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M ost C o mm  u n icati    o n s  readers  might think of 
“program verification research” as mostly theoretical 
with little impact on the world at large. Think again.  
If you are reading these lines on a PC running some 
form of Windows (like over 93% of PC users—that is, 
more than one billion people), then you have been 
affected by this line of work—without knowing it, 
which is precisely the way we want it to be.

Every second Tuesday of every month, also known 
as “Patch Tuesday,” Microsoft releases a list of 
security bulletins and associated security patches to 
be deployed on hundreds of millions of machines 
worldwide. Each security bulletin costs Microsoft 

and its users millions of dollars. If a 
monthly security update costs you 
$0.001 (one tenth of one cent) in just 
electricity or loss of productivity, then 
this number multiplied by one bil-
lion people is $1 million. Of course, if 
malware were spreading on your ma-
chine, possibly leaking some of your 
private data, then that might cost you 
much more than $0.001. This is why 
we strongly encourage you to apply 
those pesky security updates. 

Many security vulnerabilities are a 
result of programming errors in code 
for parsing files and packets that are 
transmitted over the Internet. For ex-
ample, Microsoft Windows includes 
parsers for hundreds of file formats. 

If you are reading this article on a 
computer, then the picture shown in 
Figure 1 is displayed on your screen 
after a jpg parser (typically part of 
your operating system) has read the 
image data, decoded it, created new 
data structures with the decoded data, 
and passed those to the graphics card 
in your computer. If the code imple-
menting that jpg parser contains a 
bug such as a buffer overflow that can 
be triggered by a corrupted jpg image, 
then the execution of this jpg parser 
on your computer could potentially be 
hijacked to execute some other code, 
possibly malicious and hidden in the 
jpg data itself. 

This is just one example of a pos-
sible security vulnerability and at-
tack scenario. The security bugs dis-
cussed throughout the rest of this 
article are mostly buffer overflows. 

Hunting for “Million-Dollar” Bugs 
Today, hackers find security vulnera-
bilities in software products using two 
primary methods. The first is code in-
spection of binaries (with a good dis-
assembler, binary code is like source 
code). 

The second is blackbox fuzzing, 
a form of blackbox random testing, 
which randomly mutates well-formed 
program inputs and then tests the 
program with those modified inputs,3 
hoping to trigger a bug such as a buf-
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fer overflow. In some cases, grammars 
are used to generate the well-formed 
inputs. This also allows encoding 
application-specific knowledge and 
test-generation heuristics. 

Blackbox fuzzing is a simple yet 
effective technique for finding se-
curity vulnerabilities in software. 
Thousands of security bugs have 
been found this way. At Microsoft, 
fuzzing is mandatory for every un-
trusted interface of every product, as 
prescribed in the Security Develop-
ment Lifecycle,7 which documents 
recommendations on how to devel-
op secure software. 

Although blackbox fuzzing can be 
remarkably effective, its limitations 
are well known. For example, the 

then branch of the conditional state-
ment in 

int foo(int x) { // x is an input
   int y = x + 3;
   if (y == 13) abort(); // error
   return 0; 
}

has only 1 in 232 chances of being ex-
ercised if the input variable x has a 
randomly chosen 32-bit value. This in-
tuitively explains why blackbox fuzzing 
usually provides low code coverage and 
can miss security bugs. 

Introducing Whitebox Fuzzing 
A few years ago, we started develop-
ing an alternative to blackbox fuzzing, 

called whitebox fuzzing.5 It builds upon 
recent advances in systematic dynamic 
test generation4 and extends its scope 
from unit testing to whole-program 
security testing. 

Starting with a well-formed input, 
whitebox fuzzing consists of symboli-
cally executing the program under test  
dynamically, gathering constraints on 
inputs from conditional branches en-
countered along the execution. The 
collected constraints are then sys-
tematically negated and solved with a 
constraint solver, whose solutions are 
mapped to new inputs that exercise 
different program execution paths. 
This process is repeated using novel 
search techniques that attempt to sweep 
through all (in practice, many) feasible 

Figure 1. A sample jpg image. 
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execution paths of the program while 
checking simultaneously many prop-
erties using a runtime checker (such as 
Purify, Valgrind, or AppVerifier). 

For example, symbolic execution of 
the previous program fragment with 
an initial value 0 for the input vari-
able x takes the else branch of the 
conditional statement and generates 
the path constraint x+3 ≠ 13. Once 
this constraint is negated and solved, 
it yields x = 10, providing a new input 
that causes the program to follow the 
then branch of the conditional state-
ment. This allows us to exercise and 
test additional code for security bugs, 
even without specific knowledge of 
the input format. Furthermore, this 
approach automatically discovers and 
tests “corner cases” where program-
mers may fail to allocate memory or 
manipulate buffers properly, leading 
to security vulnerabilities. 

In theory, systematic dynamic test 
generation can lead to full program 
path coverage, that is, program verifica-
tion. In practice, however, the search 
is typically incomplete both because 
the number of execution paths in the 
program under test is huge, and be-
cause symbolic execution, constraint 
generation, and constraint solving can 
be imprecise due to complex program 
statements (pointer manipulations 
and floating-point operations, among 
others), calls to external operating-
system and library functions, and large 
numbers of constraints that cannot 
all be solved perfectly in a reasonable 
amount of time. Therefore, we are 
forced to explore practical trade-offs. 

