 = x3[a 7→ x3(a) - x3(b)]

we have four constraint variables, x1, . . . , x4 with constraint functions f1, . . . , f4
defined as follows:

f1(x1, . . . , x4) = [a 7→ ?, b 7→ ?]
f2(x1, . . . , x4) = x1[a 7→ +]
f3(x1, . . . , x4) = x2[b 7→ x2(a) + ?]
f4(x1, . . . , x4) = x3[a 7→ x3(a) - x3(b)]

Exercise 4.24: Show that the four constraint functions f1, . . . , f4 are monotone.
(Hint: see exercise 4.22.)

As mentioned earlier, for this simple equation system it is trivial to find
a solution by substitution, however, that method is inadequate for equation
systems that arise when analyzing programs more generally.

Exercise 4.25: Argue that your solution from Exercise 4.12 is the least fixed-
point of the function f defined by
f(x1, . . . , x4) =

(
f1(x1, . . . , x4), . . . , f4(x1, . . . , x4)

)
.

The central result we need is the fixed-point theorem:6

In a lattice L with finite height, every monotone function f : L→ L
has a unique least fixed-point denoted fix (f) defined as:

fix (f) =
⊔
i≥0

f i(⊥)

The proof of this theorem is quite simple. Observe that ⊥ v f(⊥) since ⊥
is the least element. Since f is monotone, it follows that f(⊥) v f2(⊥) and by
induction that f i(⊥) v f i+1(⊥) for any i. Thus, we have an increasing chain:

⊥ v f(⊥) v f2(⊥) v . . .

Since L is assumed to have finite height, we must for some k have that fk(⊥) =
fk+1(⊥), i.e. fk(⊥) is a fixed-point for f . By Exercise 4.2, fk(⊥) must be the least
upper bound of all elements in the chain, so fix (f) = fk(⊥). Assume now that
x is another fixed-point. Since ⊥ v x it follows that f(⊥) v f(x) = x, since f is
monotone, and by induction we get that fix (f) = fk(⊥) v x. Hence, fix (f) is a
least fixed-point, and by anti-symmetry of v it is also unique.

6There are many fixed-point theorems in the literature; the one we use here is a variant of one by
Kleene.
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The theorem is a powerful result: It tells us not only that equation systems
over lattices always have solutions, provided that the lattices have finite height
and the constraint functions are monotone, but also that uniquely most precise
solutions always exist. Furthermore, the careful reader may have noticed that
the theorem provides an algorithm for computing the least fixed-point: simply
compute the increasing chain ⊥ v f(⊥) v f2(⊥) v . . . until the fixed-point
is reached. In pseudo-code, this so-called naive fixed-point algorithm looks as
follows.

procedure NaiveFixedPointAlgorithm(f )
x := ⊥
while x 6= f(x) do

x := f(x)
end while
return x

end procedure

(Instead of computing f(x) both in the loop condition and in the loop body, a
trivial improvement is to just compute it once in each iteration and see if the
result changes.) The computation of a fixed-point can be illustrated as a walk
up the lattice starting at ⊥:
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This algorithm is called “naive” because it does not exploit the special structures
that are common in analysis lattices. We shall see various less naive fixed-point
algorithms in Section 5.3.

The least fixed point is the most precise possible solution to the equation
system, but the equation system is (for a sound analysis) merely a conservative
approximation of the actual program behavior (again, recall the TM(j) example
from Chapter 1). This means that the semantically most precise possible (while
still correct) answer is generally below the least fixed point in the lattice. We shall
see examples of this in Chapter 5.

Exercise 4.26: Explain step-by-step how the naive fixed-point algorithm com-
putes the solution to the equation system from Exercise 4.12.
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The time complexity of computing a fixed-point with this algorithm depends
on

• the height of the lattice, since this provides a bound for the number of
iterations of the algorithm, and

• the cost of computing f(x) and testing equality, which are performed in
each iteration.

We shall investigate other properties of this algorithm and more sophisticated
variants in Section 5.3.

Exercise 4.27: Does the fixed-point theorem also hold without the assumption
that the lattice has finite height? If yes, give a proof; if no, give a counter-
example.

We can similarly solve systems of inequations of the form

x1 w f1(x1, . . . , xn)
x2 w f2(x1, . . . , xn)
...
xn w fn(x1, . . . , xn)

by observing that the relation x w y is equivalent to x = x t y (see Exercise 4.2).
Thus, solutions are preserved by rewriting the system into

x1 = x1 t f1(x1, . . . , xn)
x2 = x2 t f2(x1, . . . , xn)
...
xn = xn t fn(x1, . . . , xn)

which is just a system of equations with monotone functions as before (see
Exercises 4.18 and 4.19). Conversely, constraints of the form

x1 v f1(x1, . . . , xn)
x2 v f2(x1, . . . , xn)
...
xn v fn(x1, . . . , xn)

can be rewritten into

x1 = x1 u f1(x1, . . . , xn)
x2 = x2 u f2(x1, . . . , xn)
...
xn = xn u fn(x1, . . . , xn)

by observing that the relation x v y is equivalent to x = x u y.



Chapter 5

Dataflow Analysis with
Monotone Frameworks

Classical dataflow analysis starts with a CFG and a lattice with finite height.
The lattice describes abstract information we wish to infer for the different CFG
nodes. It may be fixed for all programs, or it may be parameterized based on
the given program. To every node v in the CFG, we assign a constraint variable1

[[v]] ranging over the elements of the lattice. For each node we then define a
dataflow constraint that relates the value of the variable of the node to those of
other nodes (typically the neighbors), depending on what construction in the
programming language the node represents. If all the constraints for the given
program happen to be equations or inequations with monotone right-hand
sides, then we can use the fixed-point algorithm from Section 4.4 to compute
the analysis result as the unique least solution.

The combination of a lattice and a space of monotone functions is called a
monotone framework. For a given program to be analyzed, a monotone framework
can be instantiated by specifying the CFG and the rules for assigning dataflow
constraints to its nodes.

An analysis is sound if all solutions to the constraints correspond to correct
information about the program. The solutions may be more or less imprecise, but
computing the least solution will give the highest degree of precision possible.

Throughout this chapter we use the subset of TIP without function calls and
pointers; those language features are studied in Chapters 8 and 9.

1As for type analysis, we will ambiguously use the notation [[S]] for [[v]] ifS is the syntax associated
with v. The meaning will always be clear from the context.
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5.1 Sign Analysis, Revisited

Continuing the example from Section 4.1, our goal is to determine the sign
(positive, zero, negative) of all expressions in the given programs. We start with
the tiny lattice Sign for describing abstract values:

?

+ 0 −

We want an abstract value for each program variable, so we define the map
lattice

States = Vars → Sign

where Vars is the set of variables occurring in the given program. Each element
of this lattice can be thought of as an abstract state, hence its name. For each CFG
node v we assign a constraint variable [[v]] denoting an abstract state that gives
the sign values for all variables at the program point immediately after v. The
lattice Statesn, where n is the number of CFG nodes, then models information
for all the CFG nodes.

The dataflow constraints model the effects of program execution on the
abstract states. For simplicity, we here focus on a subset of TIP that does not
contain pointers or function calls, so integers are the only type of values we need
to consider.

First, we define an auxiliary function JOIN (v) that combines the abstract
states from the predecessors of a node v:

JOIN (v) =
⊔

w∈pred(v)

[[w]]

For example, with the following CFG, we have JOIN ([[a=c+2]]) = [[c=b]]t [[c=-5]].

true false

b > 5

c=b c=−5

a=c+2
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The most interesting constraint rule for this analysis is the one for assignment
statements, that is, nodes v of the form X = E:

X = E: [[v]] = JOIN (v)[X 7→ eval(JOIN (v),E)]

This constraint rule models the fact that the abstract state after an assignment
X = E is equal to the abstract state immediately before the assignment, except
that the abstract value of X is the result of abstractly evaluating the expression
E. The eval function performs an abstract evaluation of expression E relative to
an abstract state σ:

eval(σ,X) = σ(X)
eval(σ, I) = sign(I)
eval(σ,E1 opE2) = ôp(eval(σ,E1), eval(σ,E2))

The function sign gives the sign of an integer constant, and ôp is an abstract
evaluation of the given operator,2 defined by the following tables:

+̂ ⊥ 0 - + ?

⊥ ⊥ ⊥ ⊥ ⊥ ⊥
0 ⊥ 0 - + ?

- ⊥ - - ? ?

+ ⊥ + ? + ?

? ⊥ ? ? ? ?

-̂ ⊥ 0 - + ?

⊥ ⊥ ⊥ ⊥ ⊥ ⊥
0 ⊥ 0 + - ?

- ⊥ - ? - ?

+ ⊥ + + ? ?

? ⊥ ? ? ? ?

*̂ ⊥ 0 - + ?

⊥ ⊥ ⊥ ⊥ ⊥ ⊥
0 ⊥ 0 0 0 0

- ⊥ 0 + - ?

+ ⊥ 0 - + ?

? ⊥ 0 ? ? ?

/̂ ⊥ 0 - + ?

⊥ ⊥ ⊥ ⊥ ⊥ ⊥
0 ⊥ ⊥ 0 0 ?

- ⊥ ⊥ ? ? ?

+ ⊥ ⊥ ? ? ?

? ⊥ ⊥ ? ? ?

>̂ ⊥ 0 - + ?

⊥ ⊥ ⊥ ⊥ ⊥ ⊥
0 ⊥ 0 + 0 ?

- ⊥ 0 ? 0 ?

+ ⊥ + + ? ?

? ⊥ ? ? ? ?

=̂= ⊥ 0 - + ?

⊥ ⊥ ⊥ ⊥ ⊥ ⊥
0 ⊥ + 0 0 ?

- ⊥ 0 ? 0 ?

+ ⊥ 0 0 ? ?

? ⊥ ? ? ? ?

Variable declarations are modeled as follows (recall that freshly declared
local variables are uninitialized, so they can have any value).

var X1, . . . ,Xn: [[v]] = JOIN (v)[X1 7→ ?, . . . ,Xn 7→ ?]

For the subset of TIP we have chosen to focus on, no other kinds of CFG
nodes affect the values of variables, so for the remaining nodes we have this
trivial constraint rule:

[[v]] = JOIN (v)

2Unlike in Section 4.4, to avoid confusion we now distinguish between concrete operators and
their abstract counterparts using the ·̂ · · notation.
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Exercise 5.1: In the CFGs we consider in this chapter (for TIP without function
calls), entry nodes have no predecessors.

(a) Argue that the constraint rule [[v]] = JOIN (v) for such nodes is equiva-
lent to defining [[v]] = ⊥.

(b) Argue that removing all equations of the form [[v]] = ⊥ from an equation
system does not change its least solution.

The lattice and constraints form a monotone framework. To see that all the
right-hand sides of our constraints correspond to monotone functions, notice that
they are all composed (see Exercise 4.18) from the t operator (see Exercise 4.19),
map updates (see Exercise 4.22), and the eval function. The sign function is
constant (see Exercise 4.15). Monotonicity of the abstract operators used by eval
can be verified by a tedious manual inspection. For a lattice with n elements,
monotonicity of an n× n table can be verified automatically in time O(n3).

Exercise 5.2: Describe an algorithm for checking monotonicity of an operator
given by an n× n table. Can you do better than O(n3) time?

Exercise 5.3: Check that the above tables indeed define monotone operators
on the Sign lattice.

Exercise 5.4: Argue that these tables are the most precise possible for the Sign
lattice, given that soundness must be preserved.

Exercise 5.5: The table for the abstract evaluation of == is unsound if we
consider the full TIP language instead of the subset without pointers or
function calls. Why? And how could it be fixed?

Recall the example program from Section 4.1:

var a,b,c;

a = 42;

b = 87;

if (input) {

c = a + b;

} else {

c = a - b;

}

Its CFG looks as follows, with nodes {v1, . . . , v8}:
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a = 42

input

b = 87

var a,b,c

c=a+b c=a−b

v

v

v

v

v

v v

v

2

1

3

4

5

6 7

8

true false

Exercise 5.6: Generate the equation system for this example program. Then
solve it using the fixed-point algorithm from Section 4.4.

Exercise 5.7: Write a small TIP program where the sign analysis leads to an
equation system with mutually recursive constraints. Then explain step-by-
step how the fixed-point algorithm from Section 4.4 computes the solution.

We lose some information in the above analysis, since for example the expres-
sions (2>0)==1 and x-x are analyzed as ?, which seems unnecessarily coarse.
(These are examples where the least fixed-point of the analysis equation system
is not identical to the semantically best possible answer.) Also, the expression
+/+ results in ? rather than + since e.g. 1/2 is rounded down to zero. To handle
some of these situations more precisely, we could enrich the sign lattice with
element 1 (the constant 1), +0 (positive or zero), and -0 (negative or zero) to keep
track of more precise abstract values:
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?

1

+ 0 −

+0 −0

and consequently describe the abstract operators by 8× 8 tables.

Exercise 5.8: Define the six operators on the extended Sign lattice by means
of 8× 8 tables. Check that they are monotone.

Exercise 5.9: Show how the eval function could be improved to make the sign
analysis able to show that the final value of z cannot be a negative number in
the following program:

var x,y,z;

x = input;

y = x*x;

z = (x-x+1)*y;

The results of a sign analysis could in theory be used to eliminate division-
by-zero errors by rejecting programs in which denominator expressions have
sign 0 or ?. However, the resulting analysis will probably unfairly reject too
many programs to be practical. Other more powerful analysis techniques, such
as interval analysis (Section 5.11) and path sensitivity (Chapter 6) would be more
useful for detecting such errors.

