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A B S T R A C T  
One approach to model checking software is based on the 
abstract-check-refine paradigm: build an abstract model, 
then check the desired property, and if the check fails, re- 
fine the model and start over. We introduce the concept of 
lazy abstraction to integrate and optimize the three phases 
of the abstract-cheek-refine loop. Lazy abstraction continu- 
ously builds and refines a single abstract model on demand, 
driven by the model checker, so that different parts of the 
model may exhibit different degrees of precision, namely just 
enough to verify the desired property. We present an algo- 
ri thm for model checking safety properties using lazy ab- 
straction and describe an implementation of the algorithm 
applied to C programs. We also provide sufficient conditions 
for the termination of the method. 

1. I N T R O D U C T I O N  
While model checking [11] has made significant inroads in 

hardware verification, a renewed focus on model checking for 
software has emerged only in the past couple of years. We 
believe that  this renewed attention has been helped signifi- 
cantly by two related trends: first, modern model checking 
is increasingly viewed more broadly than state enumeration 
or BDD crunching, namely, as computation with predicates 
that represent state sets (keywords "predicate abstraction" 
[20], "symbolic transition systems" [22], "constraint-based 
model checking" [14]); second, the performance of decision 
procedures and theorem provers for relevant predicate theo- 
ries (e.g., booleans, Presburger, arrays) and their combina- 
tions has been steadily improving [15, 25, 27]. 
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One traditional flow for model checking a piece of code 
proceeds through the following loop [5, 10, 28]: 

Step i ("abstraction") A finite set of predicates is chosen, 
and an abstract model of the given program is built au- 
tomatically as a finite or push-down automaton whose 
states represent truth assignments for the chosen pred- 
icates. 

Step 2 ("verification") The abstract model is checked au- 
tomatically for the desired property. If the abstract 
model is error-free, then so is the original program (re- 
turn "program correct"); otherwise, an abstract eoun- 
terexample is produced automatically which demon- 
strates how the model violates the property. 

Step 3 ("counterexample-driven refinement") It is checked 
automatically if the abstract eounterexample corre- 
sponds to a concrete eounterexample in the original 
program. If so, then a program error has been found 
(return "program incorrect"); otherwise, the chosen 
set of predicates does not contain enough information 
for proving program correctness and new predicates 
must be added. The selection of such predicates is au- 
tomated, or at least guided, by the failure to concretize 
the abstract counterexample [i0]. 

G o t o  Step i .  

The problem with this approach is of course that both Step 1 
and Step 2 are eomputationally hard problems, and with- 
out additional optimizations, the method does not scale to 
large systems. We believe that in order to evaluate the full 
promise of this approach, the loop from abstraction to ver- 
ification to refinement should be short-circuited. We show 
that all three steps can be integrated tightly through a con- 
cept we call "lazy abstraction," and that this integration 
can offer significant advantages in performance, by avoiding 
the repetition of work from one iteration of the loop to the 
next. 

Intuitively, lazy abstraction proceeds as follows. In Step 3, 
call the abstract state in which the abstract eounterexam- 
ple fails to have a concrete counterpart, the pivot state. The 
pivot state suggests which predicates should be used to refine 
the abstract model. However, instead of building an entire 
new abstract model, we refine the current abstract model 
"from the pivot state on." Since the abstract model may 
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contain loops, such refinement on demand may, of course, 
refine parts of the abstract model that  have already been 
constructed, but it will do so only if necessary; that  is, if 
the desired property can be verified without revisiting some 
parts of the abstract model, then our algorithm succeeds in 
doing so. The algorithm integrates all three steps by con- 
strueting and verifying and refining on-the-fly an abstract 
model of the program, until  either the desired property is 
established or a concrete eounterexample is found. Upon 
termination with the outcome "program correct," the proof 
is not an abstract model on a global set of predicates, but an 
abstract model whose predicates change from state to state. 

Thus, lazy abstraction combats the computational diffi- 
eulties of Steps i and 2 in the following way. Abstraction 
is done on-the-fly, and only up to the precision necessary to 
rule out spurious eounterexamples. On-the-fly construction 
of an abstract transition system eliminates an often waste- 
ful and expensive model-construction phase; model checking 
only the "current" portion of the abstract transition system 
saves the cost of unnecessary exploration in parts of the state 
space that  are already known to be free of errors. It is easy 
to envision extreme eases in which our algorithm achieves 
large savings. Suppose, for example, that the program flow 
graph makes an initial choice between two unconnected sub- 
graphs. Then, once one of the subgraphs has been verified 
with a given set of abstract predicates, it does not need to be 
revisited even if the other subgraph requires additional pred- 
ieates. While the typical savings of lazy abstraction may be 
less extreme, they can be significantly more subtle, in ways 
that cannot be easily recreated by manual intervention. 

Lazy abstraction adds demand-driven path sensitivity to 
traditional dataflow analysis of programs. It is sound: the 
counterexample refinement phase rules out false positives. 
In case an error is found, the model checker also provides 
a eounterexample trace in the program showing how the 
property is violated. Automatic abstraction allows running 
the analysis directly on an implementation, rather than con- 
structing an abstract model that may or may not be a cor- 
rect abstraction of the system. By always maintaining the 
minimal necessary information to validate or invalidate the 
property, lazy abstraction scales to large systems without 
sacrificing precision; it eliminates unnecessary and expen- 
sive computations that take place in a naive implementation 
of the abstract-check-refine loop. 

In Section 2, we illustrate the algorithm on a small ex- 
ample. While lazy abstraction is a generic technique that 
works on any modeling paradigm, we provide examples from 
the automatic verification of C programs. In Section 3, we 
present the formal framework of predicate abstraction using 
labeled transition systems and symbolic representations en- 
riched by so-called precision measures, which order the pre- 
cision with which an abstract state approximates a given set 
of concrete states. In Section 4, we present the algorithm of 
lazy abstraction for safety checking. The simplest and most 
important class of program properties, safety properties are 
correctness properties that  can be specified by a set of er- 
ror states, either of the program (such as deadlock states) 
or of a monitor automaton (which may, for example, report 
an error if a file is accessed without having been opened). 
Lazy abstraction for other properties is deferred to future 
work. In Section 5, we show how the general framework can 
be instantiated to automatically verify safety properties of 
C programs. In Section 6, we describe BLAST (the Berke- 

ley Lazy Abstraction Software verification Toolkit), which 
implements the lazy abstraction algorithm for C programs, 
and we provide some initial experimental evidence that the 
algorithm does indeed scale to real systems code. 

The final Section 7 presents two theoretical results re- 
lated to lazy abstraction. The main question of interest is, 
of course, given a theory of predicates (such as Presburger 
arithmetic), a C program, and a correctness property, if 
there is a finite set of predicates that contains enough infor- 
mation for verifying the program (i.e., if there is a predicate 
abstraction that is finite-state and witnesses the correctness 
property). We show this question to be, not surprisingly, un- 
decidable. It follows that  lazy abstraction (or any method) 
must be a semi-algorithm, which may or may not terminate. 
However, we show that  the lazy abstraction semi-algorithm 
terminates under a customary condition on the predicate 
theory (no infinite ascending chains of predicates) and an 
abstract condition on the program (finite trace equivalence), 
which has been established for many interesting classes of 
infinite-state systems (such as timed automata [2]). 

2. A L O C K I N G  E X A M P L E  

Example() { 
I: if (*){ 
7: do { 

got_lock = O; lock(){ 
8: if (*){ 
9: lock(); if (LOCK == 0){ 

LOCK = I; 
got_lock++; } } else { 

E R R O R  
I0: if (got_lock){ 
II: unlock(); } 

} } 
12: } while (*) 

} unlock(){ 
2: do { if (LOCK == I){ 

lock(); LOCK = O; 
old = new; } else { 

3: if (*){ ERROR 
4: unlock(); } 

new++; } 
} 

5: } while (new != old); 
6: unlock(); 

return; 

F i g u r e  1: C p r o g r a m  

We begin by showing how lazy abstraction works on C 
programs. The algorithm works in two phases. The first is 
the forward-search phase, where we build a tree that  rep- 
resents a portion of the reachable, abstract state space of 
the program. Each edge of the tree is labeled by a program 
fragment, such as a sequence of assignments or an assume 
predicate. Each node of the tree is labeled by a finite set 
of predicates, which determines the precision of the abstrac- 
tion, and a boolean combination of these predicates, which 
describes the state of the program assuming execution fol- 
lows the sequence of instructions labeling the edges from the 
root of the tree to the node. 

