CS 5110/6110 — Software Verification | Spring 2018
Feb-26

Lecture 12
Context Bounding Checkers |

Zvonimir Rakamaric¢
University of Utah

Announcements

» Dafny homework assignment due on Wed
(before class)

» Project proposal due on Wed (before class)

» Message me if you would like to discuss your
project before Wed

» Posting papers on Canvas accompanying the
material covered Iin lectures

Try to read them

Huge Number of Thread Schedules

» Concurrent program with n threads where each
thread has k instructions has

(n*k)! / (k)" > (nl)k
Interleavings
» Exponential in both n and k!
» Example: 5 threads with 5 instruction each
25! /51> =6.2336074e+14
= 623 trillion interleavings

Java Path Finder (JPF)

» Program checker for Java

» Properties to be verified
Program assertions
LTL properties
» Depth-first and breadth-first search, heuristics

Uses static analysis techniques to improve the
efficiency of the search

» Requires a complete Java program
Cannot handle native code

Combating State Space Explosion

» Symmetry reduction
Search equivalent states only once

» Partial order reduction

Do not search thread interleavings that generate
equivalent behavior

» Static analyses
Reduce state space using static analyses

» User-provided restrictions
Manually bound variable domains, array sizes,...

Symmetry Reduction in JPF

» Order in which classes are loaded shouldn’t
effect the state

There Is a canonical ordering of classes

» Location of dynamically allocated heap objects
shouldn’t effect the state

If we store the memory location as the state, then

we can miss equivalent states which have different
memory layouts

Store some information about the new statements
and the number of times they are executed

Simple Symmetry Example

int x, Vy;

Foo a, b;

Thread 1. Thread 2:

1) a = new Foo(); 5) b = new Foo();
2) X = 1; 6) y = 3;

)y = 2; 7) X = 2;

4) X++; 8) yt+t;

5) Y++; 9) X++;

Partial Order Reduction

» Statements of concurrently executing threads
can generate many different interleavings

All these different interleavings are allowable
behavior of the program
» Model checker checks all possible interleavings
for errors
But different interleavings may generate equivalent
behaviors
» Partial order reduction

It is sufficient to check just one representative
Interleaving

Simple POR Example

int x, Vy;

Thread 1.
int a;
1) a = 5;
2) a++;
3) X = 1;
4) y = 2
5) X++;

J

6) Y++;

Thread 2:
int b;

5) b = 10

6) b--;

7)Yy = 3,
2

8) X =
9) Y++;
10) X++

J

J

J

Static Analysis in JPF

» Using static analysis techniques to reduce the
state space

Slicing
Partial evaluation

Static Analysis in JPF

» Slicing
Remove program parts with no effect on the slicing
criterion

A slicing criterion could be a program point

Program slices are computed using dependency
analysis

» Partial evaluation
Propagate constant values and simplify expressions

User-Provided Restrictions

» To Improve scalability, users can restrict
domains of variables, sizes of arrays,...

» Restrictions under-approximate program
behaviors
May result in missed errors
Still useful in finding bugs

This Time

» Context-bounded verification of concurrent
programs

Context-Bounded Verification

slides acknowledgements: Shaz Qadeer, Madan Musuvathi

Context-Bounded Verification

Context switch Context switch

Context Context Context

» Many subtle concurrency errors are manifested In
executions with few context switches

» Analyze all executions with few context switches

Context-Bounded Reachability Problem

» An execution Is c-bounded if every thread has
at most ¢ contexts

» Does there exist a c-bounded execution from a
state S to a state E?

CB Reachabillity is NP-Complete
» Membership in NP

Witness is an Initial state and n*c sequences each
of length at most |[L x G|

n = # of threads, ¢ = # of contexts
L = # of program locations, G = # of global states
» NP-hardness

Reduction from the CIRCUIT-SAT problem

Complexity of Safety Verification

Unbounded Context-bounded

Finite-state PSPACE

NP-complete
systems complete

Pushdown

Undecidable NP-complete
systems

CHESS: Systematic Testing for Concurrency

» CHESS Is a user-mode scheduler

» Controls all scheduling nondeterminism
Replace the OS scheduler

» Guarantees:

Every program run takes a different thread
Interleaving

Reproduce the interleaving for every run

CHESS Architecture

Unmanaged

Program
Win32 N D
Wrappers : CHESS
m Exploration
Engine
\3 L/
a A
CHESS
Scheduler
| € 7
Managed
Program
.NET : .
Wrappers —coite Every run takes a different

m Interleaving

* Reproduce the interleaving
for every run

State-Space Explosion

| ksteps

Thread | Thread n
Y Y
x=1; x=1;

x = k; x = k;
N N

\
n threads

» Number of executions is O(n"K)

» Exponential in both n and k
Typically: n < 10, k > 1000

each » Limits scalability to large
programs

Goal: Scale CHESS to large programs (large k)

Preemption-Bounding

» Prioritize executions with small # of preemptions
» Two kinds of context switches:
Preemptions — forced by the scheduler
E.g., time-slice expiration

Non-preemptions — a thread voluntarily yields
E.g., blocking on an unavailable lock, thread end

Thread | Thread 2
46 N
xXx3; [P =0; }
ififdR0P) {
+— preemption
} x=p->f;
U)/

<— non-preemption

Preemption-Bounding in CHESS

» The scheduler has a budget of ¢ preemptions
Nondeterministically choose the preemption points

» Resort to non-preemptive scheduling after c
preemptions

» Once all executions explored with c
preemptions
Try with c+1 preemptions

Property 1. Polynomial Bound

» Terminating program with fixed inputs and
deterministic threads

n threads, k steps each, c preemptions
» Number of executions <= _,C_* (n+c)!

= O((n%k)c* n!)
» EXponential in n and c, but not in k!
Thread | Thread 2 _ _
— oo * Choose c preemption points
%= | x =15 Permute n+c atomic blocks
I
e P
X<k) X%k

Property 2: Simple Error Traces

» Finds smallest number of preemptions to the
error

» Number of preemptions better metric of error
complexity than execution length

Property 3. Coverage Metric

» If search terminates with preemption-bound of
c, then any remaining error must require at
least c+1 preemptions

» Intuitive estimate for

The complexity of the bugs remaining in the
program

The chance of their occurrence in practice

Property 4: Many Bugs with Few Preemptions

Work-Stealing

Queue
CDS 6.2 3 2 I
CCR 9.3 3 2 2
ConcRT 16.5 4 3 4
Dryad 18.1 25 2 7
APE 18.9 4 2 4
STM 20.2 2 2 2
PLINQ 23.8 8 2 I
TPL 24.1 8 2 9

Coverage vs Preemption-Bound

% State Space Covered

100

90

80

70

60

50

40

30

20

10 A

0

A=l
[/7
(/
|/
/.

0 1 2 3 4 5 & 7 8 9 10 11 12 13

Context Bound

—o~File System Model
-I+Bluetooth
—t—Transaction Manager

—=+=\Work Stealing Queue