5.2 Constant Propagation Analysis

An analysis related to sign analysis is constant propagation analysis, where we
for every program point want to determine the variables that have a constant
value. The analysis is structured just like the sign analysis, except for two
modifications. First, the Sign lattice is replaced by flat(Z) where Z is the set of
all integers:3

3For simplicity, assume that TIP integer values are unbounded.
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0 1 2 3−3 −2 −1

?

Second, the abstraction of operators op ∈ {+, -, *, /, >, ==} is modified accord-
ingly:

a ôp b =


⊥ if a = ⊥ or b = ⊥
? if a = ? or b = ?
a op b if a, b ∈ Z

Exercise 5.10: Argue that this definition of ôp leads to a sound analysis.

Using constant propagation analysis, an optimizing compiler could transform
the program

var x,y,z;

x = 27;

y = input;

z = 2*x+y;

if (x < 0) { y = z-3; } else { y = 12; }

output y;

into

var x,y,z;

x = 27;

y = input;

z = 54+y;

if (0) { y = z-3; } else { y = 12; }

output y;

which, following a reaching definitions analysis and dead code elimination (see
Section 5.7), can be reduced to this shorter and more efficient program:

var y;

y = input;

output 12;

Exercise 5.11: Assume that TIP computes with (arbitrary-precision) real num-
bers instead of integers. Design an analysis that finds out which variables at
each program point in a given program only have integer values.
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5.3 Fixed-Point Algorithms

In summary, dataflow analysis works as follows. For a CFG with nodes Nodes =
{v1, v2, . . . , vn} we work in the lattice Ln where L is a lattice that models ab-
stract states. Assuming that node vi generates the dataflow equation [[vi]] =
fi([[v1]], . . . , [[vn]]), we construct the combined function f : Ln → Ln by defining
f(x1, . . . , xn) =

(
f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)

)
. Applying the fixed-point

algorithm, NaiveFixedPointAlgorithm(f ) (see page 37), then gives us the de-
sired solution for [[v1]], . . . , [[vn]].

Exercise 4.26 (page 37) demonstrates why the algorithm is called “naive”. In
each iteration it applies all the constraint functions, f1, . . . , f4, and much of that
computation is redundant. For example, f2 (see page 36) depends only on x1,
but the value of x1 is unchanged in most iterations.

As a step toward more efficient algorithms, the round-robin algorithm ex-
ploits the fact that our lattice has the structure Ln and that f is composed from
f1, . . . , fn:

procedure RoundRobin(f1, . . . , fn)
(x1, . . . , xn) := (⊥, . . . ,⊥)
while (x1, . . . , xn) 6= f(x1, . . . , xn) do

for i := 1 . . . n do
xi := fi(x1, . . . , xn)

end for
end while
return (x1, . . . , xn)

end procedure

(Similar to the naive fixed-point algorithm, it is trivial to avoid computing each
fi(x1, . . . , xn) twice in every iteration.) Notice that one iteration of the while-
loop in this algorithm does not in general give the same result as one iteration
of the naive fixed-point algorithm: when computing fi(x1, . . . , xn), the values
of x1, . . . , xi−1 have been updated by the preceding iterations of the inner loop
(while the values of xi, . . . , xn come from the previous iteration of the outer
loop or are still ⊥, like in the naive fixed-point algorithm). Nevertheless, the
algorithm always terminates and produces the same result as the naive fixed-
point algorithm. Each iteration of the while-loop takes the same time as for the
naive fixed-point algorithm, but the number of iterations required to reach the
fixed-point may be lower.

Exercise 5.12: Prove that the round-robin algorithm computes the least fixed-
point of f . (Hint: see the proof of the fixed-point theorem, and consider
the ascending chain that arises from the sequence of xi := fi(x1, . . . , xn)
operations.)
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Exercise 5.13: Continuing Exercise 4.26, how many iterations are required by
the naive fixed-point algorithm and the round-robin algorithm, respectively,
to reach the fixed-point?

We can do better than round-robin. First, the order of the iterations i := 1 . . . n
is clearly irrelevant for the correctness of the algorithm (see your proof from
Exercise 5.12). Second, we still apply all constraint functions in each iteration
of the repeat-until loop. What matters for correctness is, which should be clear
from your solution to Exercise 5.12, that the constraint functions are applied
until the fixed-point is reached for all of them. This observation leads to the
chaotic-iteration algorithm:

procedure ChaoticIteration(f1, . . . , fn)
(x1, . . . , xn) := (⊥, . . . ,⊥)
while (x1, . . . , xn) 6= f(x1, . . . , xn) do

choose i nondeterministically from {1, . . . , n}
xi := fi(x1, . . . , xn)

end while
return (x1, . . . , xn)

end procedure

This is not a practical algorithm, because its efficiency and termination depend
on how i is chosen in each iteration. Additionally, computing the loop condition
is now more expensive than executing the loop body. However, if it terminates,
the algorithm produces the right result.

Exercise 5.14: Prove that the chaotic-iteration algorithm computes the least
fixed-point of f , if it terminates. (Hint: see your solution to Exercise 5.12.)

The algorithm we describe next is a practical variant of chaotic-iteration.

In the general case, every constraint variable [[vi]] may depend on all other
variables. Most often, however, an actual instance of fi will only read the values
of a few other variables, as in the examples from Exercise 4.24 and Exercise 5.6.
We represent this information as a map

dep : Nodes → 2Nodes

which for each node v tells us the subset of other nodes for which [[v]] occurs in
a nontrivial manner on the right-hand side of their dataflow equations. That is,
dep(v) is the set of nodes whose information may depend on the information of
v. We also define its inverse: dep−1(v) = {w | v ∈ dep(w)}.

For the example from Exercise 5.6, we have, for instance, dep(v5) = {v6, v7}.
This means that whenever [[v5]] changes its value during the fixed-point compu-
tation, only f6 and f7 need to be recomputed.
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Armed with this information, we can present a simple work-list algorithm:

procedure SimpleWorkListAlgorithm(f1, . . . , fn)
(x1, . . . , xn) := (⊥, . . . ,⊥)
W := {v1, . . . , vn}
while W 6= ∅ do

vi :=W.removeNext()
y := fi(x1, . . . , xn)
if y 6= xi then

xi := y
for each vj ∈ dep(vi) do

W.add(vj)
end for

end if
end while
return (x1, . . . , xn)

end procedure

The set W is here called the work-list with operations ‘add’ and ‘removeNext’
for adding and (nondeterministically) removing an item. The work-list initially
contains all nodes, so each fi is applied at least once. It is easy to see that the
work-list algorithm terminates on any input: In each iteration, we either move
up in the Ln lattice, or the size of the work-list decreases. As usual, we can
only move up in the lattice finitely many times as it has finite height, and the
while-loop terminates when the work-list is empty. Correctness follows from
observing that each iteration of the algorithm has the same effect on (x1, . . . , xn)
as one iteration of the chaotic-iteration algorithm for some nondeterministic
choice of i.

Exercise 5.15: Argue that a sound, but probably not very useful choice for
the dep map is one that always returns the set of all CFG nodes.

Exercise 5.16: As stated above, we can choose dep(v5) = {v6, v7} for the
example equation system from Exercise 5.6. Argue that a good strategy for
the sign analysis is to define dep = succ. (We return to this topic in Section 5.8.)

Exercise 5.17: Explain step-by-step how the work-list algorithm computes the
solution to the equation system from Exercise 5.6. (Since the ‘removeNext’
operation is nondeterministic, there are many solutions!)
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Exercise 5.18: When reasoning about worst-case complexity of analyses that
are based on work-list algorithms, it is sometimes useful if one can bound the
number of predecessors |pred(v)| or successors |succ(v)| for all nodes v.

(a) Describe a family of TIP functions where the maximum number of
successors |succ(v)| for the nodes v in each function grows linearly in
the number of CFG nodes.

(b) Now let us modify the CFG construction slightly, such that a dummy
“no-op” node is inserted at the merge point after the two branches of
each if block. This will increase the number of CFG nodes by at most a
constant factor. Argue that we now have |pred(v)| ≤ 2 and |succ(v)| ≤ 2
for all nodes v.

Assuming that |dep(v)| and |dep−1(v)| are bounded by a constant for all
nodes v, the worst-case time complexity of the simple work-list algorithm can
be expressed as

O(n · h · k)

where n is the number of CFG nodes in the program being analyzed, h is the
height of the lattice L for abstract states, and k is the worst-case time required to
compute a constraint function fi(x1, . . . , xn).

Exercise 5.19: Prove the above statement about the worst-case time complexity
of the simple work-list algorithm. (It is reasonable to assume that the work-list
operations ‘add’ and ‘removeNext’ take constant time.)

Exercise 5.20: Another useful observation when reasoning about worst-case
complexity of dataflow analyses is that normalizing a program (see Section 2.3)
may increase the number of CFG nodes by more than a constant factor, but
represented as an AST or as textual source code, the size of the program
increases by at most a constant factor. Explain why this claim is correct.

Exercise 5.21: Estimate the worst-case time complexity of the sign analysis
with the simple work-list algorithm, using the formula above. (As this for-
mula applies to any dataflow analysis implemented with the simple work-list
algorithm, the actual worst-case complexity of this specific analysis may be
asymptotically better!)

Further algorithmic improvements are possible. It may be beneficial to handle
in separate turns the strongly connected components of the graph induced by the
dep map, and the worklist set could be changed into a priority queue allowing
us to exploit domain-specific knowledge about a particular dataflow problem.
Also, for some analyses, the dependence information can be made more precise
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by allowing dep to consider the current value of (x1, . . . , xn) in addition to the
node v.

5.4 Live Variables Analysis

A variable is live at a program point if there exists an execution where its value
is read later in the execution without it is being written to in between. Clearly
undecidable, this property can be approximated by a static analysis called live
variables analysis (or liveness analysis). The typical use of live variables analysis
is optimization: there is no need to store the value of a variable that is not live.
For this reason, we want the analysis to be conservative in the direction where
the answer “not live” can be trusted and “live” is the safe but useless answer.

We use a powerset lattice where the elements are the variables occurring in
the given program. This is an example of a parameterized lattice, that is, one that
depends on the specific program being analyzed. For the example program

var x,y,z;

x = input;

while (x>1) {

y = x/2;

if (y>3) x = x-y;

z = x-4;

if (z>0) x = x/2;

z = z-1;

}

output x;

the lattice modeling abstract states is thus:

States = (2{x,y,z},⊆)

The corresponding CFG looks as follows:
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z = x−4

z>0

z = z−1

output x

x = x−y

x = x/2

x = input x>1 y = x/2 y>3

var x,y,z

For every CFG node v we introduce a constraint variable [[v]] denoting the subset
of program variables that are live at the program point before that node. The
analysis wil be conservative, since the computed set may be too large. We use
the auxiliary definition

JOIN (v) =
⋃

w∈succ(v)

[[w]]

Unlike the JOIN function from sign analysis, this one combines abstract states
from the successors instead of the predecessors. We have defined the order
relation as v=⊆, so t = ∪.

As in sign analysis, the most interesting constraint rule is the one for assign-
ments:

X = E: [[v]] = JOIN (v) \ {X} ∪ vars(E)

This rule models the fact that the set of live variables before the assignment is
the same as the set after the assignment, except for the variable being written to
and the variables that are needed to evaluate the right-hand-side expression.

Exercise 5.22: Explain why the constraint rule for assignments, as defined
above, is sound.

Branch conditions and output statements are modelled as follows:

if (E):
while (E):
output E:

 [[v]] = JOIN (v) ∪ vars(E)

where vars(E) denotes the set of variables occurring in E. For variable declara-
tions and exit nodes:

var X1, . . . ,Xn: [[v]] = JOIN (v) \ {X1, . . . ,Xn}
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[[exit]] = ∅

For all other nodes:
[[v]] = JOIN (v)

Exercise 5.23: Argue that the right-hand sides of the constraints define mono-
tone functions.

Our example program yields these constraints:

[[var x,y,z]] = [[x=input]] \ {x, y, z}
[[x=input]] = [[x>1]] \ {x}
[[x>1]] = ([[y=x/2]] ∪ [[output x]]) ∪ {x}
[[y=x/2]] = ([[y>3]] \ {y}) ∪ {x}
[[y>3]] = [[x=x-y]] ∪ [[z=x-4]] ∪ {y}
[[x=x-y]] = ([[z=x-4]] \ {x}) ∪ {x,y}
[[z=x-4]] = ([[z>0]] \ {z}) ∪ {x}
[[z>0]] = [[x=x/2]] ∪ [[z=z-1]] ∪ {z}
[[x=x/2]] = ([[z=z-1]] \ {x}) ∪ {x}
[[z=z-1]] = ([[x>1]] \ {z}) ∪ {z}
[[output x]] = [[exit]] ∪ {x}
[[exit]] = ∅

whose least solution is:

[[entry]] = ∅
[[var x,y,z]] = ∅
[[x=input]] = ∅
[[x>1]] = {x}
[[y=x/2]] = {x}
[[y>3]] = {x, y}
[[x=x-y]] = {x, y}
[[z=x-4]] = {x}
[[z>0]] = {x, z}
[[x=x/2]] = {x, z}
[[z=z-1]] = {x, z}
[[output x]] = {x}
[[exit]] = ∅

From this information a clever compiler could deduce that y and z are never live
at the same time, and that the value written in the assignment z=z-1 is never
read. Thus, the program may safely be optimized into the following one, which
saves the cost of one assignment and could result in better register allocation:

var x,yz;

x = input;

while (x>1) {
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yz = x/2;

if (yz>3) x = x-yz;

yz = x-4;

if (yz>0) x = x/2;

}

output x;

Exercise 5.24: Consider the following program:

main() {

var x,y,z;

x = input;

y = input;

z = x;

output y;

}

Show for each program point the set of live variables, as computed by our
live variables analysis. (Do not forget the entry and exit points.)

