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Announcements

 Dafny homework assignment due on Wed

(before class)

 Project proposal due on Wed (before class)

 Message me if you would like to discuss your

project before Wed

 Posting papers on Canvas accompanying the 

material covered in lectures

 Try to read them



Huge Number of Thread Schedules

 Concurrent program with n threads where each 

thread has k instructions has

(n*k)! / (k!)n ¸ (n!)k

interleavings

 Exponential in both n and k!

 Example: 5 threads with 5 instruction each

25! / 5!5 = 6.2336074e+14

= 623 trillion interleavings



Java Path Finder (JPF)

 Program checker for Java

 Properties to be verified  

 Program assertions

 LTL properties

 Depth-first and breadth-first search, heuristics

 Uses static analysis techniques to improve the 

efficiency of the search

 Requires a complete Java program

 Cannot handle native code



Combating State Space Explosion

 Symmetry reduction

 Search equivalent states only once 

 Partial order reduction

 Do not search thread interleavings that generate 

equivalent behavior

 Static analyses

 Reduce state space using static analyses

 User-provided restrictions

 Manually bound variable domains, array sizes,…



Symmetry Reduction in JPF

 Order in which classes are loaded shouldn’t 
effect the state
 There is a canonical ordering of classes

 Location of dynamically allocated heap objects 

shouldn’t effect the state

 If we store the memory location as the state, then 

we can miss equivalent states which have different 

memory layouts

 Store some information about the new statements 

and the number of times they are executed



Simple Symmetry Example

int x, y;

Foo a, b;

Thread 1:

1) a = new Foo();

2) x = 1;

3) y = 2;

4) x++;

5) y++;

Thread 2:

5) b = new Foo();

6) y = 3;

7) x = 2;

8) y++;

9) x++;



Partial Order Reduction

 Statements of concurrently executing threads 

can generate many different  interleavings

 All these different interleavings are allowable 

behavior of the program

 Model checker checks all possible interleavings

for errors 

 But different interleavings may generate equivalent 

behaviors

 Partial order reduction

 It is sufficient to check just one representative 

interleaving



Simple POR Example

int x, y;

Thread 1:

int a;

1) a = 5;

2) a++;

3) x = 1;

4) y = 2;

5) x++;

6) y++;

Thread 2:

int b;

5) b = 10;

6) b--;

7) y = 3;

8) x = 2;

9) y++;

10)x++;



Static Analysis in JPF

 Using static analysis techniques to reduce the 

state space

 Slicing

 Partial evaluation



Static Analysis in JPF

 Slicing

 Remove program parts with no effect on the slicing 

criterion

 A slicing criterion could be a program point

 Program slices are computed using dependency 

analysis

 Partial evaluation

 Propagate constant values and simplify expressions



User-Provided Restrictions

 To improve scalability, users can restrict 
domains of variables, sizes of arrays,…

 Restrictions under-approximate program 
behaviors
 May result in missed errors

 Still useful in finding bugs



This Time

 Context-bounded verification of concurrent 

programs



Context-Bounded Verification

slides acknowledgements:  Shaz Qadeer, Madan Musuvathi



Context-Bounded Verification

         

Context Context Context

Context switch Context switch

 Many subtle concurrency errors are manifested in 

executions with few context switches

 Analyze all executions with few context switches



Context-Bounded Reachability Problem

 An execution is c-bounded if every thread has 

at most c contexts

 Does there exist a c-bounded execution from a 

state S to a state E?



CB Reachability is NP-Complete

 Membership in NP
 Witness is an initial state and n*c sequences each 

of length at most |L × G|

n = # of threads, c = # of contexts

L = # of program locations, G = # of global states

 NP-hardness

 Reduction from the CIRCUIT-SAT problem



Complexity of Safety Verification

Unbounded Context-bounded

Finite-state

systems

Pushdown

systems

PSPACE

complete
NP-complete

Undecidable NP-complete



CHESS: Systematic Testing for Concurrency

 CHESS is a user-mode scheduler

 Controls all scheduling nondeterminism

 Replace the OS scheduler

 Guarantees:

 Every program run takes a different thread 

interleaving

 Reproduce the interleaving for every run



CHESS Architecture

CHESS

Scheduler 

Unmanaged

Program

Windows

Managed

Program

CLR

• Every run takes a different 

interleaving

• Reproduce the interleaving 

for every run

CHESS

Exploration

Engine 

Win32

Wrappers

.NET

Wrappers
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n threads

k steps 
each

 Number of executions is O(nnk)

 Exponential in both n and k

 Typically: n < 10, k > 1000

 Limits scalability to large 

programs

Goal: Scale CHESS to large programs (large k)

Thread 1 Thread n



Preemption-Bounding

 Prioritize executions with small # of preemptions

 Two kinds of context switches:
 Preemptions – forced by the scheduler

 E.g., time-slice expiration

 Non-preemptions – a thread voluntarily yields
 E.g., blocking on an unavailable lock, thread end

x = 1;

if (p != 0) {

x = p->f;

} x = p->f;

}

x = 1;

if (p != 0) {

p = 0;

preemption

non-preemption

Thread 1 Thread 2



Preemption-Bounding in CHESS

 The scheduler has a budget of c preemptions

 Nondeterministically choose the preemption points

 Resort to non-preemptive scheduling after c 

preemptions

 Once all executions explored with c 

preemptions

 Try with c+1 preemptions



Property 1: Polynomial Bound

 Terminating program with fixed inputs and 
deterministic threads
 n threads, k steps each, c preemptions

 Number of executions <= nkCc * (n+c)! 

= O((n2k)c * n!)

 Exponential in n and c, but not in k!
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• Choose c preemption points

• Permute n+c atomic blocks
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Property 2: Simple Error Traces

 Finds smallest number of preemptions to the 
error

 Number of preemptions better metric of error 
complexity than execution length



Property 3: Coverage Metric

 If search terminates with preemption-bound of 

c, then any remaining error must require at 

least c+1 preemptions

 Intuitive estimate for

 The complexity of the bugs remaining in the 

program

 The chance of their occurrence in practice



Property 4: Many Bugs with Few Preemptions

Program kLOC Threads Preemptions Bugs

Work-Stealing 

Queue
1.3 3 2 3

CDS 6.2 3 2 1

CCR 9.3 3 2 2

ConcRT 16.5 4 3 4

Dryad 18.1 25 2 7

APE 18.9 4 2 4

STM 20.2 2 2 2

PLINQ 23.8 8 2 1

TPL 24.1 8 2 9



Coverage vs Preemption-Bound