If we find that  an error state is reachable in the tree, 
then we go to the second phase, which checks if the error is 
real or results from our abstraction being too coarse (i.e., if 
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F i g u r e  2: C o n t r o l  f low a u t o m a t o n  

we lost too much information by restricting ourselves to a 
particular set of predicates). If the latter is true, we ask a 
theorem prover for additional predicates, such that  by using 
the new predicates we can rule out that  particular spurious 
counterexample (and maybe others as well). However, we 
add the new predicates only to those nodes in the search 
tree where they are required. 

Consider the program given in Figure 1. The functions 
lock  and unlock control some global variable called LOCK, 
which is i when the lock is held by the function Example, 
and 0 otherwise. We assume the precondition that  when 
the function Example starts, it does not hold the lock. The 
property we wish to check is that  (1) the function Example 
never calls lock  when it holds the lock, and (2) it never 
calls uzllock when it does not hold the lock. We have in- 
strumented the functions lock  and unlock so that  checking 
this property amounts to checking that  the ERROR labels 
are never reached in the code. 

2.1 Control flow automata for C programs 
We work with the control flow automaton (CFA) for the 

various C functions of interest. This is essentially the control 
flow graph [1], with instructions labeling the edges rather 
than the vertices. Intuitively, the automaton comprises: 
(1) variables: local and global variables that  the C func- 
tion uses, (2) vertices: control locations of the C function, 
and (3) labeled directed edges: connecting vertices. An edge 
is labeled either with a basic block of instructions that  are 
executed to move between the source and destination loca- 
tions of the edge, or with an assume predicate corresponding 
to the branch condition that  must be true for that  edge to 
be taken. 

Instead of a formal definition, we give in Figure 2 the CFA 
for the function Example shown in Figure i. The labels in the 
C program correspond to the automaton vertices with the 
same label. The edges labeled with boxes are basic blocks; 
those labeled with [.] correspond to assume predicates. The 
if (*) represents branches that are taken due to predicates 
that are not modeled; we assume that either direction can 
be taken, hence both outgoing edges are labeled with IT], 
which stands for the assume predicate true. 

2.2 Verification 

The model checking is done on the CFA shown in Figure 2. 
For simplicity, we assume that  the call to lock  and unlock 
are atomic operations: if lock  is called properly (i.e., with 
the lock not held), then it sets the value of LOCK to 1, other- 
wise it goes to ERROR; and similarly for unlock. F¥om the 
specification we know it is important whether or not the lock 
is held, hence we start by considering the two predicates 1 
LOCK = 1 and LOCK = 0. (This is not necessary: even if 
we start with the empty set of predicates, the algorithm dis- 
covers the above predicates via spurious counterexamples.) 

Forward search 

The first phase of the algorithm is the forward-search phase 
shown in Figure 3. The algorithm constructs in depth-first 
order a search tree whose nodes correspond to vertices of 
the CFA. The labels of the nodes are formulas, called reach- 
able regions, which represent what is known about the state 
of the program with respect to the set of predicates being 
considered, after executing the instructions from the root 
of the tree to the given node. Each reachable region is ob- 
tained from the reachable region of the parent node in the 
tree and the instructions on the edge between the parent 
and the node, by a local computation. We require that the 
reachable regions be overapproximations of the set of states 
actually reachable by executing the path from the root of the 
tree. Furthermore, for each node we have a finite set of pred- 
icates we consider (in our case, LOCK = 1 and LOCK = 0), 
and we require that the reachable region be described as a 
boolean combination of these predicates. 

We begin with the node that corresponds to location 1 
in the CFA. The only information we have at this point is 
the assumption (or precondition) that the lock is not held: 
LOCK = 0. The edge from 1 to 2 is a branch that can 
always be taken (labeled by [T]), hence at 2 also we know 
LOCK = 0. To go from 2 to 3, we call lock, and set old 
= new. As our predicates contain no information about the 
variables new and old, all we can conclude is that at 4, 
LOCK = i. Similarly going from 4 to 5 we model only 
what happens to LOCK, so due to the unlock, at 5 we know 
LOCK = 0. From 5 to 6 is a branch that can only be taken 
if new == old. We know nothing about new and old, hence 
they could be equal, and so we take the branch and again 
at 6, we have LOCK = 0, as nothing affects LOCK during 
that transition. At 6 we see that we call unlock with the 
lock not held (as LOCK = 0), and hence we reach an erroor 
node. 

Backwards counterexample analysis 

When we hit an error node in the search tree, we check 
if the path from the root to the error node is a genuine 
counterexample trace or results from the abstraction being 
too coarse. Figure 4 shows the result of this phase. In the 
figure, for each tree node, the formula in the curly braces, 
called the bad region, represents the set of states that  can 
go from the corresponding control location in the CFA to an 
error location by executing the instructions labeling the tree 
edges on the path from that  given node to the error node. In 
other words, the formula is the weakest precondition [16] of 
true with respect to the sequence of instructions labeling the 
path in the tree from the given node to the error node. It is 
easy to see that  the bad region of the error node is true, and 

1Predicates are written in italics, code in t y p e w r i t e r  font. 
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for all other nodes it is the weakest precondition of the bad 
region of a child with respect to the instructions labeling 
the edge between the two. As we go backwards from the 
error node, we wish to find the first node in the tree where 
the intersection of the bad region (of the node) with the 
reachable region (from the forward-search phase) becomes 
empty. We may then conclude that  it is not  possible to 
reach the error via the given trace. That  node becomes the 
pivo t  node, and we shall refine the abstraction from that  
node onwards. 

Consider the bad regions labeling the nodes in Figure 4. 
The states that  can call unlock from location 6 and thus 
end up hitting E R R O R  are exactly those where L O C K  = 

0, which therefore, is the bad region of 6. Similarly, the 
bad region of 5 is the weakest precondition of L O C K  = 0 

w.r.t, the assume predicate [new=old], which is L O C K  = 

0 A n e w  = old. If the latter condition is not true, then 
the branch cannot be taken, and if the former is not true, 
then in the successor state does not have L O C K  = 0. The 
bad region of 4 is the weakest precondition of L O C K  = 

0 A n e w  = old w.r.t, u~lockO ;new++, which is L O C K  = 

1 A n e w + l  = old. The first conjunct comes from the fact that  
the lock must be held when we call u~lock, so that  thereafter 
the lock is not held (otherwise we would hit E R R O R ) ;  the 
second from the fact that  we know that  after this n e w  = 

old. The bad region of 3 is the same as that  of 4, as the 
condition on the edge does not change the state. Finally 
the bad region of 2 is the weakest precondition of L O C K  = 

1 A  n e w +  l = old w.r.t, lock()  ;old=new, which is L O C K  = 

O A n e w + l  = new .  It is easily seen that the first point where 
the intersection of the bad region with the reachable region 
becomes empty (i .e. ,  the conjuction of the two formulas is 
unsatisfiable) is at node 2. So we conclude that none of 
the states in the reachable region of 2, computed during 
the forward search, can actually hit E R R O R  following the 
sequence of instructions corresponding to the path we just 
followed backwards. In fact, the path from the node labeled 
2 to the error node is the smallest infeasible suffix of the 
counterexample (which is the entire path from the root to 
the error node). Thus the node labeled 2 is the pivot node. 

To do the emptiness check at each point we ask a theorem 
prover if the formula corresponding to the conjunction of the 
two regions is satisfiable. Instead of computing the classi- 
cal weakest precondition, we compute weakest preconditions 
with explicit substitution, which gives us an equivalent for- 
mula for each of the bad regions; in particular, for 2 we get 
the bad region (3old ' .  old' = n e w  A ( 3 L O C K ' .  L O C K '  = 

O A ( 3 n e w ' .  new '  = n e w +  1 A  n e w '  = old' A L O C K '  = 

0)) A L O C K  = 1). By picking out the predicates that  ap- 
pear in the proof  o f  unsatis f iabi l i ty  of this formula, we learn 
that  the predicate n e w  = old is important (see Section 5 
for details). The reason we hit an error node is that the 
abstraction is too coarse, and by keeping track of the new 
predicate, we can rule out this path. We add the new pred- 
icate n e w  = old to the subtree generated from the pivot 
node, and we will refine the abstraction from the pivot node 
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onwards. 
If backwards analysis had gone back all the  way to  the  root  

wi thout  the  theorem prover repor t ing  unsatisf iabil i ty at  any 
point ,  then  we had found a real  error (and counterexample) .  

