
40 communications of the acm | march 2012 | vol. 55 | no. 3

practice

M ost C o mm u n icati o n s readers might think of
“program verification research” as mostly theoretical
with little impact on the world at large. Think again.
If you are reading these lines on a PC running some
form of Windows (like over 93% of PC users—that is,
more than one billion people), then you have been
affected by this line of work—without knowing it,
which is precisely the way we want it to be.

Every second Tuesday of every month, also known
as “Patch Tuesday,” Microsoft releases a list of
security bulletins and associated security patches to
be deployed on hundreds of millions of machines
worldwide. Each security bulletin costs Microsoft

and its users millions of dollars. If a
monthly security update costs you
$0.001 (one tenth of one cent) in just
electricity or loss of productivity, then
this number multiplied by one bil-
lion people is $1 million. Of course, if
malware were spreading on your ma-
chine, possibly leaking some of your
private data, then that might cost you
much more than $0.001. This is why
we strongly encourage you to apply
those pesky security updates.

Many security vulnerabilities are a
result of programming errors in code
for parsing files and packets that are
transmitted over the Internet. For ex-
ample, Microsoft Windows includes
parsers for hundreds of file formats.

If you are reading this article on a
computer, then the picture shown in
Figure 1 is displayed on your screen
after a jpg parser (typically part of
your operating system) has read the
image data, decoded it, created new
data structures with the decoded data,
and passed those to the graphics card
in your computer. If the code imple-
menting that jpg parser contains a
bug such as a buffer overflow that can
be triggered by a corrupted jpg image,
then the execution of this jpg parser
on your computer could potentially be
hijacked to execute some other code,
possibly malicious and hidden in the
jpg data itself.

This is just one example of a pos-
sible security vulnerability and at-
tack scenario. The security bugs dis-
cussed throughout the rest of this
article are mostly buffer overflows.

Hunting for “Million-Dollar” Bugs
Today, hackers find security vulnera-
bilities in software products using two
primary methods. The first is code in-
spection of binaries (with a good dis-
assembler, binary code is like source
code).

The second is blackbox fuzzing,
a form of blackbox random testing,
which randomly mutates well-formed
program inputs and then tests the
program with those modified inputs,3
hoping to trigger a bug such as a buf-

SAGE:
Whitebox
Fuzzing for
Security
Testing

doi:10.1145/2093548.2093564

 Article development led by
 queue.acm.org

SAGE has had a remarkable
impact at Microsoft.

by Patrice Godefroid, Michael Y. Levin, and David Molnar

march 2012 | vol. 55 | no. 3 | communications of the acm 41

P
h

o
t

o
g

r
a

p
h

 c
o

u
r

t
e

s
y

 o
f

 NASA

fer overflow. In some cases, grammars
are used to generate the well-formed
inputs. This also allows encoding
application-specific knowledge and
test-generation heuristics.

Blackbox fuzzing is a simple yet
effective technique for finding se-
curity vulnerabilities in software.
Thousands of security bugs have
been found this way. At Microsoft,
fuzzing is mandatory for every un-
trusted interface of every product, as
prescribed in the Security Develop-
ment Lifecycle,7 which documents
recommendations on how to devel-
op secure software.

Although blackbox fuzzing can be
remarkably effective, its limitations
are well known. For example, the

then branch of the conditional state-
ment in

int foo(int x) { // x is an input
 int y = x + 3;
 if (y == 13) abort(); // error
 return 0;
}

has only 1 in 232 chances of being ex-
ercised if the input variable x has a
randomly chosen 32-bit value. This in-
tuitively explains why blackbox fuzzing
usually provides low code coverage and
can miss security bugs.

Introducing Whitebox Fuzzing
A few years ago, we started develop-
ing an alternative to blackbox fuzzing,

called whitebox fuzzing.5 It builds upon
recent advances in systematic dynamic
test generation4 and extends its scope
from unit testing to whole-program
security testing.

Starting with a well-formed input,
whitebox fuzzing consists of symboli-
cally executing the program under test
dynamically, gathering constraints on
inputs from conditional branches en-
countered along the execution. The
collected constraints are then sys-
tematically negated and solved with a
constraint solver, whose solutions are
mapped to new inputs that exercise
different program execution paths.
This process is repeated using novel
search techniques that attempt to sweep
through all (in practice, many) feasible

Figure 1. A sample jpg image.

42 communications of the acm | march 2012 | vol. 55 | no. 3

practice

execution paths of the program while
checking simultaneously many prop-
erties using a runtime checker (such as
Purify, Valgrind, or AppVerifier).