SAGE 
Whitebox fuzzing was first imple-
mented in  the tool SAGE, short for 
Scalable Automated Guided Execu-
tion.5 Because SAGE targets large ap-
plications where a single execution 
may contain hundreds of millions 
of instructions, symbolic execution 
is its slowest component. Therefore, 
SAGE implements a novel directed-
search algorithm—dubbed genera-
tional search—that maximizes the 
number of new input tests generated 
from each symbolic execution. Given 
a path constraint, all the constraints 
in that path are systematically negat-
ed one by one, placed in a conjunc-
tion with the prefix of the path con-

straint leading to it, and attempted 
to be solved by a constraint solver. 
This way, a single symbolic execution 
can generate thousands of new tests. 
(In contrast, a standard depth-first 
or breadth-first search would negate 
only the last or first constraint in each 
path constraint and generate at most 
one new test per symbolic execution.) 

The program shown in Figure 2 
takes four bytes as input and con-
tains an error when the value of 
the variable cnt is greater than or 
equal to four. Starting with some 
initial input good, SAGE runs this 
program while performing a sym-
bolic execution dynamically. Since 
the program path taken during this 
first run is formed by all the else 
branches in the program, the path 
constraint for this initial run is the 
conjunction of constraints i0 ≠ b,  
i1 ≠ a, i2 ≠ d and i3 ≠ !. Each of these 
constraints is negated one by one, 
placed in a conjunction with the 
prefix of the path constraint lead-
ing to it, and then solved with a con-
straint solver. In this case, all four 
constraints are solvable, leading to 
four new test inputs. Figure 2 also 
shows the set of all feasible program 
paths for the function top. The left-
most path represents the initial run 
of the program and is labeled 0 for 
Generation 0. Four Generation 1 in-
puts are obtained by systematically 
negating and solving each constraint 
in the Generation 0 path constraint. 
By repeating this process, all paths 
are eventually enumerated for this 
example. In practice, the search is 
typically incomplete. 

SAGE was the first tool to perform 
dynamic symbolic execution at the 
x86 binary level. It is implemented on 
top of the trace replay infrastructure 
TruScan,8 which consumes trace files 
generated by the iDNA framework1 
and virtually re-executes the recorded 
runs. TruScan offers several features 
that substantially simplify symbolic 
execution, including instruction de-
coding, providing an interface to pro-
gram symbol information, monitor-
ing various input/output system calls, 
keeping track of heap and stack frame 
allocations, and tracking the flow of 
data through the program structures. 
Thanks to offline tracing, constraint 
generation in SAGE is completely de-
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terministic because it works with an 
execution trace that captures the out-
come of all nondeterministic events 
encountered during the recorded run. 
Working at the x86 binary level allows 
SAGE to be used on any program re-
gardless of its source language or build 
process. It also ensures that “what you 
fuzz is what you ship,” as compilers can 
perform source-code changes that may 
affect security. 

SAGE uses several optimizations 
that are crucial for dealing with huge 
execution traces. For example, a sin-
gle symbolic execution of Excel with 
45,000 input bytes executes nearly one 
billion x86 instructions. To scale to 
such execution traces, SAGE uses sev-
eral techniques to improve the speed 
and memory usage of constraint gen-
eration: symbolic-expression caching 
ensures that structurally equivalent 
symbolic terms are mapped to the 
same physical object; unrelated con-
straint elimination reduces the size of 
constraint solver queries by remov-
ing the constraints that do not share 
symbolic variables with the negated 
constraint; local constraint caching 
skips a constraint if it has already 
been added to the path constraint; 
flip count limit establishes the maxi-
mum number of times a constraint 
generated from a particular program 
branch can be flipped; using a cheap 
syntactic check, constraint subsump-
tion eliminates constraints logically 
implied by other constraints injected 
at the same program branch (mostly 
likely resulting from successive itera-
tions of an input-dependent loop). 

SAGE Architecture 
The high-level architecture of SAGE 
is depicted in Figure 3. Given one (or 
more) initial input Input0, SAGE 
starts by running the program under 
test with AppVerifier to see if this initial 
input triggers a bug. If not, SAGE then 
collects the list of unique program in-
structions executed during this run. 
Next, SAGE symbolically executes the 
program with that input and generates 
a path constraint, characterizing the 
current program execution with a con-
junction of input constraints. 

Then, implementing a generation-
al search, all the constraints in that 
path constraint are negated one by 
one, placed in a conjunction with the 
prefix of the path constraint leading 
to it, and attempted to be solved by a 

constraint solver (we currently use the 
Z3 SMT solver2). All satisfiable con-
straints are mapped to N new inputs, 
that are tested and ranked according 
to incremental instruction coverage. 
For example, if executing the program 
with new Input1 discovers 100 new 
instructions, then Input1 gets a score 
of 100, and so on. Next, the new input 
with the highest score is selected to 
go through the (expensive) symbolic 
execution task, and the cycle is repeat-
ed, possibly forever. Note that all the 
SAGE tasks can be executed in parallel 
on a multicore machine or even on a 
set of machines. 