Search  wi th  n e w  pred ica te s  

We continue the  forward-search phase,  searching from the  
pivot  node onwards. This  t ime,  we track also the  predi- 
cate  new = old, and the  result ing search t ree can be seen 
in F igure  5. Not ice  tha t  we can s top the  search at the  
leaf labeled 2, as the  s tates  satisfying the  reachable re- 
gion L O C K  = 0 A new = old are a subset of those satisfying 
L O C K  = 0, hence any error found from this point  on would 
have been found by exploring from the  ancestor  labeled 2. 
We call such nodes, whose reachable regions are contained in 
the  reachable regions of ancestor  nodes in the  tree, covered. 
T h e y  correspond to fixed points,  and this is how loops are 
handled automatical ly.  Whenever  we see a covered node, we 
backtrack and search along some other  branch in depth-first  
order. 

Also, the  reachable region of the  leaf labeled 6 is empty,  
as tha t  node could be reached only if at 5 new equalled o ld ,  
but  in node 5, we know tha t  new ~k old (as this t ime  we 
are t racking the  relat ionship of new and old) .  Thus  we do 
not  search from tha t  node any more,  but  backtrack to the  
node labeled 8 and follow its other  branch.  Leaf  2 has the  
emp ty  reachable region, as tha t  branch is taken only when 
new is not  equal  to  old .  Moreover,  the  error node is not  
reachable from the  sibling labeled 6, because we know from 
the  reachable region tha t  the  lock is held when un lock  is 
called. Thus we conclude tha t  no error node is reachable in 
the  entire left subtree.  

In F igure  6 we search the  right subtree  of the  root  in 
a similar  fashion. We discover a spurious counterexample  
tha t  gives us the  predicate  got_lock = 0. Considering this 
addi t ional  predicate  is enough to  rule out  all error traces in 
the  right subtree.  Note  tha t  in the  right subtree  there  are 
leaves wi th  label 2, as control  always flows to tha t  point  in 
the  CFA. However they  are all covered by the  root  node of 
the  left subtree  (Figure 7), as the  reachable regions we com- 
pute  at  each of these leaf nodes is contained in the  reachable 
region of of the  root  of the  left subtree  (at all those nodes, 
the  lock is not  held). Hence, we need not  continue to  search 
any further ,  and conclude tha t  no error node is reachable.  

Sav ings  

We have achieved two savings. Firs t ,  each par t  of the  s ta te  
space is refined only as much as required; in par t icular  we 
have different abstract ions for the  two subtrees (see Fig- 
ure 8). Second, we explore only the  por t ion  of the  s ta te  
space tha t  is required in order to  prove correctness,  and do 
not  throw away the  work done earlier. For example,  when 
we hit  an error in the  right subtree,  we refine only tha t  par t  
of the  search tree, keeping intact  and using in the  proof  the  
left subtree,  as we a l ready know there  is no error in tha t  
par t  of the  s ta te  space. In the  following sections, we make 
this intui t ive a lgor i thm precise. 

3. A B S T R A C T  S Y M B O L I C  T R A N S I T I O N  
S Y S T E M S  

3.1 S y m b o l i c  a b s t r a c t i o n  s t r u c t u r e s  

A labeled transition system (LTS) ,5 = (S, E,--+) consists 
of a (possibly infinite) set S of states, a finite set E of labels, 
and a labeled transition relation --+ C S × E x S. A t ransi t ion 
(s, l, J )  C --+ is wr i t ten  s -~ J .  The  relat ion --+ is ex tended 
to  E* as follows: s-L~s ' iff s = J ,  and s Z G J  iff there  exists 
a s ta te  s"  such tha t  s -ks"  and s"-E-~#. We wri te  s--G# if 
there  exists a finite sequence ~r C E* of labels such tha t  
s- - Is .  For a set So C S of states,  we define the  reachable 
set as Reach~(S0) = {s C S I 3s0 C So. so ~ s}. 

Symbolic  a lgor i thms on labeled t rans i t ion  systems ma- 
n ipula te  regions, where each region represents a set of 
states.  Following the  framework of symbolic  t ransi t ion 
systems [18, 22], we define a (symbolic) region structure 
(R, ± ,  U, M,pre,post, I'D for the  labeled t rans i t ion  system ,5 
to  consist of a set R of regions, an element  ± of R, two to ta l  
functions U, M: R x R --+ R, two to ta l  functions pre,post: 
R x E --+ R,  and a to ta l  extension funct ion N :  R --+ 2 S, 
such tha t  for all regions r, r '  E R and every label l C E, we 
have: 

[±]  = 0 (1) 

~r U r ' ]  = IM U I[r'~ (:~) 

~r n r'] = IM n I[r'~ (S) 

~ ¢ ( r ,  O] = {s' e S 13 s e x .  s' 4 s} (4) 

b,ost(r, t)] = {s' e S 13 s e x .  s 4 s'} (5) 

The  intent ion is t ha t  the  region r represents the  set ~r] of 
states.  A region s t ruc ture  carries wi th  it a na tura l  preorder  
(i.e., a reflexive and t rans i t ive  relation) _G_ defined by r _G_ r '  
if [r] C If'I, and a na tura l  equivalence _= defined by r --= r '  
iff [r] = [r ' ] .  The  region s t ruc ture  is computable if the  
functions U, M, pre, post, and _E are computable .  

EXAMPLE 1: Region s t ructures  for models of computa t ion  
such as counter  a u t o m a t a  (resp. F I F O  au tomata ,  t imed  au- 
t oma ta )  can be  designed based on Presburger  formulas [8] 
(resp. various classes of regular expressions [7, 9, 18], clock 
zones [2]). [] 

We do not  require the  preorder  _E to be a par t ia l  order (i.e., 
to  be ant i symmetr ic) .  Indeed,  in predicate  abstract ion,  we 
will design region s t ructures  wi th  m a n y  dis t inct  equivalent  
regions. Similarly, we do not  require t ha t  the  functions U 
and M be associat ive or commuta t ive .  This  more  general  
set t ing allows us to accommoda te  abs t rac t ion wi th in  the  
framework of region structures.  However,  for any finite set 
X of states,  the  operat ions  UX and MX under  any order of 
evaluat ion produce regions tha t  are equivalent  wi th  respect 
to  --=, and so there  is no ambiguity.  

We now in t roduce  overapproximate  versions post and 
pr-"Ed of the  exact  successor and predecessor operators  pos t  
and pre  on regions. A (symbolic) abstraction structure 
.A = (hg, p ~ s t , ~ d ,  .9_) for a labeled t rans i t ion  sys tem ,5 = 
(S, ~,--+) consists of a computab le  region s t ruc ture  7¢ = 
(R, ±,  U, M,pre,post, {'D for ,5 together  wi th  a precision pre- 
order <a C R x R, and two computab le  to ta l  functions 
~ s } , ~ :  R x G --+ R such tha t  for all regions r C R and 
every label l C G, 

post(r, l) E_ ~ ( r ,  l), (6) 

p~(r ,  t) ___ ~ ( r ,  t), (r) 

and ~ and ~ are monotonic  wi th  respect  to the  preorder  
(_< n ___); that is, if r _< r' and r _ r', then both p-Tg, t(r, t) _< 
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p"~st(r, l) and ~ ( r ,  l) E p~st(r, l), and analogously for ~e;.  
The novelty of this definition lies in the fact that  regions 

carry precision information, which indicates how close the 
overapproximate operators post and ~ are to the exact 
operators post and pre. In particular, for two --=-equivalent 
regions r and r ' ,  if r ..9_ r ' ,  then post(r, l) -= post ( / ,  l) _E 
p'~-fst(r, [) E p'~-fst(r', [); tha t  is, p'~-fst(r, [) is a more precise 
overapproximation of the successor set than ~s t ( r ' ,  l). The 
precision preorder permits  us to perform both the concrete 
operations of a labeled transit ion system $ and abstract  in- 
terpretat ion of $ within a single region structure. A region 
r is no longer interpreted as simply a description of the con- 
crete state  set ~r] of ,5, but  as a description of an abstract 
state  set, for some abstract  s tate space, whose eoncretiza- 
tion is [r]. If r _9_ r', then the abstract  s tate space in which r 
is interpreted is more precise than the abstract  s ta te  space 
of r ' .  

The functions pre, post, ~e;,  and ~ are extended to 
R × ~* in the obvious way. 