For example, symbolic execution of
the previous program fragment with
an initial value 0 for the input vari-
able x takes the else branch of the
conditional statement and generates
the path constraint x+3 ≠ 13. Once
this constraint is negated and solved,
it yields x = 10, providing a new input
that causes the program to follow the
then branch of the conditional state-
ment. This allows us to exercise and
test additional code for security bugs,
even without specific knowledge of
the input format. Furthermore, this
approach automatically discovers and
tests “corner cases” where program-
mers may fail to allocate memory or
manipulate buffers properly, leading
to security vulnerabilities.

In theory, systematic dynamic test
generation can lead to full program
path coverage, that is, program verifica-
tion. In practice, however, the search
is typically incomplete both because
the number of execution paths in the
program under test is huge, and be-
cause symbolic execution, constraint
generation, and constraint solving can
be imprecise due to complex program
statements (pointer manipulations
and floating-point operations, among
others), calls to external operating-
system and library functions, and large
numbers of constraints that cannot
all be solved perfectly in a reasonable
amount of time. Therefore, we are
forced to explore practical trade-offs.

SAGE
Whitebox fuzzing was first imple-
mented in the tool SAGE, short for
Scalable Automated Guided Execu-
tion.5 Because SAGE targets large ap-
plications where a single execution
may contain hundreds of millions
of instructions, symbolic execution
is its slowest component. Therefore,
SAGE implements a novel directed-
search algorithm—dubbed genera-
tional search—that maximizes the
number of new input tests generated
from each symbolic execution. Given
a path constraint, all the constraints
in that path are systematically negat-
ed one by one, placed in a conjunc-
tion with the prefix of the path con-

straint leading to it, and attempted
to be solved by a constraint solver.
This way, a single symbolic execution
can generate thousands of new tests.
(In contrast, a standard depth-first
or breadth-first search would negate
only the last or first constraint in each
path constraint and generate at most
one new test per symbolic execution.)

The program shown in Figure 2
takes four bytes as input and con-
tains an error when the value of
the variable cnt is greater than or
equal to four. Starting with some
initial input good, SAGE runs this
program while performing a sym-
bolic execution dynamically. Since
the program path taken during this
first run is formed by all the else
branches in the program, the path
constraint for this initial run is the
conjunction of constraints i0 ≠ b,
i1 ≠ a, i2 ≠ d and i3 ≠ !. Each of these
constraints is negated one by one,
placed in a conjunction with the
prefix of the path constraint lead-
ing to it, and then solved with a con-
straint solver. In this case, all four
constraints are solvable, leading to
four new test inputs. Figure 2 also
shows the set of all feasible program
paths for the function top. The left-
most path represents the initial run
of the program and is labeled 0 for
Generation 0. Four Generation 1 in-
puts are obtained by systematically
negating and solving each constraint
in the Generation 0 path constraint.
By repeating this process, all paths
are eventually enumerated for this
example. In practice, the search is
typically incomplete.

SAGE was the first tool to perform
dynamic symbolic execution at the
x86 binary level. It is implemented on
top of the trace replay infrastructure
TruScan,8 which consumes trace files
generated by the iDNA framework1
and virtually re-executes the recorded
runs. TruScan offers several features
that substantially simplify symbolic
execution, including instruction de-
coding, providing an interface to pro-
gram symbol information, monitor-
ing various input/output system calls,
keeping track of heap and stack frame
allocations, and tracking the flow of
data through the program structures.
Thanks to offline tracing, constraint
generation in SAGE is completely de-

SAGE has had
a remarkable
impact at Microsoft.
It combines and
extends program
analysis, testing,
verification,
model checking,
and automated
theorem-proving
techniques
that have been
developed over
many years.

practice

march 2012 | vol. 55 | no. 3 | communications of the acm 43

terministic because it works with an
execution trace that captures the out-
come of all nondeterministic events
encountered during the recorded run.
Working at the x86 binary level allows
SAGE to be used on any program re-
gardless of its source language or build
process. It also ensures that “what you
fuzz is what you ship,” as compilers can
perform source-code changes that may
affect security.

SAGE uses several optimizations
that are crucial for dealing with huge
execution traces. For example, a sin-
gle symbolic execution of Excel with
45,000 input bytes executes nearly one
billion x86 instructions. To scale to
such execution traces, SAGE uses sev-
eral techniques to improve the speed
and memory usage of constraint gen-
eration: symbolic-expression caching
ensures that structurally equivalent
symbolic terms are mapped to the
same physical object; unrelated con-
straint elimination reduces the size of
constraint solver queries by remov-
ing the constraints that do not share
symbolic variables with the negated
constraint; local constraint caching
skips a constraint if it has already
been added to the path constraint;
flip count limit establishes the maxi-
mum number of times a constraint
generated from a particular program
branch can be flipped; using a cheap
syntactic check, constraint subsump-
tion eliminates constraints logically
implied by other constraints injected
at the same program branch (mostly
likely resulting from successive itera-
tions of an input-dependent loop).

