
Lecture 12

Context Bounding Checkers I

Zvonimir Rakamarić
University of Utah

CS 5110/6110 – Software Verification | Spring 2018

Feb-26



Announcements

 Dafny homework assignment due on Wed

(before class)

 Project proposal due on Wed (before class)

 Message me if you would like to discuss your

project before Wed

 Posting papers on Canvas accompanying the 

material covered in lectures

 Try to read them



Huge Number of Thread Schedules

 Concurrent program with n threads where each 

thread has k instructions has

(n*k)! / (k!)n ¸ (n!)k

interleavings

 Exponential in both n and k!

 Example: 5 threads with 5 instruction each

25! / 5!5 = 6.2336074e+14

= 623 trillion interleavings



Java Path Finder (JPF)

 Program checker for Java

 Properties to be verified  

 Program assertions

 LTL properties

 Depth-first and breadth-first search, heuristics

 Uses static analysis techniques to improve the 

efficiency of the search

 Requires a complete Java program

 Cannot handle native code



Combating State Space Explosion

 Symmetry reduction

 Search equivalent states only once 

 Partial order reduction

 Do not search thread interleavings that generate 

equivalent behavior

 Static analyses

 Reduce state space using static analyses

 User-provided restrictions

 Manually bound variable domains, array sizes,…



Symmetry Reduction in JPF

 Order in which classes are loaded shouldn’t 
effect the state
 There is a canonical ordering of classes

 Location of dynamically allocated heap objects 

shouldn’t effect the state

 If we store the memory location as the state, then 

we can miss equivalent states which have different 

memory layouts

 Store some information about the new statements 

and the number of times they are executed



Simple Symmetry Example

int x, y;

Foo a, b;

Thread 1:

1) a = new Foo();

2) x = 1;

3) y = 2;

4) x++;

5) y++;

Thread 2:

5) b = new Foo();

6) y = 3;

7) x = 2;

8) y++;

9) x++;



Partial Order Reduction

 Statements of concurrently executing threads 

can generate many different  interleavings

 All these different interleavings are allowable 

behavior of the program

 Model checker checks all possible interleavings

for errors 

 But different interleavings may generate equivalent 

behaviors

 Partial order reduction

 It is sufficient to check just one representative 

interleaving



Simple POR Example

int x, y;

Thread 1:

int a;

1) a = 5;

2) a++;

3) x = 1;

4) y = 2;

5) x++;

6) y++;

Thread 2:

int b;

5) b = 10;

6) b--;

7) y = 3;

8) x = 2;

9) y++;

10)x++;



Static Analysis in JPF

 Using static analysis techniques to reduce the 

state space

 Slicing

 Partial evaluation



Static Analysis in JPF

 Slicing

 Remove program parts with no effect on the slicing 

criterion

 A slicing criterion could be a program point

 Program slices are computed using dependency 

analysis

 Partial evaluation

 Propagate constant values and simplify expressions



User-Provided Restrictions

 To improve scalability, users can restrict 
domains of variables, sizes of arrays,…

 Restrictions under-approximate program 
behaviors
 May result in missed errors

 Still useful in finding bugs



This Time

 Context-bounded verification of concurrent 

programs



Context-Bounded Verification

slides acknowledgements:  Shaz Qadeer, Madan Musuvathi



Context-Bounded Verification

         

Context Context Context

Context switch Context switch

 Many subtle concurrency errors are manifested in 

executions with few context switches

 Analyze all executions with few context switches



Context-Bounded Reachability Problem

 An execution is c-bounded if every thread has 

at most c contexts

 Does there exist a c-bounded execution from a 

state S to a state E?



CB Reachability is NP-Complete

 Membership in NP
 Witness is an initial state and n*c sequences each 

of length at most |L × G|

n = # of threads, c = # of contexts

L = # of program locations, G = # of global states

 NP-hardness

 Reduction from the CIRCUIT-SAT problem



Complexity of Safety Verification

Unbounded Context-bounded

Finite-state

systems

Pushdown

systems

PSPACE

complete
NP-complete

Undecidable NP-complete



CHESS: Systematic Testing for Concurrency

 CHESS is a user-mode scheduler

 Controls all scheduling nondeterminism

 Replace the OS scheduler

 Guarantees:

 Every program run takes a different thread 

interleaving

 Reproduce the interleaving for every run



CHESS Architecture

CHESS

Scheduler 

Unmanaged

Program

Windows

Managed

Program

CLR

• Every run takes a different 

interleaving

• Reproduce the interleaving 

for every run

CHESS

Exploration

Engine 

Win32

Wrappers

.NET

Wrappers



x = 1;

…

…

…

…

…  

x = k;

State-Space Explosion

x = 1;

…

…

…

…

…

x = k;

…

n threads

k steps 
each

 Number of executions is O(nnk)

 Exponential in both n and k

 Typically: n < 10, k > 1000

 Limits scalability to large 

programs

Goal: Scale CHESS to large programs (large k)

Thread 1 Thread n



Preemption-Bounding

 Prioritize executions with small # of preemptions

 Two kinds of context switches:
 Preemptions – forced by the scheduler

 E.g., time-slice expiration

 Non-preemptions – a thread voluntarily yields
 E.g., blocking on an unavailable lock, thread end

x = 1;

if (p != 0) {

x = p->f;

} x = p->f;

}

x = 1;

if (p != 0) {

p = 0;

preemption

non-preemption

Thread 1 Thread 2



Preemption-Bounding in CHESS

 The scheduler has a budget of c preemptions

 Nondeterministically choose the preemption points

 Resort to non-preemptive scheduling after c 

preemptions

 Once all executions explored with c 

preemptions

 Try with c+1 preemptions



Property 1: Polynomial Bound

 Terminating program with fixed inputs and 
deterministic threads
 n threads, k steps each, c preemptions

 Number of executions <= nkCc * (n+c)! 

= O((n2k)c * n!)

 Exponential in n and c, but not in k!

x = 1;

…

…

…

…

x = 1;

…

…

…

…

x = k;

x = 1;

…

…

…

…

…

x = k;

x = 1;

…

…

…

…

…  

x = k;

…

…  

x = k;

• Choose c preemption points

• Permute n+c atomic blocks

Thread 1 Thread 2



Property 2: Simple Error Traces

 Finds smallest number of preemptions to the 
error

 Number of preemptions better metric of error 
complexity than execution length



Property 3: Coverage Metric

 If search terminates with preemption-bound of 

c, then any remaining error must require at 

least c+1 preemptions

 Intuitive estimate for

 The complexity of the bugs remaining in the 

program

 The chance of their occurrence in practice



Property 4: Many Bugs with Few Preemptions

Program kLOC Threads Preemptions Bugs

Work-Stealing 

Queue
1.3 3 2 3

CDS 6.2 3 2 1

CCR 9.3 3 2 2

ConcRT 16.5 4 3 4

Dryad 18.1 25 2 7

APE 18.9 4 2 4

STM 20.2 2 2 2

PLINQ 23.8 8 2 1

TPL 24.1 8 2 9



Coverage vs Preemption-Bound