3.2 Predicate abstraction 
Consider a labeled transit ion system ,5 = (S, ~,--+). A 

prredicate language l~ for ,5 is a set of predicates tha t  are 
interpreted over the states in S (i.e., each predicate p E/~ 
denotes a set ~p] C S of states),  such that  the following two 
conditions are satisfied. (1) The boolean closure of /~ is a 
decidable theory (i.e., satisfiability is decidable). (2) The 
boolean closure of £ is effectively closed under exact suc- 
cessor and predecessor operations in ,5; that  is, for every 
formula g, in the boolean closure of £ and every label l C ~,  
we can compute two boolean combinations Wf "¢ and Wf °*t 
of predicates from £ such that  

~"~1  = {s' e S ] 3 s e H . s '  ~ s}, (8) 

~ ° ~ ]  = {s' e s 13 s e H .  s ~ s ' ) .  (9) 

Following the predicate-abstraction framework [20], we 
define an abstract ion structure An = (hg, p~st, p~_d, .9_) for 
,5 and £ as follows: 

• Let 5g. = (R,_L, tJ, N,pre,post, N) .  The regions in R 
are the pairs (w,F), where F C /~ is a finite set of 
support prredicates, and W is a boolean formula over 
the predicates in F. The region (false, 0) represents .L. 
The operators tJ and V] are defined by (W, F)LJ(W', F ' )  = 
(wvw', ro t ' )  and (W, r)n(w', r') =(wAw', rot ' ) .  Let 

~,~r¢ F'~ where F'  pre((w,F),I) = ,y~ , e, is the least super- 
set of F that  contains all predicates in ~ ' ~ .  The region 
post(w , F) is defined similarly. Finally, [(W, F)] = [W] 
straightforwardly interprets the boolean formula W as 
a subset of S; tha t  is, ~(W, r ) ]  consists of all states 
s C S tha t  satisfy the constraint W. 

• For a region (W, F) and a label l C ~,  we construct the 
overapproximation p"o'Tst((W, F), l) of post((w, F), l) as a 
boolean combination of the predicates in F. We fix a 
canonical sum-of-product form for formulas. We ask, 
for each disjunet g, of the canonical sum-of-product 
form of W, and each support  predicate p C F, if g, 
implies We(p, l), and if g, implies pre(-~p,l). This 
gives, for each disjunet ~ of W, a conjunction V)' of 
support  predicates, where the predicate p occurs pos- 
itively if ~ ~ We(p, l) is valid, occurs negatively if 
~b ~ pre(-~p, l) is valid, and does not occur if neither 

validity holds. Let W' denote the disjunction of all con- 
junctions g / s o  constructed. The region ~ t ( ( w ,  F), l) 
is the formula W' together with the same set of support  
predicates, i.e., post((w, F), l) = (W', F). The abstract  
predecessor ~ is computed similarly, using post in 
place of pre. 

• The precision preorder is the containment relation on 
support predicates: (W, F) ~ (W', F') iff F D F'. 

Since/~ is a predicate language for ,5, the preorder _E on re- 
gions is computable.  Moreover, from the definitions of post  
and ~ it is clear tha t  they can be computed effectively. 
Also, they are overapproximations of post and pre, respec- 
tively, and monotonic with respect to the preorder (.9_ n E). 

Intuitively, the support  predicates determine the current 
abstract  s ta te  space, and the formula over the support  predi- 
cates represents an abstract  set of states. The support  pred- 
icates indicate which predicates are important ,  i.e., which 
predicates can be tracked by the abstract  operations post  
and ~_e;. Note  tha t  the precision preorder .9_ and proper- 
ties of post  and ~ do not require all support  predicates 
to be tracked. In particular,  p"~'Tst(r, l) is not the smallest 
set containing post(r, l) expressible in terms of the support  
predicates - - indeed,  we lose information in constructing a 
Cartesian abstraction [4, 20]. Alternatively, we could con- 
struct the most precise overapproximation of post using a 
reeursive subdivision of the s ta te  space [12], spli t t ing on the 
support  predicates. 

While the abstract  operations pos''-t and ~ do not change 
the support  predicates, the concrete operations pre  and post  
may require the introduction of addit ional support  predi- 
cates. These operations will be used to refine the current 
abstract ion of the state space. 

4. SYMBOLIC REACHABILITY WITH RE- 
FINEMENT 

We present two algorithms for computing overapproxima- 
tions of the reachable state space of a labeled transition sys- 
tem. The first algorithm is nondeterministie. The second 
algorithm, which is the lazy abstraction algorithm, resolves 
the nondeterminism in the first one to ensure that the over- 
approximation does not contain any error states, if in fact 
no error state is reachable in the system. These algorithms 
do not terminate in general (so we should call them "semi- 
algorithms," but we keep the term algorithm for simplicity). 
Sufficient conditions ensuring termination will be discussed 
in Section 77.1. 

4.1 Reachability with refinement 
The first algorithm we present is the SymbReachRefine al- 

gorithm (Algorithm 1). This is a s tandard symbolic forward- 
search algorithm, but  with two extra  features: (1) the abil i ty 
to refine some path  in the tree under construction (in order 
to compute a more precise abstract ion of some par t  of the 
system), and (2) the abil i ty to drop a subtree of the tree 
under construction (in order to reeompute the subtree with 
more precision). Specifically, at each i teration of the algo- 
ri thm, a nondeterministie choice is made: either some path  
in the tree is refined (lines 4-10), or some subtree is removed 
(lines 12-17), or the forward search goes on (lines 19-28). 
The choose() function used at  lines 3 and 11 models the 
nondeterministie choice. The algorithm uses the abstract ,  
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o v e r a p p r o x i m a t e  forward  ope ra to r  post; one  can  dua l ly  de- 
fine a backward- sea rch  a l g o r i t h m  based  on  p~e;. 

We  use  t h e  following no ta t ion .  By  reachability tree, or 
s imply  tree, we m e a n  a roo ted  d i rec ted  t ree  w i t h  labels  on  
b o t h  nodes  a n d  arcs. E a c h  node  is l abe led  by  a region,  t he  
reachable region, which  represen ts  a n  o v e r a p p r o x i m a t i o n  of 
t he  s t a t e s  t h a t  are r eachab le  a long t he  p a t h  f rom t h e  root  to  
t he  node.  We  wr i te  n : r for node  n w i th  r eachab le  region r .  
E a c h  arc  is l abe led  by  a labe l  of t h e  labe led  t r a n s i t i o n  sys t em 
be ing  analyzed.  For a n  arc  n : r _L~ n '  : r ' ,  we say t h a t  node  
n '  is an  l-son of node  n. A leaf  is a node  w i t h o u t / - s o n s ,  for 
any  label  l. 

A classical  symbol ic  forward-search  a l g o r i t h m  c o m p u t e s  
a r eachab i l i ty  t r ee  s t a r t i n g  f rom a n  in i t ia l  region r0. T h e  
a l g o r i t h m  m a i n t a i n s  a workl is t  of nodes  to  be  explored,  a n d  
i t e ra t ive ly  processes  nodes  un t i l  t h e  workl is t  becomes  empty.  
To process  a node  f rom t he  workl is t ,  we remove  i t  f rom the  
list a n d  check w h e t h e r  t he  node ' s  r eachab le  region is cov- 
ered  by  t he  a l r eady  explored  s t a t e  space. If  i t  is no t  cov- 
ered,  t.~hen for each label  l, t h e / - s o n s  are  c o n s t r u c t e d  us ing  
t he  post o p e r a t i o n  a n d  added  to  t he  worklis t .  If t he  node  is 
covered,  t h e n  t h e  search  is r e s um ed  by  process ing  a n o t h e r  
node  f rom t h e  worklis t ;  in th i s  case, we need  no t  c o m p u t e  
t he  successors of t h e  node ,  because  t h e y  are  processed  else- 
where.  W h e n  t h e  a l g o r i t h m  stops,  i t  has  c o m p u t e d  a region 
- - t h e  un ion  of r eachab le  regions for all n o d e s - -  which  is a n  
o v e r a p p r o x i m a t i o n  of t h e  s t a t e s  r eachab le  f rom t he  in i t ia l  
region r0. 

Due  to  t h e  ex t r a  fea tures  of our  a lgor i thm,  we a t t a c h  a 
m a r k i n g  to  each  node.  At  any  t ime,  a node  of t he  t ree  
c o m p u t e d  by  t h e  SymbReachRefine a l g o r i t h m  is e i the r  

• unmarked, m e a n i n g  t h a t  i t  has  been  discovered b u t  no t  
processed,  or 

• marked and covered, m e a n i n g  t h a t  i t  has  b e e n  pro- 
cessed a n d  found  to  b e  covered (i.e., i t  d id  no t  add  
any  new s t a t e s  to  t h e  un ion  of r eachab le  regions a t  
t h e  t i m e  of m a r k i n g ) ,  so t h e r e  is no  need  to  c o m p u t e  
i ts  successors,  or 

• marked and uncovered, m e a n i n g  t h a t  i t  has  b e e n  pro- 
cessed a n d  its r eachab le  region is no t  con t a ined  in t he  
u n i o n  of r eachab le  regions for t h e  o the r  nodes ,  so i ts 
successors m u s t  be  computed .  