SAGE Architecture
The high-level architecture of SAGE
is depicted in Figure 3. Given one (or
more) initial input Input0, SAGE
starts by running the program under
test with AppVerifier to see if this initial
input triggers a bug. If not, SAGE then
collects the list of unique program in-
structions executed during this run.
Next, SAGE symbolically executes the
program with that input and generates
a path constraint, characterizing the
current program execution with a con-
junction of input constraints.

Then, implementing a generation-
al search, all the constraints in that
path constraint are negated one by
one, placed in a conjunction with the
prefix of the path constraint leading
to it, and attempted to be solved by a

constraint solver (we currently use the
Z3 SMT solver2). All satisfiable con-
straints are mapped to N new inputs,
that are tested and ranked according
to incremental instruction coverage.
For example, if executing the program
with new Input1 discovers 100 new
instructions, then Input1 gets a score
of 100, and so on. Next, the new input
with the highest score is selected to
go through the (expensive) symbolic
execution task, and the cycle is repeat-
ed, possibly forever. Note that all the
SAGE tasks can be executed in parallel
on a multicore machine or even on a
set of machines.

Building a system such as SAGE
poses many other challenges: how to
recover from imprecision in symbolic
execution, how to check many proper-

Figure 2. Example of program (left) and its search space (right) with the value of cnt at the end of each run.

void top(char input[4]) {
int cnt=0;
if (input[0] == ’b’) cnt++;
if (input[1] == ’a’) cnt++;
if (input[2] == ’d’) cnt++;
if (input[3] == ’!’) cnt++;
if (cnt >= 4) abort(); // error }

good goo! godd god!gaod gao! gadd gad! bood boo! bodd bod! baod bao! badd bad!
0 1 1 2 2 2 3 1 2 2 23 3 3 41

Figure 3. Architecture of SAGE.

Check for
Crashes

(AppVerifier)

Code Coverage
(Nirvana)

Generate
Constraints
(TruScan)

Solve
Constraints

(Z3)

Input0 Constraints
Converge

Data

Input1

Input2
…

InputN

44 communications of the acm | march 2012 | vol. 55 | no. 3

practice

ties together efficiently, how to lever-
age grammars (when available) for
complex input formats, how to deal
with path explosion, how to reason pre-
cisely about pointers, how to deal with
floating-point instructions and input-
dependent loops. Space constraints
prevent us from discussing these chal-
lenges here, but the authors’ Web pag-
es provide access to other papers ad-
dressing these issues.

An Example
On April 3, 2007, Microsoft released
an out-of-band critical security patch
(MS07-017) for code that parses ANI-
format animated cursors. The vulner-
ability was originally reported to Micro-
soft in December 2006 by Alex Sotirov
of Determina Security Research, then
made public after exploit code ap-
peared in the wild.9 It was only the
third such out-of-band patch released
by Microsoft since January 2006, indi-
cating the seriousness of the bug. The
Microsoft SDL Policy Weblog stated
that extensive blackbox fuzzing of this
code failed to uncover the bug and that
existing static-analysis tools were not
capable of finding the bug without ex-
cessive false positives.6

SAGE, in contrast, synthesized
a new input file exhibiting the bug
within hours of starting from a well-
formed ANI file, despite having no
knowledge of the ANI format. A seed
file was picked arbitrarily from a li-
brary of well-formed ANI files, and
SAGE was run on a small test pro-
gram that called user32.dll to parse
ANI files. The initial run generated a
path constraint with 341 branch con-
straints after executing 1,279,939 to-
tal x86 instructions over 10,072 sym-
bolic input bytes. SAGE then created
a crashing ANI file after 7 hours 36
minutes and 7,706 test cases, using
one core of a 2GHz AMD Opteron 270
dual-core processor running 32-bit
Windows Vista with 4GB of RAM.

Impact of SAGE
Since 2007, SAGE has discovered many
security-related bugs in many large Mi-
crosoft applications, including image
processors, media players, file decod-
ers, and document parsers. Notably,
SAGE found approximately one-third
of all the bugs discovered by file fuzzing
during the development of Microsoft’s

Windows 7. Because SAGE is typically
run last, those bugs were missed by ev-
erything else, including static program
analysis and blackbox fuzzing.

Finding all these bugs has saved
Microsoft millions of dollars as well as
saved world time and energy, by avoid-
ing expensive security patches to more
than one billion PCs. The software
running on your PC has been affected
by SAGE.