Exercise 5.25: An analysis is distributive if all its constraint functions are
distributive according to the definition from Exercise 4.16. Show that live
variables analysis is distributive.

Exercise 5.26: As Exercise 5.24 demonstrates, live variables analysis is not
ideal for locating code that can safely be removed, if building an optimizing
compiler. Let us define that a variable is useless at a given program point if
it is dead (i.e. not live) or its value is only used to compute values of useless
variables. A variable is strongly live if it is not useless.

(a) Show how the live variables analysis can be modified to compute
strongly live variables.

(b) Show for each program point in the program from Exercise 5.24 the set
of strongly live variables, as computed by your new analysis.

We can estimate the worst-case time complexity of the live variables analysis,
with for example the naive fixed-point algorithm from Section 4.4. We first
observe that if the program has n CFG nodes and b variables, then the lattice
(2Vars)n has height b · n, which bounds the number of iterations we can perform.
Each lattice element can be represented as a bitvector of length b · n. Using the
observation from Exercise 5.18 we can ensure that |succ(v)| < 2 for any node v.
For each iteration we therefore have to perform O(n) intersection, difference, or
equality operations on sets of size b, which can be done in time O(b · n). Thus,
we reach a time complexity of O(b2 · n2).
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Exercise 5.27: Can you obtain an asymptotically better bound on the worst-
case time complexity of live variables analysis with the naive fixed-point
algorithm, if exploiting properties of the structures of TIP CFGs and the
analysis constraints?

Exercise 5.28: Recall from Section 5.3 that the work-list algorithm relies on
a function dep(v) for avoiding recomputation of constraint functions that
are guaranteed not to change outputs. What would be a good strategy for
defining dep(v) in general for live variables analysis of any given program?

Exercise 5.29: Estimate the worst-case time complexity of the live variables
analysis with the simple work-list algorithm, by using the formula from
page 49.

5.5 Available Expressions Analysis

A nontrivial expression in a program is available at a program point if its current
value has already been computed earlier in the execution. Such information is
useful for program optimization. The set of available expressions for all program
points can be approximated using a dataflow analysis. The lattice we use has as
elements all expressions occurring in the program. To be useful for program
optimization purposes, an expression may be included at a given program point
only if it is definitely available not matter how the computation arrived at that
program point, so we choose the lattice to be ordered by reverse subset inclusion.

For the program

var x,y,z,a,b;

z = a+b;

y = a*b;

while (y > a+b) {

a = a+1;

x = a+b;

}

we have four different nontrivial expressions, so our lattice for abstract states is

States = (2{a+b,a*b,y>a+b,a+1},⊇)

which looks like this:
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{a+b,a*b,y>a+b,a+1}

{a+b,a*b,y>a+b} {a+b,a*b,a+1} {a+b,y>a+b,a+1} {a*b,y>a+b,a+1}

{a+b,a*b} {a+b,y>a+b} {a+b,a+1} {a*b,y>a+b}{a*b,a+1} {y>a+b,a+1}

{a+b} {a*b} {y>a+b} {a+1}

Ø

The top element of our lattice is ∅, which corresponds to the trivial information
that no expressions are known to be available. The CFG for above program looks
as follows:

z = a+b

y > a+b

a = a+1

x = a+b

y = a*b

var x,y,z,a,b

false

true

As usual in dataflow analysis, for each CFG node v we introduce a constraint
variable [[v]] ranging over States . Our intention is that it should contain the subset
of expressions that are guaranteed always to be available at the program point
after that node. For example, the expression a+b is available at the condition in
the loop, but it is not available at the final assignment in the loop. Our analysis
will be conservative in the sense that the computed sets may be too small but
never too large.

Next we define the dataflow constraints. The intuition is that an expression
is available at a node v if it is available from all incoming edges or is computed
by v, unless its value is destroyed by an assignment statement.

The JOIN function uses ∩ (because the lattice order is now ⊇) and pred
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(because availability of expressions depends on information from the past):

JOIN (v) =
⋂

w∈pred(v)

[[w]]

Assignments are modeled as follows:

X = E: [[v]] = (JOIN (v) ∪ exps(E))↓X

Here, the function↓X removes all expressions that contain the variable X, and
exps collects all nontrivial expressions:

exps(I) = ∅
exps(X) = ∅
exps(input) = ∅
exps(E1 op E2) = {E1 op E2} ∪ exps(E1) ∪ exps(E2)

No expressions are available at entry nodes:

[[entry]] = ∅

Branch conditions and output statements accumulate more available expres-
sions:

if (E):
while (E):
output E:

 [[v]] = JOIN (v) ∪ exps(E)

For all other kinds of nodes, the collected sets of expressions are simply propa-
gated from the predecessors:

[[v]] = JOIN (v)

Again, the right-hand sides of all constraints are monotone functions.

Exercise 5.30: Explain informally why the constraints are monotone and the
analysis is sound.

For the example program, we generate the following constraints:

[[entry]] = ∅
[[var x,y,z,a,b]] = [[entry]]
[[z=a+b]] = exps(a+b) ↓z
[[y=a*b]] = ([[z=a+b]] ∪ exps(a*b)) ↓y
[[y>a+b]] = ([[y=a*b]] ∩ [[x=a+b]]) ∪ exps(y>a+b)
[[a=a+1]] = ([[y>a+b]] ∪ exps(a+1))↓a
[[x=a+b]] = ([[a=a+1]] ∪ exps(a+b))↓x
[[exit]] = [[y>a+b]]

Using one of our fixed-point algorithms, we obtain the minimal solution:
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[[entry]] = ∅
[[var x,y,z,a,b]] = ∅
[[z=a+b]] = {a+b}
[[y=a*b]] = {a+b, a*b}
[[y>a+b]] = {a+b, y>a+b}
[[a=a+1]] = ∅
[[x=a+b]] = {a+b}
[[exit]] = {a+b, y>a+b}

The expressions available at the program point before a node v can be computed
from this solution as JOIN (v). In particular, the solution confirms our previous
observations about a+b. With this knowledge, an optimizing compiler could
systematically transform the program into a (slightly) more efficient version:

var x,y,z,a,b,aplusb;

aplusb = a+b;

z = aplusb;

y = a*b;

while (y > aplusb) {

a = a+1;

aplusb = a+b;

x = aplusb;

}

Exercise 5.31: Estimate the worst-case time complexity of available expres-
sions analysis, assuming that the naive fixed-point algorithm is used.

5.6 Very Busy Expressions Analysis

An expression is very busy if it will definitely be evaluated again before its value
changes. To approximate this property, we can use the same lattice and auxiliary
functions as for available expressions analysis. For every CFG node v the variable
[[v]] denotes the set of expressions that at the program point before the node
definitely are busy.

An expression is very busy if it is evaluated in the current node or will be
evaluated in all future executions unless an assignment changes its value. For
this reason, the JOIN is defined by

JOIN (v) =
⋂

w∈succ(v)

[[w]]

and assignments are modeled using the following constraint rule:

X = E: [[v]] = JOIN (v)↓ X ∪ exps(E)
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No expressions are very busy at exit nodes:

[[exit]] = ∅

The rules for the remaining nodes, include branch conditions and output state-
ments, are the same as for available expressions analysis.

On the example program:

var x,a,b;

x = input;

a = x-1;

b = x-2;

while (x>0) {

output a*b-x;

x = x-1;

}

output a*b;

the analysis reveals that a*b is very busy inside the loop. The compiler can
perform code hoisting and move the computation to the earliest program point
where it is very busy. This would transform the program into this more efficient
version:

var x,a,b,atimesb;

x = input;

a = x-1;

b = x-2;

atimesb = a*b;

while (x>0) {

output atimesb-x;

x = x-1;

}

output atimesb;

5.7 Reaching Definitions Analysis

The reaching definitions for a given program point are those assignments that
may have defined the current values of variables. For this analysis we need a
powerset lattice of all assignments (represented as CFG nodes) occurring in the
program. For the example program from before:

var x,y,z;

x = input;

while (x>1) {

y = x/2;

if (y>3) x = x-y;

z = x-4;



5.7 REACHING DEFINITIONS ANALYSIS 59

if (z>0) x = x/2;

z = z-1;

}

output x;

the lattice modeling abstract states becomes:

States = (2{x=input,y=x/2,x=x-y,z=x-4,x=x/2,z=z-1},⊆)

For every CFG node v the variable [[v]] denotes the set of assignments that may
define values of variables at the program point after the node. We define

JOIN (v) =
⋃

w∈pred(v)

[[w]]

For assignments the constraint is:
X = E: [[v]] = JOIN (v)↓X ∪ {X = E}

where this time the ↓X function removes all assignments to the variable X. For
all other nodes we define:

[[v]] = JOIN (v)

This analysis can be used to construct a def-use graph, which is like a CFG except
that edges go from definitions (i.e. assignments) to possible uses. Here is the
def-use graph for the example program:

x = input

x>1

y = x/2

y>3

z = x−4

z>0

z = z−1

output x

x = x−y

x = x/2

The def-use graph is a further abstraction of the program and is the basis of
widely used optimizations such as dead code elimination and code motion.

Exercise 5.32: Show that the def-use graph is always a subgraph of the transi-
tive closure of the CFG.
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5.8 Forward, Backward, May, and Must

As illustrated in the previous sections, a dataflow analysis is specified by pro-
viding the lattice and the constraint rules. Some patterns are emerging from the
examples, which makes it possible to classify dataflow analyses in various ways.

A forward analysis is one that for each program point computes information
about the past behavior. Examples of this are sign analysis and available expres-
sions analysis. They can be characterized by the right-hand sides of constraints
only depending on predecessors of the CFG node. Thus, the analysis essentially
starts at the entry node and propagates information forward in the CFG. For
such analyses, the JOIN function is defined using pred , and dep (if using the
work-list algorithm) can be defined by succ.

A backward analysis is one that for each program point computes information
about the future behavior. Examples of this are live variables analysis and very
busy expressions analysis. They can be characterized by the right-hand sides of
constraints only depending on successors of the CFG node. Thus, the analysis
starts at the exit node and moves backward in the CFG. For such analyses, the
JOIN function is defined using succ, and dep can be defined by pred .

The distinction between forward and backward applies to any flow-sensitive
analysis. For analyses that are based on a powerset lattice, we can also distin-
guish between may and must analysis.

A may analysis is one that describes information that may possibly be true
and, thus, computes an over-approximation. Examples of this are live variables
analysis and reaching definitions analysis. They can be characterized by the
lattice order being⊆ and constraint functions that use the ∪ operator to combine
information.

Conversely, a must analysis is one that describes information that must defi-
nitely be true and, thus, computes an under-approximation. Examples of this
are available expressions analysis and very busy expressions analysis. They can
be characterized by the use of ⊇ as lattice order and constraint functions that
use ∩ to combine information.

Thus, our four examples that are based on powerset lattices show every
possible combination, as illustrated by this diagram:

Forward Backward
May Reaching Definitions Live Variables
Must Available Expressions Very Busy Expressions

These classifications are mostly botanical, but awareness of them may provide
inspiration for constructing new analyses.
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Exercise 5.33: Which among the following analyses are distributive, if any?

(a) Available expressions analysis.

(b) Very busy expressions analysis.

(c) Reaching definitions analysis.

(d) Sign analysis.

(e) Constant propagation analysis.

Exercise 5.34: Let us design a flow-sensitive type analysis for TIP. In the simple
version of TIP we focus on in this chapter, we only have integer values at run-
time, but for the analysis we can treat the results of the comparison operators
> and == as a separate type: boolean. The results of the arithmetic operators +,
-, *, / can similarly be treated as type integer. As lattice for abstract states we
choose

States = Vars → 2{integer,boolean}

such that the analysis can keep track of the possible types for every variable.

(a) Specify constraint rules for the analysis.

(b) After analyzing a given program, how can we check using the com-
puted abstract states whether the branch conditions in if and while
statements are guaranteed to be booleans? Similarly, how can we check
that the arguments to the arithmetic operators +, -, *, / are guaranteed
to be integers? As an example, for the following program two warnings
should be emitted:

main(a,b) {

var x,y;

x = a+b;

if (x) { // warning: using integer as branch condition

output 17;

}

y = a>b;

return y+3; // warning: using boolean in addition

}
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Exercise 5.35: Assume we want to build an optimizing compiler for TIP
(without pointers and function calls). As part of this, we want to infer safely
approximate the possible values for each variable to be able to pick appropriate
runtime representations: bool (can represent only the two integer values 0
and 1), byte (8 bit signed integers), char (16 bit unsigned integers), int (32 bit
signed integers), or bigint (any integer). Naturally, we do not want to waste
space, so we prefer, for example, bit to int if we can guarantee that the value
of the variable can only be 0 or 1.

As an extra feature, we introduce a cast operation in TIP: an expression
of the form (T)E where T is one of the five types and E is an expression. At
runtime, a cast expression evaluates to the same value as E, except that it
aborts program execution if the value does not fit into T.

(a) Define a suitable lattice for describing abstract states.

(b) Specify the constraint rules for your analysis.

(c) Write a small but nontrivial TIP program that gives rise to several
different types, and argue briefly what result your analysis will produce
for that program.