Building a system such as SAGE 
poses many other challenges: how to 
recover from imprecision in symbolic 
execution, how to check many proper-

Figure 2. Example of program (left) and its search space (right) with the value of cnt at the end of each run.

void top(char input[4]) {
int cnt=0; 
if (input[0] == ’b’) cnt++; 
if (input[1] == ’a’) cnt++; 
if (input[2] == ’d’) cnt++; 
if (input[3] == ’!’) cnt++; 
if (cnt >= 4) abort(); // error } 

good goo! godd god!gaod gao! gadd gad! bood boo! bodd bod! baod bao! badd bad!
0 1 1 2 2 2 3 1 2 2 23 3 3 41

Figure 3. Architecture of SAGE.
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ties together efficiently, how to lever-
age grammars (when available) for 
complex input formats, how to deal 
with path explosion, how to reason pre-
cisely about pointers, how to deal with 
floating-point instructions and input-
dependent loops. Space constraints 
prevent us from discussing these chal-
lenges here, but the authors’ Web pag-
es provide access to other papers ad-
dressing these issues. 

An Example 
On April 3, 2007, Microsoft released 
an out-of-band critical security patch 
(MS07-017) for code that parses ANI-
format animated cursors. The vulner-
ability was originally reported to Micro-
soft in December 2006 by Alex Sotirov 
of Determina Security Research, then 
made public after exploit code ap-
peared in the wild.9 It was only the 
third such out-of-band patch released 
by Microsoft since January 2006, indi-
cating the seriousness of the bug. The 
Microsoft SDL Policy Weblog stated 
that extensive blackbox fuzzing of this 
code failed to uncover the bug and that 
existing static-analysis tools were not 
capable of finding the bug without ex-
cessive false positives.6 

SAGE, in contrast, synthesized 
a new input file exhibiting the bug 
within hours of starting from a well-
formed ANI file, despite having no 
knowledge of the ANI format. A seed 
file was picked arbitrarily from a li-
brary of well-formed ANI files, and 
SAGE was run on a small test pro-
gram that called user32.dll to parse 
ANI files. The initial run generated a 
path constraint with 341 branch con-
straints after executing 1,279,939 to-
tal x86 instructions over 10,072 sym-
bolic input bytes. SAGE then created 
a crashing ANI file after 7 hours 36 
minutes and 7,706 test cases, using 
one core of a 2GHz AMD Opteron 270 
dual-core processor running 32-bit 
Windows Vista with 4GB of RAM. 

Impact of SAGE 
Since 2007, SAGE has discovered many 
security-related bugs in many large Mi-
crosoft applications, including image 
processors, media players, file decod-
ers, and document parsers. Notably, 
SAGE found approximately one-third 
of all the bugs discovered by file fuzzing 
during the development of Microsoft’s 

Windows 7. Because SAGE is typically 
run last, those bugs were missed by ev-
erything else, including static program 
analysis and blackbox fuzzing. 

Finding all these bugs has saved 
Microsoft millions of dollars as well as 
saved world time and energy, by avoid-
ing expensive security patches to more 
than one billion PCs. The software 
running on your PC has been affected 
by SAGE. 

Since 2008, SAGE has been run-
ning 24/7 on approximately 100-plus 
machines/cores automatically fuzzing 
hundreds of applications in Microsoft 
security testing labs. This is more than 
300 machine-years and the largest com-
putational usage ever for any Satisfiabil-
ity Modulo Theories (SMT) solver, with 
more than  one billion constraints pro-
cessed to date. 

SAGE is so effective at finding bugs 
that, for the first time, we faced “bug 
triage” issues with dynamic test gen-
eration. We believe this effectiveness 
comes from being able to fuzz large 
applications (not just small units as 
previously done with dynamic test 
generation), which in turn allows us 
to find bugs resulting from problems 
across multiple components. SAGE is 
also easy to deploy, thanks to x86 bi-
nary analysis, and it is fully automat-
ic. SAGE is now used daily in various 
groups at Microsoft. 

Conclusion 
SAGE has had a remarkable impact at 
Microsoft. It combines and extends 
program analysis, testing, verification, 
model checking, and automated theo-
rem-proving techniques that have been 
developed over many years. 

Which is best in practice—blackbox 
or whitebox fuzzing? Both offer differ-
ent cost/precision trade-offs. Blackbox 
is simple, lightweight, easy, and fast but 
can yield limited code coverage. White-
box is smarter but more complex. 

Which approach is more effective at 
finding bugs? It depends. If an applica-
tion has never been fuzzed, any form 
of fuzzing is likely to find bugs, and 
simple blackbox fuzzing is a good start. 
Once the low-hanging bugs are gone, 
however, fuzzing for the next bugs has 
to become smarter. Then it is time to 
use whitebox fuzzing and/or user-pro-
vided guidance, for example, using an 
input grammar. 

The bottom line? In practice, use 
both. We do at Microsoft. 
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