Nodes  m a y  change  t ype  d u r i n g  t h e  c o n s t r u c t i o n  of t h e  t ree:  
u n m a r k e d  nodes  m a y  b e c o m e  marked ,  a n d  m a r k e d  nodes  
m a y  b e c o m e  u n m a r k e d .  Eve ry  m a r k e d  node  carr ies  a time 
stamp i nd i ca t i ng  t h e  t i m e  w h e n  t h e  node  was m a r k e d  last;  
t hese  t i m e  s t a m p s  l inear ly  order  all m a r k e d  nodes  in t he  
tree.  

T h e  goal  of th i s  generic  symbol ic  r eachab i l i ty  a l g o r i t h m  
is to  po in t  ou t  sufficient condi t ions  for correctness .  Indeed,  
once  th i s  a l g o r i t h m  is p roved  correct ,  any  more  de ta i l ed  im- 
p l e m e n t a t i o n  (e.g., rep lac ing  t h e  n o n d e t e r m i n i s t i c  choose ( )  
func t ion  by  some de t e rmin i s t i c  c o m p u t a t i o n  of t h e  p a t h  to  
refine) m u s t  necessar i ly  be  correct .  T h e  cor rec tness  of t he  
SymbReachRefine a l g o r i t h m  is expressed  by  t h e  following 
theo rem.  No te  t h a t  t he  cor rec tness  does no t  d e p e n d  on  t he  
order  in  which  t h e  s t a t e  space is explored  (e.g., dep th - f i r s t  
or b read th- f i r s t ) .  

THEOREM 1. [ C o r r e c t n e s s ]  Let .,4 be an abstraction 
structure for a labeled transition system $.  For every initial 

A l g o r i t h m  1 SymbReachRefine(A,  r0) 

R e q u i r e :  a region structure T¢ = (R, ±,tA, N, pre, post, [.]), an 
abstract ion structure A = (Tg, p~st,~F~, ~) ,  and an initial 
region r0 C .R. 

1: create root r labeled with r0 
2: w h i l e  there are unmarked nodes d o  
3: i f  choose() t h e n  
4: {some path  is refined} 
5: pick a path  a : r  --f+ a r : r  r with ~r C E* 
6: let w be any region such that  w ~ r and w z r 
7: for  e a c h  node m:u along the path a : r  -if+ 11 r : r  r d o  
8: relabel m by p~st(w, ~r r) where ~r r is the prefix of ~r such 

( r  t 

tha t  n : r  ---+ m:u 
9: for  e a c h  covered marked leaf m tha t  was marked after n 

was marked d o  
10: unmark m {to guarantee correctness} 
11: e lse  i f  choose() t h e n  
12: {some subtree is removed} 
13: pick a marked node rL 
14: remove the subtrees start ing at  the sons of 
15: for  e a c h  covered marked leaf m tha t  was marked after 

rL was marked d o  
16: unmark m {to guarantee correctness} 
17: unmark rL 
18: e l s e  
19: {the reachability search goes on} 
20: pick an unmarked node n : r  
21: i f  r E kJ {u [m:g is an uncovered marked node} t h e n  
22: mark n as covered {Reaehs(~r]) is processed 

elsewhere} 
23: e l s e  
24: for  e a c h  label 1 C E do  
25: r '  ~- figgt(r, l) 
26: i f  r '  ~ ± t h e n  

27: construct a son 11 r : r r of a and label the arc a ~ 11 r 
{a' is an / - son  of 11} 

28: mark n as uncovered 
29: r e t u r n  the region U {u I m:u is an uncovered marked node} 

region ro, and every terminating execution of the algorithm 
SymbReachRefine(,A, ro), we have 

Reachs(~roD C [[SymbReachRefine(,A, ro)]. 

4.2 Counterexamp|e-driven refinement 
In  a n  a c t u a l  i m p l e m e n t a t i o n ,  t he  n o n d e t e r m i n i s t i c  choice 

func t ion  for r e f inement  is rep laced  by  a func t ion  t h a t  de- 
pends  on  a b s t r a c t  c o u n t e r e x a m p l e  t races .  As long as t he  
r eachab le  regions have  a n  e m p t y  in te r sec t ion  w i t h  a specified 
error  region,  t h e  symbol ic  reachab i l i ty  a l g o r i t h m  w i t h  error-  
d r iven  re f inement  behaves  like a usua l  symbol ic  forward-  
search a l g o r i t h m  (i.e., t h e  a l g o r i t h m  o b t a i n e d  by  removing  
lines 3-18  f rom A l g o r i t h m  1). However,  w h e n  we discover 
a node  whose  reachab le  region con ta ins  an  er ror  s t a te ,  a n d  
t h e  p a t h  of t h e  ( abs t r ac t )  r eachab i l i ty  t r ee  f rom t h e  roo t  
to  t h e  node  is no t  a feasible p a t h  in t h e  (concrete)  labe led  
t r a n s i t i o n  sys tem,  t h e n  we refine t h a t  pa th .  Th i s  is m a d e  
precise in  t h e  a l g o r i t h m  kazyAbstract ion ( A l g o r i t h m  2). 

W h e n  t h e  a l g o r i t h m  processes  a node  n whose  reachab le  
region has  a n o n e m p t y  in te r sec t ion  w i t h  t he  error  region 
(l ine 4), i t  checks if th i s  is a n  a c t u a l  error .  For each node  
a long t h e  p a t h  f rom t h e  roo t  to  n, let  t h e  bad path of t he  
node  be  t h e  p a t h  in t he  t ree  f rom t h e  node  to  n, a n d  let  t he  
node ' s  bad region be  t he  predecessor  of t he  er ror  region w i t h  
respec t  to  t he  sequence  of ope ra t ions  labe l ing  i ts  b a d  pa th .  
T h e  a l g o r i t h m  checks for every  ances to r  node  of n if t he  
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reachable region of the ancestor has a nonempty intersection 
with the ancestor's bad region. This happens in line 5, where 
we find the oldest ancestor with a nonempty intersection. If 
the oldest ancestor is the root of the tree, then we have 
found a genuine error trace and the algorithm stops (lines 
6, 77). If not, then the error trace is spurious. The parent 
(node n" in line 9) of the oldest ancestor with a nonempty 
intersection is the first node (going up the tree) with an 
empty  intersection, and is the  pivot node. It  is not  possible 
to reach the  error node via the  pa th  in the  t ree from the  
root  to  n, because the  reachable region of the  pivot  node is 
an overapproximat ion  of the  set of s tates t ha t  the  system 
can be  in following the  labels from the  root  to the  pivot,  
and as the  intersect ion of the  pivot ' s  reachable region wi th  
its bad  region is empty,  none of the  s tates  tha t  are ac tual ly  
reached at the pivot can lead via the bad path into the error 
region. Hence, the abstraction must be refined to eliminate 
this trace (lines 8-18). 

The algorithm refines the search from the pivot node on. 
If it is wor th  keeping the  whole subtree  of the  pivot  node 
(which is de te rmined  by the  keep_sub t r ee  heuristic),  then  
it refines the  pa th  from the  pivot  node to  the  current ly  pro- 
cessed node n (lines 13, 14); otherwise it removes the  entire 
subtree  roo ted  at the  pivot  node and unmarks  the  pivot  node 
(line 16). Any  node tha t  was marked covered after the  pivot  
node is now uncovered, and the  search continues (line 17). 
The  keep_sub t r ee  funct ion determines  whether  the  subtree  
roo ted  at  the  pivot  node is discarded in the  refinement pro- 
cess. It  does not  affect correctness,  but  may  affect te rmina-  
tion. For efficiency, we want  to  keep as much compu ta t ion  
as possible (to avoid repeat ing  the  same work), and hence 
we would like to keep subtrees. But  there  may  be coarse 
nodes in the  subtrees tha t  can cause the  a lgor i thm to go 
into infinite "refinement loops." The  use of a keep_sub t r ee  
funct ion allows us to exper iment  wi th  different strategies. 