5.9 Initialized Variables Analysis

Let us try to define an analysis that ensures that variables are initialized (i.e.
written to) before they are read. (A similar analysis is performed by Java com-
pilers to check that every local variable has a definitely assigned value when
any access of its value occurs.) This can be achieved by computing for every
program point the set of variables that are guaranteed to be initialized. We need
definite information, which implies a must analysis. Consequently, we choose
as abstract state lattice the powerset of variables occurring in the given program,
ordered by the superset relation. Initialization is a property of the past, so we
need a forward analysis. This means that our constraints are phrased in terms
of predecessors and intersections. On this basis, the constraint rules more or
less give themselves.

Exercise 5.36: What is the JOIN function for initialized variables analysis?

Exercise 5.37: Specify the constraint rule for assignments.

No other statements than assignments affect which variables are initialized,
so the constraint rule for all other kinds of nodes is the same as, for example, in
sign analysis (see page 41).

Using the results from initialized variables analysis, a programming error
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detection tool could now check for every use of a variable that it is contained
in the computed set of initialized variables, and emit a warning otherwise. A
warning would be emitted for this trivial example program:

main() {

var x;

return x;

}

Exercise 5.38: Write a TIP program where such an error detection tool would
emit a spurious warning. That is, in your program there are no reads from
uninitialized variables in any execution but the initialized variables analysis
is too imprecise to show it.

Exercise 5.39: An alternative way to formulate initialized variables analysis
would be to use the following map lattice instead of the powerset lattice:

States = Vars → Init

where Init is a lattice with two elements {Initialized,NotIninitialized}.

(a) How should we order the two elements? That is, which one is > and
which one is ⊥?

(b) How should the constraint rule for assignments be modified to fit with
this alternative lattice?

5.10 Transfer Functions

Observe that in all the analyses presented in this chapter, all constraint functions
are of the form

[[v]] = tv(JOIN (v))

for some function tv : L → L where L is the lattice modeling abstract states
and JOIN (v) =

⊔
w∈dep−1(v) [[w]]. The function tv is called the transfer function

for the CFG node v and specifies how the analysis models the statement at
v as an abstract state transformer. For a forward analysis, which is the most
common kind of dataflow analysis, the input to the transfer function represents
the abstract state at the program point immediately before the statement, and its
output represents the abstract state at the program point immediately after the
statement (and conversely for a backward analysis). When specifying constraints
for a dataflow analyses, it thus suffices to provide the transfer functions for all
CFG nodes. As an example, in sign analysis where L = Vars → Sign , the
transfer function for assignment nodes X = E is:

tX=E(s) = s[X 7→ eval(s,E)]
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In the simple work-list algorithm, JOIN (v) =
⊔
w∈dep−1(v) [[w]] is computed

in each iteration of the while-loop. However, often [[w]] has not changed since last
time v was processed, so much of that computation may be redundant. (When
we introduce inter-procedural analysis in Chapter 7, we shall see that dep−1(v)
may become large.) We now present another work-list algorithm based on trans-
fer functions that avoids some of that redundancy. With this algorithm, for a
forward analysis each variable xi denotes the abstract state for the program point
before the corresponding CFG node vi, in contrast to the other fixed-point solvers
we have seen previously where xi denotes the abstract state for the program
point after vi (and conversely for a backward analysis).

procedure TransferWorkListAlgorithm(t1, . . . , tn)
(x1, . . . , xn) := (⊥, . . . ,⊥)
W := {v1, . . . , vn}
while W 6= ∅ do

vi :=W.removeNext()
y := tvi(xi)
for each vj ∈ dep(vi) do

z := xj t y
if xj 6= z then

xj := z
W.add(vj)

end if
end for

end while
return (x1, . . . , xn)

end procedure

In each iteration of the while-loop, the transfer function of the current node vi
is applied, and the resulting abstract state is propagated to all dependencies.
Those that change are added to the work-list.

Exercise 5.40: Prove that TransferWorkListAlgorithm computes the same
solution as the other fixed-point solvers.

5.11 Interval Analysis

An interval analysis computes for every integer variable a lower and an upper
bound for its possible values. Intervals are interesting analysis results, since
sound answers can be used for optimizations and bug detection related to array
bounds checking, numerical overflows, and integer representations.

This example involves a lattice of infinite height, and we must use a special
technique described in Section 5.12 to to ensure convergence toward a fixed-
point.
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The lattice describing a single abstract value is defined as

Interval = lift({[l, h] | l, h ∈ N ∧ l ≤ h})

where
N = {−∞, . . . ,−2,−1, 0, 1, 2, . . . ,∞}

is the set of integers extended with infinite endpoints and the order on intervals
is defined by inclusion:

[l1, h1] v [l2, h2] ⇔ l2 ≤ l1 ∧ h1 ≤ h2

This lattice looks as follows:

[−2,−2] [−1,−1] [0,0] [1,1] [2,2]

[1,2][0,1][−1,0]

[−  ,−2]

[−  ,−1]

[−  ,0]

[−2,0] [−1,1] [0,2]

[2,  ]

[1,  ]

[−2,2]

[−2,1] [−1,2]

[−  ,  ]

8 8

8

8

8

8

8

8

[0,  ]

[−2,−1]

It is clear that we do not have a lattice of finite height, since it contains for
example this infinite chain:

[0, 0] v [0, 1] v [0, 2] v [0, 3] v [0, 4] v [0, 5] . . .

This carries over to the lattice for abstract states:

States = Vars → Interval

Before we specify the constraint rules, we define a function eval that performs
an abstract evaluation of expressions:

eval(σ,X) = σ(X)
eval(σ, I) = [I, I]
eval(σ,E1 opE2) = ôp(eval(σ,E1), eval(σ,E2))
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The abstract arithmetical operators all are defined by:

ôp([l1, h1], [l2, h2]) = [ min
x∈[l1,h1],y∈[l2,h2]

x op y, max
x∈[l1,h1],y∈[l2,h2]

x op y]

For example, +̂([1, 10], [−5, 7]) = [1− 5, 10 + 7] = [−4, 17].

Exercise 5.41: Explain why the definition of eval given above is a conservative
approximation compared to evaluating TIP expressions concretely. Give an
example of how the definition could be modified to make the analysis more
precise (and still sound).

Exercise 5.42: This general definition of ôp looks simple in math, but it is
nontrivial to implement it efficiently. Your task is to write pseudo-code for
an implementation of the abstract greater-than operator >̂. (To be usable in
practice, the execution time of your implementation should be less than linear
in the input numbers!)

The JOIN function is the usual one for forward analyses:

JOIN (v) =
⊔

w∈pred(v)

[[w]]

We can now specify the constraint rule for assignments:

X = E: [[v]] = JOIN (v)[X 7→ eval(JOIN (v), E)]

For all other nodes the constraint is the trivial one:

[[v]] = JOIN (v)

Exercise 5.43: Argue that the constraint functions are monotone.

The interval analysis lattice has infinite height, so applying the naive fixed-
point algorithms may never terminate: for the lattice Ln, the sequence of ap-
proximants

f i(⊥, . . . ,⊥)
need never converge. A powerful technique to address this kind of problem is
introduced in the next section.

Exercise 5.44: Give an example of a TIP program where none of the fixed-point
algorithms terminate for the interval analysis as presented above.

5.12 Widening and Narrowing

To obtain convergence of the interval analysis presented in Section 5.11 we shall
use a technique called widening. This technique generally works for any analysis
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that can expressed using monotone equation systems, but it is typically used in
flow-sensitive analyses with infinite-height lattices.

Let f : L → L denote the function from the fixed-point theorem and the
naive fixed-point algorithm (Section 4.4). A particularly simple form of widening,
which often suffices in practice, introduces a function w : L → L so that the
sequence

(w ◦ f)i(⊥) for i = 0, 1, . . .

is guaranteed to converge on a fixed-point that is at larger than or equal to each
approximant f i(⊥) of the naive fixed-point algorithm and thus represents sound
information about the program. To ensure this property, it suffices that w is
monotone and extensive (see Exercise 4.14), and that the image w(L) = {y ∈
L | ∃x ∈ L : y = w(x)} has finite height. The fixed-point algorithms can easily
be adapted to use widening by applying w in each iteration.

The widening function w will intuitively coarsen the information sufficiently
to ensure termination. For our interval analysis, w is defined pointwise down to
single intervals. It operates relatively to a fixed finite subset B ⊂ N that must
contain −∞ and∞. Typically, B could be seeded with all the integer constants
occurring in the given program, but other heuristics could also be used. On a
single interval we have

w([l, h]) = [max{i ∈ B | i ≤ l},min{i ∈ B | h ≤ i}]

which finds the best fitting interval among the ones that are allowed.

Exercise 5.45: Show that interval analysis with widening, using this definition
of w, always terminates and yields a solution that is a safe approximation of
the ideal result.

Widening generally shoots above the target, but a subsequent technique
called narrowing may improve the result. If we define

fix =
⊔
f i(⊥) fixw =

⊔
(w ◦ f)i(⊥)

then we have fix v fixw . However, we also have that fix v f(fixw) v fixw ,
which means that a subsequent application of f may improve our result and
still produce sound information. This technique, called narrowing, may in fact
be iterated arbitrarily many times.

Exercise 5.46: Show that ∀i : fix v f i+1(fixw) v f i(fixw) v fixw .

An example will demonstrate the benefits of these techniques. Consider this
program:

y = 0; x = 7; x = x+1;

while (input) {

x = 7;

x = x+1;
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y = y+1;

}

Without widening, the analysis will produce the following diverging sequence
of approximants for the program point after the loop:

[x 7→ ⊥, y 7→ ⊥]
[x 7→ [8, 8], y 7→ [0, 1]]
[x 7→ [8, 8], y 7→ [0, 2]]
[x 7→ [8, 8], y 7→ [0, 3]]
...

If we apply widening, based on the set B = {−∞, 0, 1, 7,∞} seeded with the
constants occurring in the program, then we obtain a converging sequence:

[x 7→ ⊥, y 7→ ⊥]
[x 7→ [7,∞], y 7→ [0, 1]]
[x 7→ [7,∞], y 7→ [0, 7]]
[x 7→ [7,∞], y 7→ [0,∞]]

However, the result for x is discouraging. Fortunately, a few iterations of
narrowing quickly improve the result:

[x 7→ [8, 8], y 7→ [0,∞]]

This result is really the best we could hope for, for this program. For that reason,
further narrowing has no effect. Note that the decreasing sequence

fixw w f(fixw) w f2(fixw) w f3(fixw) . . .

is not guaranteed to converge, so heuristics must determine how many times to
apply narrowing.
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Path Sensitivity

Until now, we have ignored the values of conditions by simply treating if- and
while-statements as a nondeterministic choice between the two branches. This
is called a path insensitive analysis as it does not distinguish different paths that
lead to a given program point. This technique fails to include some information
that could potentially be used in a static analysis. Consider for example the
following program:

x = input;

y = 0;

z = 0;

while (x > 0) {

z = z+x;

if (17 > y) { y = y+1; }

x = x-1;

}

The previous interval analysis (with widening) will conclude that after the
while-loop, the variable x is in the interval [−∞,∞], y is in the interval [0,∞],
and z is in the interval [−∞,∞]. However, in view of the conditionals being
used, this result is too pessimistic.

6.1 Assertions

To exploit the available information, we shall extend the language with an
artificial statement, assert(E), whereE is a boolean expression. This statement
will abort execution at runtime ifE is false and otherwise have no effect, however,
we shall only insert it at places where E is guaranteed to be true. In the interval
analysis, the constraints for these new statement will narrow the intervals for
the various variables by exploiting information in conditionals.
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For the example program, the meanings of the conditionals can be encoded
by the following program transformation:

x = input;

y = 0;

z = 0;

while (x > 0) {

assert(x > 0);

z = z+x;

if (17 > y) { assert(17 > y); y = y+1; }

x = x-1;

}

assert(!(x > 0));

(We here also extend TIP with a unary negation operator !.) It is always safe to
ignore the assert statements, which amounts to this trivial constraint rule:

assert(E): [[v]] = JOIN (v)

With that constraint rule, no extra precision is gained. It requires insight into the
specific static analysis to define nontrivial and sound constraints for assertions.

For the interval analysis, extracting the information carried by general condi-
tions, or predicates, such as E1 > E2 or E1 == E2 relative to the lattice elements
is complicated and in itself an area of considerable study. For simplicity, let us
consider conditions only of the two kinds X > E and E > X. The former kind
of assertion can be handled by the constraint rule

assert(X > E): [[v]] = JOIN (v)[X 7→ gt(JOIN (v)(X), eval(JOIN (v),E))]

where gt models the greater-than operator:

gt([l1, h1], [l2, h2]) = [l1, h1] u [l2,∞]

Exercise 6.1: Argue that this constraint for assert is sound and monotone.

Exercise 6.2: Specify a constraint rule for assert(E > X).

Negated conditions are handled in similar fashions, and all other conditions
are given the trivial constraint by default.

With this refinement, the interval analysis of the above example will conclude
that after the while-loop the variable x is in the interval [−∞, 0], y is in the
interval [0, 17], and z is in the interval [0,∞].

Exercise 6.3: Discuss how more conditions may be given nontrivial constraints
for assert to improve analysis precision further.
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6.2 Branch Correlations

The use of assert statements at conditional branches provides a simple kind of
path sensitivity called control sensitivity , however it is insufficient for reasoning
about correlations of branches in programs. Here is a typical example:

if (condition) {

open();

flag = 1;

} else {

flag = 0;

}

...

if (flag) {

close();

}

We here assume that open and close are built-in functions for opening and
closing a specific file. The file is initially closed, condition is some complex
expression, and the “. . . ” consists of statements that do not call open or close
or modify flag. We wish to design an analysis that can check that close is only
called if the file is currently open.