Since 2008, SAGE has been run-
ning 24/7 on approximately 100-plus
machines/cores automatically fuzzing
hundreds of applications in Microsoft
security testing labs. This is more than
300 machine-years and the largest com-
putational usage ever for any Satisfiabil-
ity Modulo Theories (SMT) solver, with
more than one billion constraints pro-
cessed to date.

SAGE is so effective at finding bugs
that, for the first time, we faced “bug
triage” issues with dynamic test gen-
eration. We believe this effectiveness
comes from being able to fuzz large
applications (not just small units as
previously done with dynamic test
generation), which in turn allows us
to find bugs resulting from problems
across multiple components. SAGE is
also easy to deploy, thanks to x86 bi-
nary analysis, and it is fully automat-
ic. SAGE is now used daily in various
groups at Microsoft.

Conclusion
SAGE has had a remarkable impact at
Microsoft. It combines and extends
program analysis, testing, verification,
model checking, and automated theo-
rem-proving techniques that have been
developed over many years.

Which is best in practice—blackbox
or whitebox fuzzing? Both offer differ-
ent cost/precision trade-offs. Blackbox
is simple, lightweight, easy, and fast but
can yield limited code coverage. White-
box is smarter but more complex.

Which approach is more effective at
finding bugs? It depends. If an applica-
tion has never been fuzzed, any form
of fuzzing is likely to find bugs, and
simple blackbox fuzzing is a good start.
Once the low-hanging bugs are gone,
however, fuzzing for the next bugs has
to become smarter. Then it is time to
use whitebox fuzzing and/or user-pro-
vided guidance, for example, using an
input grammar.

The bottom line? In practice, use
both. We do at Microsoft.

Acknowledgments
Many people across different groups
at Microsoft have contributed to
SAGE’s success; more than space al-
lows here. To review this detailed list,
please visit queue.acm.org/detail.
cfm?id=2094081. 	

 Related articles
 on queue.acm.org

Black Box Debugging

James A. Whittaker, Herbert H. Thompson
http://queue.acm.org/detail.cfm?id=966807

Security – Problem Solved?

John Viega
http://queue.acm.org/detail.cfm?id=1071728

Open vs. Closed: Which Source
is More Secure?
Richard Ford
http://queue.acm.org/detail.cfm?id=1217267

References
1.	B hansali, S., Chen, W., De Jong, S., Edwards, A. and

Drinic, M. Framework for instruction-level tracing
and analysis of programs. In Proceedings of the
2nd International Conference on Virtual Execution
Environments (2006).

2.	 de Moura, L. and Bjorner, N. Z3: An efficient SMT
solver. In Proceedings of Tools and Algorithms for the
Construction and Analysis of Systems; Lecture Notes
in Computer Science. Springer-Verlag, 2008, 337–340.

3.	 Forrester, J.E. and Miller, B.P. An empirical study of the
robustness of Windows NT applications using random
testing. In Proceedings of the 4th Usenix Windows
System Symposium (Seattle, WA, Aug. 2000).

4.	 Godefroid, P., Klarlund, N. and Sen, K. DART: Directed
Automated Random Testing. In Proceedings of
Programming Language Design and Implementation
(2005), 213–223.

5.	 Godefroid, P., Levin, M. Y. and Molnar, D. Automated
whitebox fuzz testing. In Proceedings of Network and
Distributed Systems Security, (2008), 151– 166.

6.	H oward, M. Lessons learned from the animated
cursor security bug; http://blogs.msdn.com/sdl/
archive/2007/04/26/lessons-learned-fromthe-
animated-cursor-security-bug.aspx.

7.	H oward, M. and Lipner, S. The Security Development
Lifecycle. Microsoft Press, 2006.

8.	N arayanasamy, S., Wang, Z., Tigani, J., Edwards,
A. and Calder, B. Automatically classifying benign
and harmful data races using replay analysis. In
Programming Languages Design and Implementation
(2007).

9.	S otirov, A. Windows animated cursor stack overflow
vulnerability, 2007; http://www.determina.com/
security.research/vulnerabilities/ani-header.html.

Patrice Godefroid (pg@microsoft.com) is a principal
researcher at Microsoft Research. From 1994 to 2006, he
worked at Bell Laboratories. His research interests include
program specification, analysis, testing, and verification.

Michael Y. Levin (mlevin@microsoft.com) is a principal
development manager in the Windows Azure Engineering
Infrastructure team where he leads a team developing
the Windows Azure Monitoring and Diagnostics Service.
His additional interests include automated test generation,
anomaly detection, data mining, and scalable debugging in
distributed systems.

David Molinar (dmolnar@microsoft.com) is a researcher
at Microsoft Research, where his interests focus on
software security, electronic privacy, and cryptography.

© 2012 ACM 0001-0782/12/03 $10.00