[ ~= 0] 

T r u e  I 

O] 

(a) (b) (c) (d) 

F i g u r e  9: R e f i n e m e n t  l o o p s  

EXAMPLE 2: Consider the  CFA given in F igure  9(a). The  
result  of the  first forward-search phase is given in (b). The  
second node labeled 2 is covered by its parent .  Along the  
other  branch the  search hits  an  error node. Figure  (c) shows 
how the  error pa th  is refined, by adding the  predicate  x = 0: 
at  the  parent  2 node,  the  reachable region is now x = 0, so 
the  branch to  the  error node is ruled out. The  child 2 node 
is now no longer covered, so it is unmarked  and the  search 
resumes from tha t  node. In (d) we see tha t  the  search results 
in exact ly  the  same subtree  we had in (b), hence, the  refine- 
search process will repeat  forever. If, instead, we delete the  
entire subtree  below the  pivot  node (i.e., the  node labeled 

i), unmark the pivot node, and start over searching with 
the new predicate x = 0 from the pivot node onwards, then 
the algorithm terminates. [] 

Note that we explore the state space forward, and anal- 
yse counterexample~backward. Hence we use the abstract, 
overapproximate post operator and the concrete, exact pro 
operator. One can dually define an algorithm that explores 
backward (using p~e;), and analyses counterexamples for- 
ward (using post).  

T h e  refinement step uses a focus operator, denoted ~.  In- 
tuit ively,  a focus opera tor  is needed when we have a region 
r t ha t  cannot  reach an error region $ in the  labeled transi-  
t ion sys tem along some pa th  labeled ~r, but  r is not  precise 
enough, and we hit  the  error region in the  abs t rac t  forward 
search. We want  ~( r ,  ~r, $) to  re turn  a region equivalent  to 
r,  but  precise enough to  rule out  the  the  spurious error t race 
~r. Formally,  a focus opera tor  • for an abs t rac t ion  s t ructure  
,,4 wi th  region set R is a funct ion ~:  R × E* × R ~ R such 
tha t  for all regions r, $ C R and all ~r C E*, 

- ¢ ( r , ~ , $ )  _= r and ¢ ( r , ~ , $ )  _< r, and 

- if pr~(C, ~) n r _= ± ,  then b ~ ( ¢ ( r ,  ~, C), ~) n c _= ± .  

The  second condi t ion is not  necessary for correctness of the  
a lgor i thm LazyAbstraction, but  it will allow us to obta in  a 
t e rmina t ion  cr i ter ion in Section 7.1. In predicate  abstrac-  
tion, a focus opera tor  typical ly  adds suppor t  predicates in 
order to  avoid spurious error traces,  but  leaves the  boolean 
formula character izing the  reachable region unchanged.  As 
the  suppor t  predicates are added locally, as a result ,  a t  any 
t ime  there  may  be regions in the  reachabi l i ty  t ree  wi th  dif- 
ferent suppor t  predicates.  In this way suppor t  predicates 
can be used to locally refine the  s ta te  space during search. 

T h e  correctness of the  kazyAbstraction a lgor i thm,  which 
again does not  depend on the  order in which the  s ta te  space 
is explored, is expressed by the  following theorem. 

THEOREM 2. [ C o r r e c t n e s s ]  Let  A be an abstraction 
structure for  a labeled transition system $ ,  and let ~2 
be a focus operator for  A .  For every initial region 
ro, error region $, and every terminating execution of  
kazyAbstraction(A, ~ ,  r0, $) ,  we have: 

(i) I f  kazyAbstraction(A, ~ ,  r0, $)  returns an error trace ~r , 
then there exist two states s C ~r0] and s' C H such 
that sZ+s r. 

(ii) Otherwise, kazyAbstraction(A, ~2, ro, $) returns a re- 
aion r that  satisJ~es both Reach~(~r0]) C ~r] and 
~rl n ~CI = O. 

We ment ion  two opt imizat ions  of Algor i thm 2. Firs t ,  if 
nodes are processed in depth-first  search order (i.e., we al- 
ways pick an unmarked  node among  those of higher dep th  
on line 3), then  for every ancestor  n of the  latest  marked 
node, the  marked  nodes in the  subtree  of n are precisely the  
nodes tha t  were processed after n was marked.  Hence the  
for - loop  of lines 17-18 can be l imited to  the  leaves in the  
subtree  of n. Second, in order to implement  efficiently the  
covering test  of line 19, we use a variable c to collect the  
union of reachable regions of uncovered marked  nodes as we 
go along. We can then  replace the  covering tes t  of line 19 
by the  tes t  r _E c, and the  re turn  s t a t ement  of line 27 by 
r e t u r n  c. To upda te  c, we add the  s t a t ement  c +- c U r 
after line 26, and we recompute  c after line 18. 
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A l g o r i t h m  2 LazyAbstraction(A,,P, r0,$) 
R e q u i r e :  a region structure T¢ = ( R, ±,  U, N, pre, post, [.]), an 

abstract ion structure ,,4 = (77~,p~st,p~, ~) ,  a focus operator 
,I~ for ,,4, an initial region r0 C R, and an error region g C R. 

1: create root r labeled with r0 
2: w h i l e  there are unmarked nodes d o  
3: pick an unmarked node n : r  
4: i f  r N g ~ ± t h e n  
5: let n r : r r ~ n : r be the oldest ancestor of n with 

pre(g, or) N r r ~ ± 
6: i f  n r is the root t h e n  
7: r e t u r n  the "error trace" ~r 
8: e l s e  
9: let n rr : r  rr ~ n r : r  r be the father o f n  r {n rr : r  rr satisfies 

pre(g,  hr) N r rr z ±}  
10: let v denote the t ime s tamp of n rr 
11: relabe111 rr by w" = ' I ' ( r ' ,  hr, g) 
12: i f  keep_subtree(n rr) t h e n  
13: for  e a c h  node m:u along the path  n r : r  r Z+ n : r  d o  
14: re-label m by p~s t (w ' ,  hr r) where ~r r is the prefix 

(r r 
of ~r such tha t  n r :r r ---+ m:u 

15: e l s e  
16: remove the subtrees s tar t ing at  the sons of n rr and 

unmark n rr 
17: for  e a c h  covered marked leafm tha t  was marked after 

w do  
18: unmark m {to guarantee correctness} 
19: e lse  i f  r E LJ{u I m : u  is an uncovered marked node} 

t h e n  
20: mark n as covered {Reaehs([r D is processed elsewhere} 
21: e l s e  
22: for  e a c h  label 1 C ~ do  
23: r '  +- p~-~st(r, l) 
24: i f  r r ~ ± t h e n  

25: construct a son n r : r  r of n and label the arc n -~ n r 
{n r is an / - s on  of n} 

26: mark n as uncovered 
27: r e t u r n  the region LJ {u I m:u is an uncovered marked node} 

5. LAZY ABSTRACTION FOR C 
We now consider  how t he  a l g o r i t h m  of t he  prev ious  sec t ion  

can  be  appl ied  to  t he  ver i f ica t ion of C p rograms .  In  order  to  
do th is ,  we m u s t  define (1) a labe led  t r a n s i t i o n  s y s t e m  for a 
g iven C p rog ram,  (2) a region s t r u c t u r e  a n d  an  a b s t r a c t i o n  
s t r u c t u r e  for t he  labe led  t r a n s i t i o n  sys tem,  a n d  (3) a focus 
opera to r .  

5.1 From C to labeled transition systems 
In t h e  sequel,  we assume  for convenience  a n d  w i t h o u t  loss 

of genera l i ty  t h a t  t h e  express ions  of C p r o g r a m s  ( and  hence  
t he  edge labels  of CFAs)  sa t i s fy  t h e  following condi t ions :  
(1) all  express ions  are  free of side-effects a n d  of shor t -c i rcu i t  
eva lua t ion ,  a n d  do  no t  con ta in  mul t ip le  dereferenees of a 
po in t e r  (e.g., **p); (2) a func t ion  call  occurs  on ly  a t  t he  
t o p - m o s t  level of a n  express ion  (for example ,  "z=x+f ( y ) ; "  
is rep laced  by  " t = f  (y)  ; z=x+t  ;" ) .  