As a starting point, we use this lattice for modeling the open/closed status
of the file:

L = (2{open,closed},⊆)

For every CFG node v the variable [[v]] denotes the possible status of the file at
the program point after the node. For open and close statements the constraints
are:

[[open()]] = {open}

[[close()]] = {closed}

For the entry node, we define:

[[entry ]] = {closed}

and for every other node, which does not modify the file status, the constraint is
simply

[[v]] = JOIN (v)

where JOIN is defined as usual for a forward, may analysis:

JOIN (v) =
⋃

w∈pred(v)

[[w]]

In the example program, the close function is clearly called if and only if
open is called, but the current analysis fails to discover this.
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Exercise 6.4: Write the constraints being produced for the example program
and show that the solution for [[flag]] (the node for the last if condition) is
{open, closed}.

Arguing that the program has the desired property obviously involves the
flag variable, which the lattice above ignores. So, we can try with a slightly
more sophisticated lattice – a product lattice that keeps track of both the status
of the file and the value of the flag:

L′ = (2{open,closed},⊆)× (2{flag=0,flag6=0},⊆)

Additionally, we insert assert statements to model the conditionals:

if (condition) {

assert(condition);

open();

flag = 1;

} else {

assert(!condition);

flag = 0;

}

...

if (flag) {

assert(flag);

close();

} else {

assert(!flag);

}

This is still insufficient, though. At the program point after the first if-else
statement, the analysis only knows that open may have been called and flag
may be 0.

Exercise 6.5: Specify the constraints that fit with the L′ lattice. Then show
that the analysis produces the lattice element (2{open,closed}, 2{flag=0,flag6=0})
for the first node after the first if-else statement.

The present analysis is also called an independent attribute analysis as the
abstract value of the file is independent of the abstract value of the boolean flag.
What we need is a relational analysis that can keep track of relations between
variables. This can be achieved by generalizing the analysis to maintain multiple
abstract states per program point. If L is the original lattice as defined above,
we replace it by the map lattice

L′′ = Paths → L

where Paths is a finite set of path contexts. A path context is here a predicate
over the program state. (For instance, a condition expression in TIP defines such
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a predicate.) In general, each statement is then analyzed in |Paths| different
path contexts, each describing a set of paths that lead to the statement. For the
example above, we can use Paths = {flag = 0, flag 6= 0}.

The constraints for open, close, and entry can now be defined as follows.1

open(): [[v]] = λp.{open}

close(): [[v]] = λp.{closed}

entry: [[v]] = λp.{closed}

The constraints for assignments make sure that flag gets special treatment:

flag = 0: [[v]] = [flag = 0 7→
⋃
p∈Paths JOIN (v)(p),

flag 6= 0 7→ ∅]

flag = I : [[v]] = [flag 6= 0 7→
⋃
p∈Paths JOIN (v)(p),

flag = 0 7→ ∅]

flag = E: [[v]] = λq.
⋃
p∈Paths JOIN (v)(p)

Here, I is an integer constant other than 0 and E is a non-integer-constant
expression. The definition of JOIN follows from the lattice structure and from
the analysis being forward:

JOIN (v)(p) =
⋃

w∈pred(v)

[[w]](p)

The constraint for the case flag = 0 models the fact that flag is definitely
0 after the statement, so the open/closed information is obtained from the
predecessors, independent of whether flagwas 0 or not before the statement.
Also, the open/closed information is set to the bottom element ∅ for flag 6= 0
because that path context is infeasible at the program point after flag = 0. The
constraint for flag = I is dual, and the last constraint covers the cases where
flag is assigned an unknown value.

For assert statements, we also give special treatment to flag:

assert(flag): [[v]] = [flag 6= 0 7→ JOIN (v)(flag 6= 0),
flag = 0 7→ ∅]

Notice the small but important difference compared to the constraint for
flag = 1 statements. As before, the case for negated expressions is similar.

Exercise 6.6: Give an appropriate constraint for assert(!flag).

Finally, for any other node v, including other assert statements, the constraint
keeps the dataflow information for different path contexts apart but otherwise
simply propagates the information from the predecessors in the CFG:

[[v]] = λp.JOIN (v)(p)

1We here use the lambda abstration notation to denote a function: if f = λx.e then f(x) = e.
Thus, λp.{open} is the function that returns {open} for any input p.
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Although this is sound, we could make more precise constraints for assert
nodes by recognizing other patterns that fit into the abstraction given by the
lattice.

For our example program, the following constraints are generated:

[[entry]] = λp.{closed}
[[condition]] = [[entry]]
[[assert(condition)]] = [[condition]]
[[open()]] = λp.{open}
[[flag = 1]] =

[
flag 6= 0 7→

⋃
p∈Paths [[open()]](p), flag = 0 7→ ∅

]
[[assert(!condition)]] = [[condition]]
[[flag = 0]] =

[
flag = 0 7→

⋃
p∈Paths [[assert(!condition)]](p), flag 6= 0 7→ ∅

]
[[...]] = λp.

(
[[flag = 1]](p) ∪ [[flag = 0]](p)

)
[[flag]] = [[...]]
[[assert(flag)]] = [flag 6= 0 7→ [[flag]](flag 6= 0), flag = 0 7→ ∅]
[[close()]] = λp.{closed}
[[assert(!flag)]] = [flag = 0 7→ [[flag]](flag = 0), flag 6= 0 7→ ∅]
[[exit]] = λp.

(
[[close()]](p) ∪ [[assert(!flag)]](p)

)
The minimal solution is, for each [[v]](p):

flag = 0 flag 6= 0
[[entry]] {closed} {closed}
[[condition]] {closed} {closed}
[[assert(condition)]] {closed} {closed}
[[open()]] {open} {open}
[[flag = 1]] ∅ {open}
[[assert(!condition)]] {closed} {closed}
[[flag = 0]] {closed} ∅
[[...]] {closed} {open}
[[flag]] {closed} {open}
[[assert(flag)]] ∅ {open}
[[close()]] {closed} {closed}
[[assert(!flag)]] {closed} ∅
[[exit]] {closed} {closed}

The analysis produces the lattice element [flag = 0 7→ {closed}, flag 6= 0 7→
{open}] for the program point after the first if-else statement. The constraint
for the assert(flag) statement will eliminate the possibility that the file is
closed at that point. This ensures that close is only called if the file is open, as
desired.

Exercise 6.7: For the present example, the basic lattice L is a defined as a
powerset of a finite set A. Show that Paths → 2A is isomorphic to 2Paths×A.
(This explains why such analyses are called relational: each element of 2Paths×A

is a (binary) relation between Paths and A.)
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Exercise 6.8: Describe a variant of the example program above where the
present analysis would be improved if combining it with constant propaga-
tion.

In general, the program analysis designer is left with the choice of Paths .
Often, Paths consists of combinations of predicates that appear in conditionals
in the program. This quickly results in an exponential blow-up: for k predicates,
each statement may need to be analyzed in 2k different path contexts. In practice,
however, there is usually much redundancy in these analysis steps. Thus, in
addition to the challenge of reasoning about the assert predicates relative to the
lattice elements, it requires a considerable effort to avoid too many redundant
computations in path sensitive analysis. One approach is iterative refinement
where Paths is initially a single universal path context, which is then iteratively
refined by adding relevant predicates until either the desired properties can be
established or disproved or the analysis is unable to select relevant predicates
and hence gives up.

Exercise 6.9: Assume that we change the rule for open from

[[open()]] = λp.{open}

to
[[open()]] = λp. if JOIN (v)(p) = ∅ then ∅ else {open}

Argue that this is sound and for some programs more precise than the original
rule.

Exercise 6.10: The following is a variant of the previous example program:

if (condition) {

flag = 1;

} else {

flag = 0;

}

...

if (flag) {

open();

}

...

if (flag) {

close();

}

(Again, assume that “...” are statements that do not call open or close or
modify flag.) Is the path sensitive analysis described in this section capable
of showing also for this program that close is called only if the file is open?
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Exercise 6.11: Construct yet another variant of the open/close example pro-
gram where the desired property can only be established with a choice of
Paths that includes a predicate that does not occur as a conditional expression
in the program source. (Such a program may be challenging to handle with
iterative refinement techniques.)
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Interprocedural Analysis

So far, we have only analyzed the body of a single function, which is called
an intraprocedural analysis. We now consider interprocedural analysis of whole
programs containing multiple functions and function calls.

7.1 Interprocedural Control Flow Graphs

We use the subset of the TIP language containing functions, but still ignore
pointers. As we shall see, the CFG for an entire program is then quite simple to
obtain. It becomes more complicated when adding function pointers, which we
discuss in Chapter 8.

First we construct the CFGs for all individual function bodies as usual. All
that remains is then to glue them together to reflect function calls properly.
We need to take care of parameter passing, return values, and values of local
variables across calls. For simplicity we assume that all function calls are
performed in connection with assignments:

X = f (E1, . . . , ,En);

Exercise 7.1: Show how any program can be normalized (cf. Section 2.3) to
have this form.

In the CFG, we represent each function call statement using two nodes: a
call node representing the connection from the caller to the entry of f, and an
after-call node where execution resumes after returning from the exit of f:



78 7 INTERPROCEDURAL ANALYSIS

X = 

(             )1 n  = f  E ,...,E 

Next, we represent each return statement

return E;

as an assignment using a special variable named result:

result = E

As discussed in Section 2.5, CFGs can be constructed such that there is always a
unique entry node and a unique exit node for each function.

We can now glue together the caller and the callee as follows:

X = 

1  = f  E  ,...,E (              )n

result = E

1             nf(b  , ..., b  )

The connection between the call node and its after-call node is represented by
a special edge (not in succ and pred ), which we need for propagating abstract
values for local variables of the caller.

With this interprocedural CFG in place, we can apply the monotone frame-
work. Examples are given in the following sections.
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Exercise 7.2: How many edges may the interprocedural CFG contain in a
program with n CFG nodes?

Recall the intraprocedural sign analysis from Sections 4.1 and 5.1. That
analysis models values with the lattice Sign :

?

+ 0 −

and abstract states are represented by the map lattice States = Vars → Sign . For
any program point, the abstract state only provides information about variables
that are in scope; all other variables can be set to ⊥.

To make the sign analysis interprocedural, we define constraints for function
entries and exits. For an entry node v of a function f (b1, . . . ,bn)we consider
the abstract states for all callers pred(v) and model the passing of parameters:

[[v]] =
⊔

w∈pred(v)

sw

where1

sw = ⊥[b1 7→ eval([[w]],Ew
1 ), . . . , bn 7→ eval([[w]],Ew

n )]

where Ew
i is the i’th argument at the call node w. As discussed in Section 4.4,

constraints can be expressed using inequations instead of equations. The con-
straint rule above can be reformulated as follows, where v is a function entry
node v and w ∈ pred(v) is a caller:

[[v]] w sw

Intuitively, this shows how information flows from the call node (the right-hand-
side of w) to the function entry node (the left-hand-side of w).

Exercise 7.3: Explain why these two formulations of the constraint rule for
function entry nodes are equivalent.

For the entry node v of the main function with parameters b1, . . . , bn we have
this special rule that models the fact that main is implicitly called with unknown
arguments:

[[v]] = ⊥[b1 7→ ?, . . . , bn 7→ ?]
1In this expression, ⊥ denotes the bottom element of the Vars → Sign , that is, it maps every

variable to the bottom element of Sign .
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For an after-call node v that stores the return value in the variable X and where
v′ is the accompanying call node and w ∈ pred(v) is the function exit node, the
dataflow can be modeled by the following constraint:

[[v]] = [[v′]][X 7→ [[w]](result)]

The constraint obtains the abstract values of the local variables from the call
node v′ and the abstract value of result from w.

With this approach, no constraints are needed for call nodes and exit nodes.
In a backward analysis, one would consider the call nodes and the function
exit nodes rather than the function entry nodes and the after-call nodes. Also
notice that we exploit the fact that the variant of the TIP language we use in this
chapter does not have global variables, a heap, nested functions, or higher-order
functions.

Exercise 7.4: Write and solve the constraints that are generated by the inter-
procedural sign analysis for the following program:

inc(a) {

return a+1;

}

main() {

var x,y;

x = inc(17);

y = inc(87);

return x+y;

}

Exercise 7.5: Assume we extend TIP with global variables. Such variables are
declared before all functions and their scope covers all functions. Write a TIP
program with global variables that is analyzed incorrectly (that is, unsoundly)
with the current analysis. Then show how the constraint rules above should
be modified to accommodate this language feature.

Function entry nodes may have many predecessors, and similarly, function
exit nodes may have many successors. For this reason, using algorithms like
TransferWorkListAlgorithm (Section 5.10) are often preferred for interproce-
dural dataflow analysis.

Exercise 7.6: For the interprocedural sign analysis, how can we choose dep(v)
when v is a call node, an after-call node, a function entry node, or a function
exit node?
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7.2 Context Sensitivity

The approach to interprocedural analysis as presented in the previous sections
is called context insensitive, because it does not distinguish between different
calls to the same function. As an example, consider the sign analysis applied to
this program:

f(z) {

return z*42;

}

main() {

var x,y;

x = f(0); // call 1

y = f(87); // call 2

return x + y;

}

Due to the first call to f the parameter zmay be 0, and due to the second call it
may be a positive number, so in the abstract state at the entry of f, the abstract
value of z is ?. That value propagates through the body of f and back to the
callers, so both x and y also become ?. This is an example of dataflow along
interprocedurally invalid paths: according to the analysis constraints, dataflow
from one call node propagates through the function body and returns not only
at the matching after-call node but at all after-call nodes. Although the analysis
is still sound, the resulting loss of precision may be unacceptable.

