
Lecture 13

Context Bounding Checkers II

Zvonimir Rakamarić
University of Utah

CS 5110/6110 – Software Verification | Spring 2018

Feb-28

Last Time

 Context-bounding and its benefits

 CHESS tool for dynamic preemption-bounding

Preemption-Bounding in CHESS

 The scheduler has a budget of c preemptions

 Nondeterministically choose the preemption points

 Resort to non-preemptive scheduling after c

preemptions

 Once all executions explored with c

preemptions

 Try with c+1 preemptions

Property 1: Polynomial Bound

 Terminating program with fixed inputs and
deterministic threads
 n threads, k steps each, c preemptions

 Number of executions <= nkCc * (n+c)!

= O((n2k)c * n!)

 Exponential in n and c, but not in k!

x = 1;

…

…

…

…

x = 1;

…

…

…

…

x = k;

x = 1;

…

…

…

…

…

x = k;

x = 1;

…

…

…

…

…

x = k;

…

…

x = k;

• Choose c preemption points

• Permute n+c atomic blocks

Thread 1 Thread 2

Property 2: Simple Error Traces

 Finds smallest number of preemptions to the
error

 Number of preemptions better metric of error
complexity than execution length

Property 3: Coverage Metric

 If search terminates with preemption-bound of

c, then any remaining error must require at

least c+1 preemptions

 Intuitive estimate for

 The complexity of the bugs remaining in the

program

 The chance of their occurrence in practice

Property 4: Many Bugs with Few Preemptions

Program kLOC Threads Preemptions Bugs

Work-Stealing

Queue
1.3 3 2 3

CDS 6.2 3 2 1

CCR 9.3 3 2 2

ConcRT 16.5 4 3 4

Dryad 18.1 25 2 7

APE 18.9 4 2 4

STM 20.2 2 2 2

PLINQ 23.8 8 2 1

TPL 24.1 8 2 9

This Time

 Symbolic analysis of concurrent programs

 Translation of a concurrent program into a

sequential one

Concurrent Using Sequential

 Transform context bounded analysis of

concurrent programs into analysis of sequential

programs

 KISS [Qadeer, Wu, PLDI ‘04]

 Only up to 2 context switches

 [Lal, Reps, CAV ‘08], [La Torre, Madhusudan,

Parlato, CAV ‘09]

 More general transformations, N context switches

 Applied only on small, manually constructed

Boolean programs

Simple Translation Example

 Translation of one concurrent trace

 Two threads: Thread1, Thread2

 One shared variable: g

 3 context switches, 4 execution segments (or
contexts)

 Main idea [Lal, Reps, CAV ’08]
 Avoid storing local state

 Introduce unconstrained symbolic “prophecy”
values instead of still unavailable “future” values

 Constrain them when “future” values become
available

1 2

3
4

g1

g1'

g2

g2'

g4

g4'

1

g1

g1' g := v3

assume v3 = g2'

g := g1'

g := g3'

3

g3

g3'

2

g2

g2'

4

g4

g4'

Thread1 Thread2

g3

g3'

Lal-Reps Translation

T1 || T2

assert F

INIT;

L1: INIT_K; T1
s;

L2: INIT_K; T2
s;

L3: END;

assert F

int g1, g2,…gN, v2,…vN;

int k;

assume (g2 = v2 && g3 = v3 ... gN = vN);

st 

ContextSwitch();

if (k == 1) st[g1/g];

else if (k == 2) st[g2/g];

…

assume (g1 = v2 && g2 = v3 …);

ContextSwitch()

ensures old(k) <= k && k <= N;

 N contexts per thread, shared variable g k := 1;

Sequentialization Example in Boogie

 Follow Lal-Reps translation and replace

TODOs with code segments that are missing

Field Abstraction Example

 Before

tmp = x->f;

tmp = nondet();

tmp = x->f;

tmp = x->g;

y->g = tmp;

 Abstraction…

 Fields = {f,g}

 Tracked fields = {f}

tmp = x->g;

y->g = tmp;

Field Abstraction CEGAR

 How to discover tracked fields automatically?

 Algorithm based on CounterExample Guided

Abstraction Refinement (CEGAR) framework

A = Abstract(P, trackedFields)

Check(A)

trackedFields = {}

Real

Error?

Analyze counterexample

Add new fields to trackedFields

No

Counterexample

Yes

Return error trace

Done
Checked

Experimental Results

 Initial prototype implementation: STORM

 Currently implemented in Corral

 Windows Device Drivers

 Harness

 Creates driver request that gets processed

concurrently by multiple routines

 Dispatch | Cancellation

 Dispatch | Cancellation | Completion

 Dispatch | Cancellation | Completion | DPC

 Checked property

 Driver request cannot be used after it has been

completed (i.e. use after free)

Driver kLOC #T Routine 1 2 3 4 5

usbsamp

Bug found!
4 3

read 17.9 37.7 65.8 66.8 85.2

write 17.8 48.8 52.3 74.3 109.7

ioctl 4.4 5.0 5.1 5.3 5.4

usbsamp_fix 4 3

read 16.9 28.2 38.6 46.7 47.5

write 18.1 32.2 46.9 52.5 63.6

ioctl 4.8 4.7 5.1 5.1 5.2

mqueue 14 4

read 62.1 161.5 236.2 173.0 212.4

write 48.6 113.4 171.2 177.4 192.3

ioctl 120.6 198.6 204.7 176.1 199.9

daytona 22 2 ioctl 3.4 3.8 4.2 4.5 5.6

serial 32 3
read 36.5 95.4 103.4 240.5 281.4

write 37.3 164.3 100.8 233.0 649.8

 Manually provided tracked fields

Varying Number of Contexts N

Driver Routine #Fields

Total

#TFieds

Manual

#TFields

CEGAR

#CEGAR

Iterations

Time (s)

daytona ioctl 53 3 3 3 244.3

mqueue

read

72 7

9 9 3446.3

write 8 8 3010.0

ioctl 9 9 3635.6

usbsamp_fix

read

113 1

3 3 4382.4

write 4 4 2079.2

ioctl 0 0 21.7

serial
read

214 5
5 5 3013.7

write 4 3 1729.4

 N=2

Field Abstraction CEGAR

Bug Found (usbsamp)

 Sample driver in WinDDK

 Example of how to write device drivers

 Copy-pasted by driver vendors

 Checked using existing tools

 Bug confirmed and fixed

 Requires 3 context switches
 SLAM (SDV) – checks sequential code

 KISS – only up to 2 context switches

 Bug could not be found by other tools

Bug Found

ReadRoutine(req) {

...

WdfRequestMarkCancelable(

req, CancelRoutine);

...

WdfRequestComplete(req);

...

}

CancelRoutine(req) {

assume (CancelRoutineSet

&& !reqCompleted);

...

GetRequestContext(req);

...

}

Thread1

Dispatch Routine

Thread2

Cancellation Routine