Cons ider  a C p r o g r a m  t h a t  consis ts  of a set  F of func t ions  
over a set  X of variables.  For each func t ion  f C F ,  let  
( V / , E / )  b e  t he  ver t ices  a n d  edges of t h e  CFA for f (recall  
Sect ion 2.1), a n d  let  V = U / o F  Vf a n d  E = U / c F E / .  We 
define a labe led  t r a n s i t i o n  s y s t e m  (S, ~ ,  -+) as follows. T h e  
s t a t e s  in  S a re  t h e  t r ip les  (ps, v, ss), where  pc C V is t he  
"p rog ram counter , "  v is a va lua t i on  of t h e  set  X of p r o g r a m  
var iables ,  a n d  cs C V* is t he  func t ion  call  stack.  T h e  set  
of labels  is E .  T h e n ,  a t r a n s i t i o n  (pc, v, cs) ~ (pc' ,  v ' ,  cs ' )  is 

one of t he  following: 

. If  e is a n  a s sume  pred ica te ,  t h e n  e is t r u e  a t  t h e  valua-  
t ion  v, a n d  pc '  is t h e  e-successor of pc  a n d  v '  = v a n d  
e J  ~ e S .  

o If e is a bas ic  block co r r e spond ing  to  a func t ion  call, 
t h e n  pc r is t he  s t a r t  loca t ion  of t h e  func t ion  be ing  
called,  v '  = v, a n d  ss' = ps.ss. 

o If e is a bas ic  block corresponding to  a func t ion  r e tu rn ,  
a n d  ss = ps" .ss" ,  t h e n  pcr is t h e  (unique)  successor  of 
p e r r  a n d  v r = v a n d  e 8  r = e 8  rr .  

o For  all  o the r  bas ic  blocks e, we have  t h a t  pc r is t he  
e-successor of pc, a n d  v r resul t s  f rom v by  execu t ing  e, 
a n d  ss r = ss. 

5.2 A symbolic abstraction structure for C 
We use t h e  p r e d i c a t e - a b s t r a c t i o n  f r amework  desc r ibed  

in Sect ion 3.2. Our  p red ica t e  l anguage  /2 con ta ins  t he  
quant i f ier - f ree  formulas  of t h e  t h e o r y  of equa l i ty  w i t h  un-  
i n t e r p r e t e d  func t ions  a n d  of t he  t h e o r y  of in tegers  w i t h  ad-  
di t ion.  T h e  c o m b i n a t i o n  of t he se  theor ies  ( toge the r  w i t h  
o thers  such as t h e  t h e o r y  of ar rays)  is decidable ,  a n d  effi- 
c ient  decis ion p rocedures  are avai lable  [26, 6]. Th i s  choice of 
p red ica t e  l anguage  m e a n s  t h a t  we can  ana lyze  exac t ly  only  
C p rog rams  whose  bas ic  d a t a  types  are  in tegers  a n d  po in t -  
ers, w i t h  t he  ope ra t ions  in teger  add i t ion ,  a r i t h m e t i c  com- 
par ison ,  a n d  po in t e r  equali ty.  In  t h e  sequel,  we a s sume  t h a t  
t h e  given C p r o g r a m  has  been  modif ied  so t h a t  any  C d a t a  
t y p e  or o p e r a t i o n  t h a t  we c a n n o t  mode l  in  our  p red ica te  lan-  
guage  (e.g., in teger  mul t ip l i ca t ion)  has  been  replaced  by  a n  
u n i n t e r p r e t e d  funct ion.  Th i s  modi f i ca t ion  is conservat ive:  a 
p a t h  in t h e  or ig ina l  p r o g r a m  is st i l l  a p a t h  in t he  modif ied  
p r o g r a m  (bu t  t h e r e  m a y  be  more  p a t h s  in  t he  modif ied  pro- 
gram, for instance, paths that depend on a particular prop- 
erty of the multiplication operator). For the device driver 
code we ana lyzed  (see Sect ion  6.2), t h e  p roper t i e s  of in ter -  
est  can  all  be  p roved  in th i s  way. For o the r  p rog rams  or 
p roper t i es ,  of course,  one  m a y  have  to  use  r icher  p red ica te  
languages .  

We  define t he  set  D of data regions t o  be  t h e  set of pai rs  
( ~ , F ) ,  where  ~ is a boo l ean  fo rmula  over p red ica tes  f rom 
F, a n d  F is a f ini te  subse t  o f /2 .  D a t a  regions mode l  t he  
d a t a  c o m p o n e n t  (i.e., t h e  va lua t ions  of t h e  var iables)  of 
s ta tes ;  t h e  o the r  c o m p o n e n t s  (i.e., t h e  p r o g r a m  conter  a n d  
t h e  func t ion  call  s tack)  are  mode led  explicitly. Specifically, 
a n  atomic region is a t r ip le  cons is t ing  of a con t ro l  loca- 
t ion ,  a d a t a  region,  a n d  a call  s tack.  For  every  a t o m i c  re- 
gion (pc, (~, F) ,  cs), we have  ~(pc, (~, F) ,  cs)]  = {(pc, v, cs) I 
v s a t i s f i e s ~ } .  We  wr i te  A = V × D x V* for t h e  set  of 
a t o m i c  regions.  A region is a f ini te  set  of a t o m i c  regions.  

5.2 .1  C o n c r e t e  p r e  a n d  p o s t  

For a l g o r i t h m  LazyAbstraction we need  on ly  pre, hence  
we omi t  a de ta i l ed  discuss ion of t h e  c o m p u t a t i o n  of post. 
Fi r s t  we define p r e p :  D × ~ ~ D on d a t a  regions. Th i s  
ope ra to r  can  b e  e x t e n d e d  in a s t r a i gh t fo rwa rd  m a n n e r  to  
o b t a i n  an  ope ra to r  preA:  A × ~ --+ A on a t o m i c  regions.  
Final ly,  g iven  a region r C A a n d  a l abe l  l E ~ ,  define 
p ' e ( r , l )  = { p ' e A ( a , l )  I a E r} .  

We  now descr ibe  t h e  c o m p u t a t i o n  of p reD.  For a s t a t e -  
m e n t  s a n d  a fo rmula  ~, let  wp(~ ,  s) deno te  t h e  weakest 
liberal precondition [16, 21] of ~ w i th  respec t  to  s; t h a t  is, 
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w p ( ~ ,  s) is the  weakest formula whose t ru th  before s entails 
the  t r u th  of ~ after s terminates ,  if it terminates .  For ex- 
ample,  for the  assignment  "x = e," where x is a scalar vari- 
able and e is an expression of the  appropr ia te  type,  we have 
w p ( p ,  x = e) = p ie /x ] ,  where p ie /x ]  denotes p wi th  all oc- 
currences of x replaced by e. In the  presence of pointers  and 
aliasing, of course, a syntact ic  subs t i tu t ion  is no longer accu- 
rate: for example,  wp(*p  = 1 ,x  = 0) is not  *p = 1, because 
if x and *p are aliased, then  *p = 1 does not  hold after the  
assignment.  Thus,  we use Morris '  general  ax iom of assign- 
ment  [24]. An  address is ei ther a variable,  a s tructure-f ield 
access f rom a address, or a dereference of a address. Con- 
sider the  computa t ion  of w p ( ~ ,  x=e), where x is an address, 
and let y be an address ment ioned  in the  formula p. T h e n  
there  are two cases to consider: ei ther x and y are aliases, 
and hence the  ass ignment  of e to x causes the  value of y to 
become e; or they  are not  aliases, and the  ass ignment  to x 
leaves y unchanged.  Define 

~[x ,e ,y ]  = ( &x = my A ~[e/y])  V ( &x ¢ &y A ~). 

In general, let  Y l , Y 2 , . . .  ,Y~ be the  addresses ment ioned in 
~. T h e n  wp(~,  x=e) is ~[x ,e ,y~l [x ,e ,y~l  . . .  [x,e,y,~ 1. In the  
example  above, we have wp(*p  = 1, x = 0) = ( &x = p A 0  = 
1) V ( &x ¢ p A *p = 1). If  k addresses occur in the  formula 
p, then  the  weakest precondi t ion has 2 ~ syntact ic  disjuncts,  
each considering a possible alias scenario of the  k addresses 
wi th  x. However,  one can use a pointer  analysis to improve 
the  precision of the  weakest-precondit ion computa t ion  [3]: 
if the  pointer  analysis says tha t  x and y cannot  be aliased 
at  the  p rogram point  before x = e, then  we can prune the  
disjuncts  tha t  represent  a scenario where x is aliased to  y, 
and we can par t ia l ly  evaluate  the  disjuncts  t ha t  represent  a 
scenario where x is not  aliased to y. 