A naive solution to this problem is to use function cloning. In this specific
example we could clone f and let the two calls invoke different but identical func-
tions. A similar effect would be obtained by inlining the function body at each
call. More generally this may, however, increase the program size significantly,
and in case of (mutually) recursive functions it would result in infinitely large
programs. As we shall see next, we can instead encode the relevant information
to distinguish the different calls by the use of more expressive lattices, much
like the path-sensitivity approach in Chapter 6.

As discussed in the previous section, a basic context-insensitive dataflow ana-
lysis can be expressed using a lattice Statesn where States is the lattice describing
abstract states and n = |Nodes| (or equivalently, using a lattice Nodes → States).
Context-sensitive analysis instead uses a lattice of the form(

Contexts → lift(States)
)n

(or equivalently, Contexts → (lift(States))n or Nodes → Contexts → lift(States)
or Contexts ×Nodes → lift(States)) where Contexts is a set of call contexts. The
reason for using the lifted sub-lattice lift(States) (as defined in Section 4.3) is that
Contexts may be large so we only want to infer abstract states for call contexts
that may be feasible. The bottom element of lift(States), denoted unreachable, is
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used for call contexts that are unreachable from the program entry. (Of course, if
States already provides similar information, we do not need the lifted version.)

In the following sections we present different ways of choosing the set of call
contexts. A trivial choice is to let Contexts be a singleton set, which amounts to
context-insensitive analysis. Another extreme we shall investigate is to to pick
Contexts = States , which allows full context sensitivity.

Dataflow for CFG nodes that do not involve function calls and returns is
modeled as usual, except that we now have an abstract state (or the extra lat-
tice element unreachable) for each call context. This means that the constraint
variables now range over Contexts → lift(States) rather than just States . For ex-
ample, the constraint rule for assignments X =E in intraprocedural sign analysis
from Section 5.1,

X = E: [[v]] = JOIN (v)[X 7→ eval(JOIN (v),E)]

becomes

X = E: [[v]](c) =

{
s[X 7→ eval(s,E)] if s = JOIN (v, c) ∈ States

unreachable if JOIN (v, c) = unreachable

where
JOIN (v, c) =

⊔
w∈pred(v)

[[w]](c)

to match the new lattice with context sensitivity. Note that information for
different call contexts is kept apart, and that the reachability information is
propagated along. How to model the dataflow at call nodes, after-call nodes,
function entry nodes, and function exit nodes depends on the context sensitivity
strategy, as described in the following sections.

7.3 Context Sensitivity with Call Strings

Let Calls be the set of call nodes in the CFG. The call string approach to context
sensitivity defines2

Contexts = Calls≤k

where k is a positive integer. With this choice of call contexts, we can obtain a
similar effect as function cloning or inlining, but without actually changing the
CFG. The idea is that a tuple (c1, c2, . . . , cm) ∈ Calls≤k identifies the topmost
m call sites on the call stack. If (e1, . . . , en) ∈ (Contexts → States)n is a lattice
element, then ei(c1, c2, . . . , cm) provides an abstract state that approximates the
runtime states that may appear at the i’th CFG node, assuming that the function
containing that node was called from c1, and the function containing c1 was
called from c2, etc.

2We here use the notation A≤k meaning the set of tuples of k or fewer elements from the set A,
or more formally: A≤k =

⋃
i=0,...,k A

i. The symbol ε denotes the empty tuple.
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The worst-case complexity of the analysis is evidently affected by the choice
of k.

Exercise 7.7: What is the height of the lattice (Contexts → States)n when
Contexts = Calls≤k and States = Vars → Sign , expressed in terms of k (the
call string bound), n = |Nodes|, and b = |Vars|?

To demonstrate the call string approach we again consider sign analysis
applied to the program from Section 7.2. Let c1 and c2 denote the two call nodes
in the main function in the program. For simplicity, we focus on the case k = 1,
meaning that Contexts = {ε, c1, c2}, so the analysis only tracks the top-most
call site. When execution is initiated at the main function, the current context is
described by the empty call string ε. We can now define the analysis constraints
such that, in particular, at the entry of the function f, we obtain the lattice
element[
ε 7→ unreachable,
c1 7→ [x 7→ ⊥, y 7→ ⊥, z 7→ 0],
c2 7→ [x 7→ ⊥, y 7→ ⊥, z 7→ +]

]
which has different abstract values for z depending on the caller. Notice that
the information for the context ε is unreachable, since f is not the main function
but is always executed from c1 or c2.

The constraint rule for an entry node v of a function f (b1, . . . ,bn)models
parameter passing in the same way as in context-insensitive analysis, but it now
updates the call context and takes unreachable into account:

[[v]](c) =
⊔

w ∈ pred(v) ∧
c = w ∧

c′ ∈ Contexts ∧
[[w]](c′) 6= unreachable

sc
′

w

where

sc
′

w = ⊥[b1 7→ eval([[w]](c′),Ew
1 ), . . . , bn 7→ eval([[w]](c′),Ew

n )]

Compared to the context-insensitive variant, the abstract state at v is now
parameterized by the context c, and we only include information from the call
nodes that match c. In this simple case where k = 1 there is no direct connection
between c and c′ (the context at the call node), but for larger values of k it is
necessary to express how the call site is pushed onto the stack (represented by
the call string).

Exercise 7.8: Verify that this constraint rule for function entry nodes indeed
leads to the lattice element shown above for the example program.

Expressed using inequations instead, the constraint rule for a function entry
node v where w ∈ pred(v) is a caller and c′ ∈ Contexts is a call context can be



84 7 INTERPROCEDURAL ANALYSIS

written as follows, which may be more intuitively clear.

[[v]](w) w sc
′

w if [[w]](c′) 6= unreachable

Informally, for any call context c′ at the call node w, an abstract state sc′w is built
by evaluating the function arguments and propagated to call context w at the
function entry node v.

Exercise 7.9: Give a constraint rule for the entry node of the special function
main. (Remember that main is always reachable in context ε and that the
values of its parameters can be any integers.)

The constraint rule for an after-call node v with associated call node v′ and
function exit node w ∈ pred(v) merges the abstract state from the call node and
the return value from the exit node, now taking the call contexts into account:

[[v]](c) = [[v′]](c)[X 7→ [[w]](v′)(result)]

if [[v′]](c) 6= unreachable ∧ [[w]](v′) 6= unreachable

Notice that v′ is both a call node and a call context, and the abstract value of
result is obtained from the exit node w in call context v′.

Exercise 7.10: Write and solve the constraints that are generated by the inter-
procedural sign analysis for the program from Exercise 7.4, this time with
context sensitivity using the call string approach with k = 1. (Even though
this program does not need context sensitivity to be analyzed precisely, it
illustrates the mechanism behind the call string approach.)

Exercise 7.11: Assume we have analyzed a program P with Callers = {c1, c2}
using the interprocedural sign analysis with call-string context sensitivity
with k = 2, and the analysis result contains the following lattice element for
the exit node of a function named foo:[
ε 7→ unreachable,
(c1) 7→ unreachable,
(c2) 7→ unreachable,
(c1, c1) 7→ [result 7→ -],
(c2, c1) 7→ unreachable,
(c1, c2) 7→ [result 7→ +],
(c2, c2) 7→ unreachable

]
Explain informally what this tells us about the program P .

Exercise 7.12: Write a TIP program that needs the call string bound k = 2 or
higher to be analyzed with optimal precision using the sign analysis. That is,
some variable in the program is assigned the abstract value ? by the analysis
if and only if k < 2.
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Exercise 7.13: Generalize the constraint rules shown above to work with any
k ≥ 1, not just k = 1.

In summary, the call string approach distinguishes calls to the same function
based on the call sites that appear in the call stack. In practice, k = 1 sometimes
gives inadequate precision, and k ≥ 2 is generally too expensive. For this reason,
a useful strategy is to select k individually for each call site, based on heuristics.

7.4 Context Sensitivitywith theFunctionalApproach

Consider this variant of the program from Section 7.2:

f(z) {

return z*42;

}

main() {

var x,y;

x = f(42); // call 1

y = f(87); // call 2

return x + y;

}

The call string approach with k ≥ 1 will analyze the f function twice, which
is unnecessary because the abstract value of the argument is + at both calls.
Rather than distingushing calls based on information about control flow from
the call stack, the functional approach to context sensitivity distinguishes calls
based on the data from the abstract states at the calls. In the most general form,
the functional approach uses

Contexts = States

although a subset often suffices. With this set of call contexts, the analysis lattice
becomes (

States → lift(States)
)n

which clearly leads to a significant increase of the theoretical worst-case com-
plexity compared to context insensitive analysis.

Exercise 7.14: What is the height of this lattice, expressed in terms of h =
height(States) and s = |States|?

The idea is that a lattice element for a CFG node v is a map m : States →
lift(States) such that m(s) approximates the possible states at v given that the
current function containing v was entered in a state that matches s. The situation
m(s) = unreachable means that there is no execution of the program where the
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function is entered in a state that matches s and v is reached. If v is the exit node
of a function f , the map m is a summary of f , mapping abstract entry states to
abstract exit states, much like a transfer function (see Section 5.10) models the
effect of executing a single instruction but now for an entire function.

Returning to the example program from Section 7.2 (page 81), we will now
define the analysis constraints such that, in particular, at the exit of the function
f, we obtain the lattice element3[
⊥[z 7→ 0] 7→ ⊥[z 7→ 0, result 7→ 0],
⊥[z 7→ +] 7→ ⊥[z 7→ +, result 7→ +],
all other contexts 7→ unreachable]

which shows that the exit of f is unreachable unless z is 0 or + at the entry of
the function, and that the sign of result at the exit is the same as the sign of z
at the input. In particular, the element -maps to unreachable because f is never
called with negative inputs in the program.

The constraint rule for an entry node v of a function f (b1, . . . ,bn) is similar
to the call strings approach, except that the context is updated differently:

[[v]](c) =
⊔

w ∈ pred(v) ∧
c = sc

′
w ∧

c′ ∈ Contexts ∧
[[w]](c′) 6= unreachable

sc
′

w

(The abstract state sc′w is defined as in Section 7.3.) In this constraint rule, the
abstract state computed for the call context c at the entry node v only includes
information from the calls that produce an entry state sc′w if c = sc

′

w , independent
of the context c′ at the call node w.

Exercise 7.15: Verify that this constraint rule for function entry nodes indeed
leads to the lattice element shown above for the example program.

Expressed using inequations, the constraint rule can be written as follows,
where v is a function entry node, w ∈ pred(v) is a call to the function, and
c′ ∈ Contexts :

[[v]](sc
′

w) w sc
′

w

This rule shows that at the call w in context c′, the abstract state sc′w is propagated
to the function entry node v in a context that is identical to sc′w .

Exercise 7.16: Give a constraint rule for the entry node of the special function
main. (Remember that main is always reachable and that the values of its
parameters can be any integers.)

3We here use the map update notation described on page 33 and the fact that the bottom element
of a map lattice maps all inputs to the bottom element of the codomain, so ⊥[z 7→ 0] denotes the
function that maps all variables to ⊥, except zwhich is mapped to 0.
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The constraint rule for an after-call node v with associated call node v′ and
function exit node w ∈ pred(v) merges the abstract state from the call node and
the return value from the exit node, while taking the call contexts into account:

[[v]](c) = [[v′]](c)[X 7→ [[w]](scv′)(result)]

if [[v′]](c) 6= unreachable ∧ [[w]](scv′) 6= unreachable

To find the relevant context for the function exit node, this rule builds the same
abstract state as the one built at the call node.

Exercise 7.17: Assume we have analyzed a program P using context sensitive
interprocedural sign analysis with the functional approach, and the analysis
result contains the following lattice element for the exit node of a function
named foo:[

[x 7→ -, y 7→ -, result 7→ ⊥] 7→ [x 7→ +, y 7→ +, result 7→ +],
[x 7→ +, y 7→ +, result 7→ ⊥] 7→ [x 7→ -, y 7→ -, result 7→ -],
all other contexts 7→ unreachable

]
Explain informally what this tells us about the program P . What could foo
look like?

Exercise 7.18: Write and solve the constraints that are generated by the inter-
procedural sign analysis for the program from Exercise 7.4, this time with
context sensitivity using the functional approach.

Context sensitivity with the functional approach as presented here gives
optimal precision, in the sense that it is as precise as if inlining all function calls
(even recursive ones). This means that it completely avoids the problem with
dataflow along interprocedurally invalid paths.

Exercise 7.19: Show that this claim about the precision of the functional
approach is correct.

Due to the high worst-case complexity, in practice the functional approach is
often applied selectively, either only on some functions or using call contexts
that only consider some of the program variables. One choice is parameter sensi-
tivity where the call contexts are defined by the abstract values of the function
parameters but not other parts of the program state. In the version of TIP used
in this chapter, there are no pointers or global variables, so the entire program
state at function entries is defined by the values of the parameters, which means
that the analysis presented in this section coincides with parameter sensitivity.
When analyzing object oriented programs, a popular choice is object sensitivity,
which is essentially a variant of the functional approach that distinguishes calls
not on the entire abstract states at function entries but only on the abstract values
of the receiver objects.





Chapter 8

Control Flow Analysis

If we introduce higher-order functions, objects, or function pointers into the
programming language, then control flow and dataflow suddenly become in-
tertwined. At each call site, it is no longer trivial to see which code is being
called. The task of control flow analysis is to conservatively approximate the
interprocedural control flow, also called the call graph, for such programs.

