CS 5110/6110 — Software Verification | Spring 2018
Apr-2

Lecture 15

SMT Solvers

Zvonimir Rakamaric¢
University of Utah

slides acknowledgements: Leonardo de Moura



Announcements: Wrapping up Projects

» Presentations

Apr 23 In class

Everyone should come. Let me know ASAP if you
cannot come for some reason.

Good presentations
Pizza

Slides are due on Apr 18!!!
Dry run in my office on Apr 18 during class time
» Final report
Due on Apr 25

» Peer review
Due on Apr 28



This Time

» SMT solvers
What are they?
How they work?



Many Theories

» Theory of equality

4
4
4
4

4

Peano arithmetic
Presburger arithmetic
_Inear integer arithmetic
Reals

Rationals

» Arrays
» Recursive data structures
> ...



Combination of Theories

» In practice, we often need a combination of
theories

» Example:
X+2=y — f(select(store(a,x,3),y-2)=f(y-x+1)

» Problem: given satisfiability procedures for
conjunction of literals of Theory, and Theory,,
how to decide satisfiability of their
combination?



Satisfiability Modulo Theories (SMT) Solver

» Satisfiability checker with built-in support for
useful theories

Arithmetic
Equality with uninterpreted functions
Arrays

» Combines a SAT solver with theory solvers

» Next generation of reasoning engines
Automatic
Fast



SMT Solvers, Library, Competition

» Solvers

AProve, Barcelogic, Boolector, CVC4, MathSATS5,
OpenSMT, SMTinterpol, SOLONAR, STP2, veriT,
Yices, Z3

» SMT-LIB

Standardizes various theories and input format
Library of benchmarks

» SMT-COMP
Annual competition


http://www.smtlib.org/
http://www.smtcomp.org/

Applications

» Test case generation

» Verifying compilers

» Software verification

» Hardware verification

» Equivalence checking

» Type checking

» Model based testing

» Scheduling and planning
> ...



Nelson-Oppen Combination Procedure

» Initial State
F is a conjunction of literals over 2, U 2,

» Purification
Preserving satisfiability transform F into F; A F,,
such that F; € 2,

» Interaction

Deduce an equality x =y if F; > x =y, where x and
y are common (shared) variables

Update F, . =F, AX=Yy
And vice-versa
Repeat until no further changes



Nelson-Oppen Combination Procedure

» Component procedures

Use individual decision procedures to decide
whether F; is satisfiable

» Return
If both return yes, return yes
No, otherwise

» Remark:
F.—>x=y Iff F; AX=#YyIs not satisfiable



Purification Example
fix—1)—-1=xAfly)+1=y



Nelson-Oppen Procedure Example |
X+y=zAf(z)=zANf(X+y)=2Z



Nelson-Oppen Procedure Example |l
x+2=y A f(select(store(a,x,3),y —2)) = f(y —x + 1)



Building an Efficient Solver




Eager Approach

» Translate formula into equisatisfiable
propositional formula and use off-the-shelf SAT
solver

» Why “eager™?

Search uses all theory information from the
beginning

» Can use best available SAT solver

» Sophisticated encodings are need for each
theory

» Sometimes translation and/or solving too slow



Lazy Approach: SAT + Theories |

» Independently developed by several groups
CVC (Stanford)
ICS (SRI)
MathSAT (Univ. Trento, Italy)
Verifun (HP)

» Motivated by the breakthroughs in SAT solving
DPLL algorithm

Various optimizations and heuristics




Lazy Approach: SAT + Theories Il

» SAT solver

Manages the boolean structure and assigns truth
values to the atoms in a formula

» Theory solvers

Efficiently validate (partial) assignments produced
by the SAT solver

» When a theory solver detects unsatisfiabllity, a
new clause (lemma) is created



Basic architecture

SMT-solver

SAT-solver

1

Nelson and Oppen

combination module

(

LN

Y

DP for
linear arithmetic

DP for
uninterpreted functions

DP for

arrays

DP for
lists




Nailve Approach

» Example
Suppose SAT solver assigns
x=y—->Ty=z->T,1fX)=1z) > F}
Theory solver detects conflict
Lemma is created
(X =y) vV aly =2) Vv ix)=1(2)

» Potential problems
Lemmas are imprecise (not minimal)

Theory solver is “passive”
It just detects conflicts
There is no propagation step
Backtracking Is expensive
Restart from scratch when a conflict is detected



Theory Solvers

» Basic requirements
Deduce equalities between variables
Compute lemmas (conflict sets)
As precise as possible
» Extra desired features
Theory propagation
Incrementality
Backtracking



Equality Generation

» Combination of theories strongly relies on the
propagation of deduced equalities

» Every theory solver has to support it



Precise Lemmas |

» Example
{a, =T, a, = F, a3 = F} Is Inconsistent
Lemmais -a, Va, V a,
» An inconsistent set A is redundantif A'c A'is
also Iinconsistent
» Redundant inconsistent sets imply

Imprecise lemmas
Ineffective pruning of the search space



Precise Lemmas Il

» Noise of a redundant setis A\ A,

» Imprecise lemma is useless in any partial
assignment where an atom in the noise has a

different assignment

» Example
Suppose a, Is in the noise
Then -a, vV a, vV a; Is useless when a, = F



Theory Propagation

» SAT solver Is assigning truth values to the
atoms in a formula

» Partial assignment produced by the SAT solver
may imply truth values of unassigned atoms

» Example
X=YyAYy=zA(f(x) =1(z) v {(x) = f(w))
Partial assignment{x=y —->T,y=z — T}
implies f(x) = f(z)

» Reduces the number of conflicts and the
search space



Incrementality

» Theory solvers constantly receive new
constraints and restart the process

Augmented partial assignments from SAT solver
Equalities coming from other theory solvers

» Do not restart from scratch
Reuse what you learned so far



Efficient Backtracking

» One of the most important improvements in
SAT was efficient backtracking

» Extreme (inefficient) approach in theory solvers
Restart from scratch on every conflict

» Efficient approach
Restore to a logically equivalent state

» Backtracking should be included in the design
of theory solvers



ldeal Theory Solver

» Efficient in real benchmarks
» Produces precise lemmas

» Supports theory propagation
» Incremental

» Efficient backtracking



Dealing with Quantifiers




Quantifier Instantiation

» SMT solvers use heuristic quantifier
Instantiation using E-matching (matching
modulo equalities)

» Divide input formula into ground and quantified
portion

» Check ground portion for satisfiability

If SAT then extend with ground terms instantiated
from the quantified part

Often leverage user-provided triggers
If UNSAT then report UNSAT

» Repeat



Example

v x: 1(g(x)) = x { f(g(x)) } (trigger)
a = g(b),

b =c,

f(a) # c



Limitations

» Users often have to manually provide patterns
Automatic inference of patterns is fragile

» Bad user provided patterns
False positives (wrong SAT answers)
Nonterminating executions



Trigger too Restrictive

v x: 1(g(x)) = x{ f(g(x)) }
g(@) = c,

g(b) =c,

azb

» Results in false positives



Trigger too Restrictive

» More “liberal” pattern:
v x: 1(g(x)) = x{9(x) }
g9(a) =,

g(b) =c,
a=Db

» Instantiate:
f(g(a)) = a,
f(g(b)) =D

» Implies that a=b



Matching Loop

v X 1(x) = g(f(x)) {T(x) }
v x: g(x) = 1(9(x)) { 9(x) }
f(a) = c

» Instantiate:
f(a) = g(f(a))
g(f(@)) = f(g(f(a)))

» Results In executions that do not terminate