8.1 Closure Analysis for the λ-calculus

Control flow analysis in its purest form can best be illustrated by the classical
λ-calculus:

E→ λX.E
| X
| E E

(In Section 8.3 we demonstrate this analysis technique on the TIP language.)
For simplicity we assume that all λ-bound variables are distinct. To construct a
CFG for a term in this calculus, we need to approximate for every expression
E the set of closures to which it may evaluate. A closure can be modeled by a
symbol of the form λX that identifies a concrete λ-abstraction. This problem,
called closure analysis, can be solved using the techniques from Chapters 4 and 5.
However, since the intraprocedural control flow is trivial in this language, we
might as well perform the analysis directly on the AST.

The lattice we use is the powerset of closures occurring in the given term
ordered by subset inclusion. For every AST node v we introduce a constraint
variable [[v]] denoting the set of resulting closures. For an abstraction λX.E we
have the constraint

λX ∈ [[λX.E]]
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(the function may certainly evaluate to itself), and for an application E1E2 we
have the conditional constraint

λX ∈ [[E1]]⇒
(
[[E2]] ⊆ [[X]] ∧ [[E]] ⊆ [[E1E2]]

)
for every closure λX.E, which models that the actual argument may flow into the
formal argument and that the value of the function body is among the possible
results of the function call.

Exercise 8.1: Show how the resulting constraints can be expressed as mono-
tone constraints and solved by a fixed-point computation.

8.2 The Cubic Algorithm

The constraints for closure analysis are an instance of a general class that can be
solved in cubic time. Many problems fall into this category, so we will investigate
the algorithm more closely.

We have a finite set of tokens {t1, . . . , tk} and a finite set of variables x1, . . . , xn
whose values are sets of tokens. Our task is to read a collection of constraints of
the form t∈x or t∈x⇒ y⊆z and produce the minimal solution.

Exercise 8.2: Show that a unique minimal solution exists, since solutions are
closed under intersection.

The algorithm is based on a simple data structure. Each variable is mapped to a
node in a directed acyclic graph (DAG). Each node has an associated bitvector
belonging to {0, 1}k, initially defined to be all 0’s. Each bit has an associated list
of pairs of variables, which is used to model conditional constraints. The edges
in the DAG reflect inclusion constraints. An example graph may look like:

x

x

x

x

(x ,x )2 4

1

4

3

2

Constraints are added one at a time, and the bitvectors will at all times directly
represent the minimal solution of the constraints seen so far.

A constraint of the form t ∈ x is handled by looking up the node associated
with x and setting the corresponding bit to 1. If its list of pairs was not empty,
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then an edge between the nodes corresponding to y and z is added for every
pair (y, z) and the list is emptied. A constraint of the form t ∈ x ⇒ y ⊆ z is
handled by first testing if the bit corresponding to t in the node corresponding
to x has value 1. If this is so, then an edge between the nodes corresponding to
y and z is added. Otherwise, the pair (y, z) is added to the list for that bit.

If a newly added edge forms a cycle, then all nodes on that cycle can be
merged into a single node, which implies that their bitvectors are unioned
together and their pair lists are concatenated. The map from variables to nodes
is updated accordingly. In any case, to reestablish all inclusion relations we
must propagate the values of each newly set bit along all edges in the graph.

To analyze the time complexity this algorithm, we assume that the numbers
of tokens and variables are both O(n). This is clearly the case in closure analysis
of a program of size n.

Merging DAG nodes on cycles can be done at most O(n) times. Each merger
involves at most O(n) nodes and the union of their bitvectors is computed in
time at most O(n2). The total for this part is O(n3).

New edges are inserted at most O(n2) times. Constant sets are included at
most O(n2) times, once for each t ∈ x constraint.

Finally, to limit the cost of propagating bits along edges, we imagine that
each pair of corresponding bits along an edge are connected by a tiny bitwire.
Whenever the source bit is set to 1, that value is propagated along the bitwire
which then is broken:

1 1

0

0

0

0

1

0

0

1

0

1

Since we have at most n3 bitwires, the total cost for propagation isO(n3). Adding
up, the total cost for the algorithm is also O(n3). The fact that this seems like a
lower bound as well is referred to as the cubic time bottleneck.

The kinds of constraints covered by this algorithm is a simple case of the
more general set constraints, which allows richer constraints on sets of finite
terms. General set constraints are also solvable but in time O(22n).

8.3 TIP with Function Pointers
Consider now our tiny language TIP where we allow functions pointers. For a
computed function call

E→ (E)(E1,. . .,En)

we cannot see from the syntax which functions may be called. A coarse but
sound CFG could be obtained by assuming that any function with the right
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number of arguments could be called. However, we can do much better by
performing a control flow analysis. Note that a direct function call f (E1,. . .,En)
may be seen as syntactic sugar for the general notation (f )(E1,. . .,En).

Our lattice is the powerset of the set of tokens containing X for every function
name X, ordered by subset inclusion. For every syntax tree node v we introduce
a constraint variable [[v]] denoting the set of functions v could point to. For a
function named f we have the constraint

f ∈ [[f ]]

for assignments X=E we have the constraint

[[E]] ⊆ [[X]]

and, finally, for computed function calls (E)(E1,. . .,En) we have for every
definition of a function f with arguments a1f , . . . , anf and return expression E′f
this constraint:

f ∈ [[E]] ⇒
(
[[E1]] ⊆ [[a1f ]] ∧ · · · ∧ [[En]] ⊆ [[anf ]] ∧ [[E′f ]] ⊆ [[(E)(E1, . . . ,En)]]

)
A still more precise analysis could be obtained if we restrict ourselves to

typable programs and only generate constraints for those functions f for which
the call would be type correct.

Given this inferred information, we can construct a CFG as before but with
edges between a call site and all possible target functions according to the control
flow analysis. Consider the following example program:

inc(i) { return i+1; }

dec(j) { return j-1; }

ide(k) { return k; }

foo(n,f) {

var r;

if (n==0) { f=ide; }

r = (f)(n);

return r;

}

main() {

var x,y;

x = input;

if (x>0) { y = foo(x,inc); } else { y = foo(x,dec); }

return y;

}

The control flow analysis generates the following constraints:

inc ∈ [[inc]]
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dec ∈ [[dec]]
ide ∈ [[ide]]
[[ide]] ⊆ [[f]]
[[(f)(n)]] ⊆ [[r]]
inc ∈ [[f]]⇒ [[n]] ⊆ [[i]] ∧ [[i+1]] ⊆ [[(f)(n)]]
dec ∈ [[f]]⇒ [[n]] ⊆ [[j]] ∧ [[j-1]] ⊆ [[(f)(n)]]
ide ∈ [[f]]⇒ [[n]] ⊆ [[k]] ∧ [[k]] ⊆ [[(f)(n)]]
[[input]] ⊆ [[x]]
[[foo(x,inc)]] ⊆ [[y]]
[[foo(x,dec)]] ⊆ [[y]]
foo ∈ [[foo]]
foo ∈ [[foo]]⇒ [[x]] ⊆ [[n]] ∧ [[inc]] ⊆ [[f]] ∧ [[r]] ⊆ [[foo(x,inc)]]
foo ∈ [[foo]]⇒ [[x]] ⊆ [[n]] ∧ [[dec]] ⊆ [[f]] ∧ [[r]] ⊆ [[foo(x,dec)]]

The nonempty values of the least solution are:

[[inc]] = {inc}
[[dec]] = {dec}
[[ide]] = {ide}
[[f]] = {inc, dec, ide}
[[foo]] = {foo}

On this basis, we can construct the following monovariant interprocedural CFG
for the program:
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var x,y

x = input

x > 0

save−1−x=x save−2−x=x

save−1−y=y save−2−y=y

n = x n = x

f = inc f = dec

x=save−1−x x=save−2−x

y=save−1−y y=save−2−y

y = call−1 y = call−2

ret−main=y

call−1=ret−foo

call−2=ret−foo

var r

n==0

f = ide

save−3−r=r

r=save−3−r

r = call−3

ret−foo=r

ret−inc=i+1 ret−dec=j−1 ret−ide=k

call−3=ret−inc call−3=ret−dec call−3=ret−ide

which then can be used as basis for subsequent interprocedural dataflow analy-
ses.
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Exercise 8.3: Consider the following TIP program:

f(y,z) {

return (y)(z);

}

g(x) {

return x+1;

}

main(a) {

return f(g,f(g,a));

}

(a) Write the constraints that are produced by the control-flow analysis for
this program.

(b) Are the constraints solvable? If so, write the solution. If not, explain
why there is no solution.

Exercise 8.4: As an alternative to the analysis described above, we can use
dataflow analysis in the style of Chapter 5. Design a dataflow analysis that
performs control flow analysis for TIP. (Hint: choose a suitable lattice and
define appropriate dataflow constraints.) Then explain briefly how your
analysis handles the following TIP program, compared to using the flow-
insensitive analysis described above.

inc(x) {

return x+1;

}

dec(y) {

return y-1;

}

main(a) {

var t;

t = inc;

a = (t)(a);

t = dec;

a = (t)(a);

return a;

}
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8.4 Control Flow in Object Oriented Languages

A language with function pointers or higher-order functions must use the kind
of control flow analysis described in the previous sections to obtain a reasonably
precise CFG. For common object-oriented languages, such as Java or C#, it is
also useful, but the added structure provided by the class hierarchy and the
type system permits some simpler alternatives. In the object-oriented setting the
question is which method implementations may be executed at a given method
invocation site:

x.m(a,b,c)

The simplest solution is to scan the class library and select any method named m
whose signature accepts the types of the actual arguments. A better choice, called
Class Hierarchy Analysis (CHA), is to consider only the part of the class hierarchy
that is spanned by the declared type of x. A further refinement, called Rapid Type
Analysis (RTA), is to restrict further to the classes of which objects are actually
allocated. Yet another technique, called Variable Type Analysis (VTA), performs
intraprocedural control flow analysis while making conservative assumptions
about the remaining program.

These techniques are of course much faster than full-blown control flow
analysis, and for real-life programs they are often sufficiently precise.



Chapter 9

Pointer Analysis

The final extension of the TIP language introduces simple pointers and dynamic
memory allocation. Since our toy version of alloc only allocates a single cell,
we cannot build arbitrary structures in the heap. However, the main problems
with pointers are amply represented in the language fragment that we consider.

To illustrate the problem with pointers, assume we with to perform a sign
analysis of TIP code like this:

...

*x = 42;

*y = -87;

z = *z;

Here, the value of z depends on whether or not x and y are aliases, meaning that
they point to the same cell. Without knowledge of such aliasing information,
it quickly becomes impossible to produce useful dataflow and control-flow
analysis results.

9.1 Allocation-Site Abstraction

We first focus on intraprocedural analysis and postpone treatment of function
calls to Section 9.4.

The most important information that must be obtained is the set of possible
memory cells that the pointers may point to. There are of course arbitrarily
many possible cells during execution, so we must select some finite abstraction.
A common choice, called allocation-site abstraction, is to introduce an abstract cell
X for every program variable named X and an abstract cell alloc-i, where i
is a unique index, for each occurrence of an alloc operation in the program.
Each abstract cell represents the set of cells at runtime that are allocated at the
same source location, hence the name allocation-site abstraction. We use Cells to
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denote the set of abstract cells for the given program, and we use Locs to denote
the set of abstract locations of the cells, written &c ∈ Locs for every c ∈ Cells .

The first analyses that we shall study are flow-insensitive. The end result of
such an analysis is a function pt : Vars → 2Cells that for each pointer variable X
returns the set pt(X) of cells it may point to. We wish to perform a conservative
analysis that computes sets that may be too large but never too small.

Given such points-to information, many other facts can be approximated. If
we wish to know whether pointer variables x and y may be aliases, then a safe
answer is obtained by checking whether pt(x) ∩ pt(y) is nonempty.

The initial values of variables and heap cells are undefined in TIP programs,
however, for these flow-insensitive points-to analyses we assume that all vari-
ables and heap cells are initialized before they are used. (In other words, these
analyses are sound only for programs that never read from uninitialized vari-
ables or heap cells.)

An almost-trivial analysis, called address taken, is to simply return all possible
abstract cells, except that X is only included if the expression &X occurs in
the given program. This only suffices for very simple applications, so more
ambitious approaches are usually preferred. If we restrict ourselves to typable
programs, then any points-to analysis could be improved by removing those
locations whose types are not equal to that of the pointer variable.

9.2 Andersen’s Algorithm

One approach to points-to analysis is quite similar to control flow analysis. For
each cell c we introduce a constraint variable [[c]] ranging over sets of locations.

The analysis assumes that the program has been normalized so that every
pointer operation is of one of these six kinds:

• X = alloc

• X1 = &X2

• X1 = X2

• X1 = *X2

• *X1 = X2

• X = null

Exercise 9.1: Show how this normalization can be performed systematically
by introducing fresh temporary variables.

Exercise 9.2: Normalize the single statement **x = **y.

For each of these pointer operations we then generate constraints:
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X = alloc: &alloc-i ∈ [[X]]
X1 = &X2: &X2 ∈ [[X1]]
X1 = X2: [[X2]] ⊆ [[X1]]

X1 = *X2: &α ∈ [[X2]]⇒ [[α]] ⊆ [[X1]]
*X1 = X2: &α ∈ [[X1]]⇒ [[X2]] ⊆ [[α]]

The null assignment is ignored, since it corresponds to the trivial constraint
∅ ⊆ [[X]]. Notice that these constraints match the requirements of the cubic
algorithm from Section 8.2. The resulting points-to function is defined as:

pt(p) = {α ∈ Cells | &α ∈ [[p]]}

Consider the following example program fragment.

p = alloc;

x = y;

x = z;

*p = z;

p = q;

q = &y;

x = *p;

p = &z;

Andersen’s algorithm generates these constraints:

&alloc-1 ∈ [[p]]
[[y]] ⊆ [[x]]
[[z]] ⊆ [[x]]
&α ∈ [[p]] ⇒ [[z]] ⊆ [[α]]
[[q]] ⊆ [[p]]
&y ∈ [[q]]
&α ∈ [[p]] ⇒ [[α]] ⊆ [[x]]
&z ∈ [[p]]

The least solution is quite precise (here showing only the nonempty values):

pt(p) = {alloc-1, y, z}
pt(q) = {y}

Note that while this algorithm is flow insensitive, the directionality of the con-
straints implies that the dataflow is still modeled with some accuracy.

Exercise 9.3: Use Andersen’s algorithm to compute the points-to sets for the
variables in the following program fragment:

a = &d;

b = &e;

a = b;

*a = alloc;
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Exercise 9.4: Use Andersen’s algorithm to compute the points-to sets for the
variables in the following program fragment:

z = &x;

w = &a;

a = 42;

if (a > b) {

*z = &a;

y = &b;

} else {

x = &b;

y = w;

}

9.3 Steensgaard’s Algorithm

An interesting alternative is Steensgaard’s algorithm, which performs a coarser
analysis essentially by viewing assignments as being bidirectional. The analysis
can be expressed elegantly using term unification. We use a term variable [[c]]
for every cell c and a term constructor &t representing a pointer to t. (Notice the
change in notation compared to Section 9.2: here, [[c]] is a term variable and does
not directly denote a set of abstract locations.)

X = alloc: [[X]] = &[[alloc-i]]
X1 = &X2: [[X1]] = &[[X2]]
X1 = X2: [[X1]] = [[X2]]

X1 = *X2: [[X2]] = &α ∧ [[X1]] = α
*X1 = X2: [[X1]] = &α ∧ [[X2]] = α

Each α denotes a fresh term variable.
As usual, term constructors satisfy the general term equality axiom:

&α1 = &α2 ⇒ α1 = α2

The resulting points-to function is defined as:

pt(p) = {t ∈ Cells | [[p]] = &[[t]]}

For the example program from Section 9.2, Steensgaard’s algorithm generates
the following constraints:

[[p]] = &[[alloc-1]]
[[x]] = [[y]]
[[x]] = [[z]]
[[p]] = &α1 [[z]] = α1
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[[p]] = [[q]]
[[q]] = &[[y]]
[[x]] = α2 [[p]] = &α2

[[p]] = &[[z]]

This in turn implies that

pt(p) = pt(q) = {alloc-1, y, z}

which is less precise than Andersen’s algorithm, but using the faster algorithm.

Exercise 9.5: Use Steensgaard’s algorithm to compute the points-to sets for
the two programs from Exercise 9.3 and Exercise 9.4.

Exercise 9.6: Can the constraint rule for X1 = *X2 be simplified from

[[X2]] = &α ∧ [[X1]] = α

to
[[X2]] = &[[X1]]

without affecting the analysis results?

Similarly, can the constraint rule for *X1 = X2 be simplified from

[[X1]] = &α ∧ [[X2]] = α

to
[[X1]] = &[[X2]]

without affecting the analysis results?

9.4 Interprocedural Points-To Analysis

In languages with both function pointers and heap pointers, function pointers
may be stored in the heap, which makes it difficult to perform control flow ana-
lysis before points-to analysis. But it is also difficult to perform interprocedural
points-to analysis without the information from a control flow analysis. For
example, the following function call uses a function pointer accessed via a heap
pointer dereference and also passes a pointer as argument:

(*x)(x);

The solution to this chicken-and-egg problem is to perform control flow analysis
and points-to analysis simultaneously.

To express the combined algorithm, we assume that all function calls are
normalized to the form
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X = (X’)(X1,. . . , Xn);

so that the involved expressions are all variables. Similarly, all return expressions
are assumed to be just variables.

Exercise 9.7: Show how to perform such normalization in a systematic man-
ner.

Andersen’s algorithm is already similar to control flow analysis, and it can
simply be extended with the appropriate constraints. A reference to a constant
function f generates the constraint:

f ∈ [[f ]]

The computed function call generates the constraint

f ∈ [[X′]]⇒
(
[[X1]] ⊆ [[X′1]] ∧ · · · ∧ [[Xn]] ⊆ [[X′n]] ∧ [[X”]] ⊆ [[X]]

)
for every occurrence of a function definition with n parameters

f (X′1,. . .,X′n) { . . .return X”; }

This will maintain the precision of the control flow analysis.

Exercise 9.8: Design a context-sensitive variant of the Andersen-style points-to
analysis. (Hint: see Sections 7.2–7.4.)

Exercise 9.9: Continuing Exercise 9.8, can we still use the cubic algorithm
(Section 8.2) to solve the analysis constraints? If so, is the analysis time still
O(n3) where n is the size of the program being analyzed?

9.5 Null Pointer Analysis

We are now also able to define an analysis that detects null dereferences. Specif-
ically, we want to ensure that *X is only executed when X is not null. Let us
consider intraprocedural analysis, so we can ignore function calls.

As before, we assume that the program is normalized, so that all pointer
manipulations are of the six kinds described in Section 9.2 The basic lattice we
use, called Null , is:

NN

?

where the bottom element NN means definitely not null and the top element ?
represents values that may be null. We then form the following map lattice for
abstract states:

States = Cells → Null
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For every CFG node v we introduce a constraint variable [[v]] denoting an element
from the map lattice. We shall use each constraint variable to describe an abstract
state for the program point immediately after the node.

For all nodes that do not involve pointer operations we have the constraint:

[[v]] = JOIN (v)

where
JOIN (v) =

⊔
w∈pred(v)

[[w]]

For a heap load operation X1 = *X2 we need to model the change of the
program variable X1. Our abstraction has a single abstract cell for X1. With
the assumption of intraprocedural analysis, that abstract cell represents a single
concrete cell. (With an interprocedural analysis, we would need to take into
account that each stack frame at runtime has an instance of the variable.) For the
expression *X2 we can ask the points-to analysis for the possible cells pt(X2).
With these observations, we can give a constraint for heap load operations:

X1 = *X2: [[v]] = load(JOIN (v),X1,X2)

where
load(σ,X1,X2) = σ[X1 7→

⊔
α∈pt(X2)

σ(α)]

Similar reasoning gives constraints for the other operations that affect pointer
variables:

X = alloc: [[v]] = JOIN (v)[X 7→ NN, alloc-i 7→ ?]
X1 = &X2: [[v]] = JOIN (v)[X1 7→ NN]
X1 = X2: [[v]] = JOIN (v)[X1 7→ JOIN (v)(X2)]

X = null: [[v]] = JOIN (v)[X 7→ ?]

Exercise 9.10: Explain why the above four constraints are monotone and
sound.

For a heap store operation *X1 = X2 we need to model the change of what-
ever X1 points to. That may be multiple abstract cells, namely pt(X1). Moreover,
each abstract heap cell alloc-i may describe multiple concrete cells. In the
constraint for heap store operations, we must therefore join the new abstract
value into the existing one for each affected cell in pt(X1):

*X1 = X2: [[v]] = store(JOIN (v),X1,X2)

where
store(σ,X1,X2) = σ [α 7→

α∈pt(X1)

σ(α) t σ(X2) ]

The situation we here see at heap store operations where we model an as-
signment by joining the new abstract value into the existing one is called a
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weak update. In contrast, in a strong update the new abstract value overwrites
the existing one, which we see in the null pointer analysis at all operations that
modify program variables. Strong updates are obviously more precise than
weak updates in general, but it may require more elaborate analysis abstractions
to detect situations where strong update can be applied soundly.

After performing the null pointer analysis of a given program, a pointer
dereference *X at a program point v is guaranteed to be safe if

JOIN (v)(X) = NN

The precision of this analysis depends of course on the quality of the underlying
points-to analysis.

Consider the following buggy example program:

p = alloc;

q = &p;

n = null;

*q = n;

*p = n;

Andersen’s algorithm computes the following points-to sets:

pt(p) = {alloc-1}
pt(q) = {p}
pt(n) = ∅

Based on this information, the null pointer analysis generates the following
constraints:

[[p=alloc]] = ⊥[p 7→ NN, alloc-1 7→ ?]
[[q=&p]] = [[p=alloc]][q 7→ NN]
[[n=null]] = [[q=&p]][n 7→ ?]
[[*q=n]] = [[n=null]][p 7→ [[n=null]](p) t [[n=null]](n)]
[[*p=n]] = [[*q=n]][alloc-1 7→ [[*q=n]](alloc-1) t [[*q=n]](n)]

The least solution is:

[[p=alloc]] = [p 7→ NN, q 7→ NN, n 7→ NN, alloc-1 7→ ?]
[[q=&p]] = [p 7→ NN, q 7→ NN, n 7→ NN, alloc-1 7→ ?]
[[n=null]] = [p 7→ NN, q 7→ NN, n 7→ ?, alloc-1 7→ ?]
[[*q=n]] = [p 7→ ?, q 7→ NN, n 7→ ?, alloc-1 7→ ?]
[[*p=n]] = [p 7→ ?, q 7→ NN, n 7→ ?, alloc-1 7→ ?]

By inspecting this information, an analysis could statically detect that when
*q=n is evaluated, which is immediately after n=null, the variable q is definitely
non-null. On the other hand, when *p=n is evaluated, we cannot rule out the
possibility that pmay contain null.

Exercise 9.11: Show an alternative constraint for heap load operations using
weak update, together with an example program where the modified analysis
then gives a result that is less precise than the analysis presented above.
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Exercise 9.12: Show an (unsound) alternative constraint for heap store oper-
ations using strong update, together with an example program where the
modified analysis then gives a wrong result.

9.6 Flow-Sensitive Points-To Analysis

Note that we can produce interesting heaps with TIP programs, even though the
alloc operation only allocates a single heap cell. An example of a nontrivial
heap is

x

y

z

where x, y, and z are program variables. We will seek to answer questions about
disjointness of the structures contained in program variables. In the example
above, x and y are not disjoint whereas y and z are. Such information may be
useful, for example, to automatically parallelize execution in an optimizing com-
piler. For such analysis, flow-insensitive reasoning is sometimes too imprecise.
However, we can create a flow-sensitive variant of Andersen’s analysis.

We use a lattice of points-to graphs, which are directed graphs in which the
nodes are the abstract cells for the given program and the edges correspond
to possible pointers. Points-to graphs are ordered by inclusion of their sets of
edges. Thus, ⊥ is the graph without edges and > is the completely connected
graph. Formally, our lattice for abstract states is then

States = 2Cells×Cells

ordered by the usual subset inclusion. For every CFG node v we introduce
a constraint variable [[v]] denoting a points-to graph that describes all possible
stores at that program point. For the nodes corresponding to the various pointer
manipulations we have these constraints:

X = alloc: [[v]] = JOIN (v)↓X ∪ {(X, alloc-i)}
X1 = &X2: [[v]] = JOIN (v)↓X1 ∪ {(X1,X2)}
X1 = X2: [[v]] = assign(JOIN (v),X1,X2)

X1 = *X2: [[v]] = load(JOIN (v),X1,X2)
*X1 = X2: [[v]] = store(JOIN (v),X1,X2)
X = null: [[v]] = JOIN (v)↓X
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and for all other nodes:
[[v]] = JOIN (v)

where
JOIN (v) =

⋃
w∈pred(v)

[[w]]

σ↓x = {(s, t) ∈ σ | s 6= x}

assign(σ, x, y) = σ↓x ∪ {(x, t) | (y, t) ∈ σ}

load(σ, x, y) = σ↓x ∪ {(x, t) | (y, s) ∈ σ, (s, t) ∈ σ}

store(σ, x, y) = σ ∪ {(s, t) | (x, s) ∈ σ, (y, t) ∈ σ}
Notice that the constraint for heap store operations uses weak update.

Exercise 9.13: Explain the above constraints.

Consider now the following program:

var x,y,n,p,q;

x = alloc; y = alloc;

*x = null; *y = y;

n = input;

while (n>0) {

p = alloc; q = alloc;

*p = x; *q = y;

x = p; y = q;

n = n-1;

}

After the loop, the analysis produces the following points-to graph:

x

alloc−3

alloc−1

alloc−4

alloc−2

y

p q

From this result we can safely conclude that x and ywill always be disjoint.
Note that this analysis also computes a flow sensitive points-to map that for

each program point v is defined by:

pt(p) = {t | (p, t) ∈ [[v]]}
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This analysis is more precise than Andersen’s algorithm, but clearly also more
expensive to perform. As an example, consider the program:

x = &y;

x = &z;

After these statements, Andersen’s algorithm would predict that pt(x) = {y, z}
whereas the flow-sensitive analysis computes pt(x) = {z} for the final program
point.

9.7 Escape Analysis

We earlier lamented the escaping stack cell error displayed by the following
program, which was beyond the scope of the type analysis.

baz() {

var x;

return &x;

}

main() {

var p;

p=baz(); *p=1;

return *p;

}

Having performed a points-to analysis, we can easily perform an escape analysis
to catch such errors. We just need to check that the possible cells for return
expressions in the points-to graph cannot reach arguments or variables defined
in the function itself, since all other locations must then necessarily reside in
earlier frames on the invocation stack.
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