For an assume predicate,  the  weakest precondi t ion 
w p ( p ,  assume p) is p A p. Finally, the  weakest precondi t ion 
of a sequence of s ta tements  is the  composi t ion of the  weak- 
est precondit ions:  w p ( ~ ,  s l;  s2) = w p ( w p ( ~ ,  s 2 ) , s l ) .  From 
this,  we get the  weakest precondi t ion of a basic block (i.e., 
a finite sequence of s ta tements)  by induction.  Finally, f rom 
the  w p  opera tor  we construct  the  opera tor  /9red on da t a  
regions by adding all predicates tha t  occur in the  weakest 
precondi t ion as suppor t  predicates.  

EXAMPLE 3: We use the  pro  opera tor  for backwards coun- 
te rexample  analysis. Consider the  nodes labeled 4 and 5 in 
Figure  4. T h e  bad region (in the  curly braces) for node 4 
is the  pro  of the  bad region of 6 wi th  respect to  u n l o c k ( )  ; 
new++ labeling the  edge between the  nodes 4 and 5 in the  
CFA. The  w p  opera tor  returns:  

w p ( L O C K  = 0 A new = o l d , t m l o c k ( )  ;new++) = 

O = O A  n e w +  l = old 

(by inlining the  code for un lock ,  i.e., t rea t ing  it as s imply 
L O C K  = 0), which is the  bad region of node 4 (ignoring the  
suppor t  predicates) .  [] 

5 . 2 . 2  A b s t r a c t  p r e  a n d  p o s t  

Given the  concrete  p r e p  operat ions,  we const ruct  the  ab- 
s t ract  pos t  D opera t ion  for da t a  regions by Car tes ian  abstrac-  
tion, as in Sect ion 3.2. We ex tend  this to  pos t  on regions 
as in the  concrete  case• Note  tha t  by considering the  s tate-  
ments  of a basic block toge the r ,  we gain precision in the  
analysis: the  abs t rac t  pos t  approximates  the  effect of an 

entire basic block ra ther  t han  abs t rac t ing  (and losing infor- 
mat ion)  the  effect of each s t a t ement  wi thin  a basic block• 
The  abs t rac t  ~ opera tor  can be  computed  dually, but  is 
not  needed for a lgor i thm kazyAbstraction. 

EXAMPLE 4: Recal l  the  parent-chi ld pair of nodes wi th  
labels 4 and 5 in the  search t ree of Figure  5. At  4 we have the  
reachable region L O C K  = 1 A new = old. The  label of the  
node 5 is p o s t ( L O C K  = 1 A new = old, u n l o c k ( )  ;new++), 
wi th  respect  to the  three  suppor t  predicates L O C K  = O, 
L O C K  = 1, and new = old. The  weakest precondit ions of 
each of the  suppor t  predicates (and their  negations) are 0 = 
0 ( 0 # 0 ) , 0 = l ( 0 # l ) , n e w = n e w + l ( n e w # n e w + l ) .  
As 0 = 0, 0 ¢ 1, and new ~ new + 1 are t r iv ia l ly  implied by 
the  region L O C K  = 1 A new = old, we see tha t  

~ s t ( L O C K  = 1 A new = old, u.u.lockO ;new++) = 

L O C K  = 0 A L O C K  ~ 1 A  new ~ old, 

which is the  reachable region of node 5 (in the  figure the  
middle  conjunct  is d ropped  for clarity).  [] 

We found in our implementa t ion  tha t  our m e t h o d  out-  
performs the  recursive subdivision me thod  to const ruct  the  
most  precise overapproximat ion  of pos t  [12] significantly. In 
our exper iments  (see Section 6), we could prove all the  prop- 

erties using the  Car tes ian  pos t  in much less running t ime. 
Since the  abs t rac t  pos t  of a region is computed  very fre- 
quent ly  in the  lazy-abst rac t ion a lgor i thm,  any speedup in 
its computa t ion  results in a significant overall  speedup. The  
Car tes ian  abs t rac t ion  computed  above takes t ime  linear in 
the  number  of suppor t  predicates,  as opposed to  exponen-  
t ia l  in the  number  of suppor t  predicates for the  most  precise 
computa t ion .  

5.3 A focus operator for C 
T h e  focus opera tor  adds to the  set of suppor t ing  predi- 

cates of a region enough predicates to show infeasibility of 
an abstract error path. The focus operator is called with a 
region r, a sequence ~r of labels, and an error region C such 
that pro(E, ~r) V] r _= ±. We use a proof-generating theorem 
prover to produce a minimal set H of predicates that suffices 
for proving this equivalence: the predicates in H are the ones 
that appear as atomic predicates in the proof of unsatisfi- 
ability of pro(E, ~r) V] r constructed by the theorem prover. 
However, to maintain the syntactic form of the predicates 
obta ined  along the  path,  all subst i tu t ions  in weakest pre- 
condit ions must  be main ta ined  explicitly. Thus,  to  compu te  
w p ( p ,  x = e), instead of re turning p ie /x ] ,  we int roduce a 
fresh pr imed variable x '  and re turn  x '  = e A ~[x ' / x ]  (note 
tha t  the  variable x '  acts as a Skolem constant) .  Finally, for 
each predicate  p C H, we replace all p r imed instances of 
variable in p wi th  the  corresponding unpr imed versions. 

EXAMPLE 5: At  the  end of the  forward-search phase (Fig- 
ure 4) of the  example  in Sect ion 2 we find tha t  at  node 2 the  
bad region intersected wi th  the  reachable region is empty. 
Thus,  we call the  focus opera tor  ~ ( r ,  ~r, $) with,  considering 
only the  da t a  region, 

r = (LOCK = O, {LOCK = O, LOCK = 1}), 

~r = lock(); old = new. [T]. unlock() ;new++ 

• [new = ola]. ~lock(), 

$ = (True,  {}) 

67



The focus operator first computes the following as the weak- 
est precondition (with explicit substitutions of $ w.r.t. ~r): 

o l d  r = n e w  A L O C K  r = 0 

A n e w  r = n e w  + l A n e w r  = o l d  r A L O C K  r = O 

and conjoins it with r and submits the result to the proof- 
generating theorem prover. The prover says that  the proof 
of unsatisfiability of the conjunction involves the predicates 
n e w  r = n e w  + 1, n e w  r = o l d  r, and o l d  r = n e w ,  from which 
it is clear, by simply dropping the primes, that  n e w  = o l d  is 
a useful predicate. Hence the data region returned by focus 
is ( ( L O C K  = O, { L O C K  = O, L O C K  = 1, n e w  = o l d } ) .  [] 

6. EXPERIMENTAL RESULTS 

6.1 The BLAST toolkit 
We have implemented a tool that applies lazy abstraction 

to model check safety properties of C programs. We handle 
all syntactic constructs of the C language, including point- 
ers, structures, and procedures (leaving the constructs not 
in the predicate language uninterpreted). However, we do 
not model pointer arithmetic precisely, because we assume 
a log ica l  model of memory; thus, we model the expression 
p + i ,  where p is a pointer and i is an integer, as yielding 
a pointer value that points to the object pointed to by p. 
Currently we handle procedure calls using an explicit stack 
and do not handle recursive functions, but the systems code 
we have analyzed is not recursive. 

Our tool is written in Objective Carol, and consists of two 
main parts: (i) a functor implementing the kazyAbstraction 
algorithm, which takes a symbolic abstraction structure to- 
gether with a focus operator as input, and (2) the symbolic 
abstraction structure and focus operator for C. The latter 
is made up of two parts: (a) the C front end, for which we 
use the C-Breeze C Compiler Infrastructure [23], which con- 
verts a program to its CFA, and (b) a module that contains 
the data structures for C regions as well as the functions 
/9re, post, and focus. The boolean formulas over predicates 
that represent data regions are stored as BDDs [29] to get a 
canonical sum-of-product form for formulas. The BDD rep- 
resentation also allows easy boolean manipulation and inclu- 
sion checking. For the implication checks while computing 
post and for the emptiness checks in the counterexample 
analysis we use the theorem prover Simplify [15]. For focus 
we use the proof-generating theorem prover Vampyre [6]. 

In order to be practical, the tool uses several optimizations 
to the general procedure described in Section 5. The cost is 
dominated by the cost of theorem proving, so we extensively 
optimize calls to the theorem prover. Theorem prover calls 
are cached, and for each query, several syntactic matching 
rules are checked first to cheaply solve the easy cases. In the 
computation of p o s t ,  we check if a predicate p is affected by 
a statement s ,  and invoke theorem prover calls only on the 
subset of predicates for which w p ( p ,  s )  ~£ p .  

6.2 Driver verification in BLAST 
We have run the implementation to check simple safety 

properties of some Linux and Microsoft Windows NT device 
drivers. The results are tabulated in Table 6. The properties 
we check are instrumented into the code by hand (by mod- 
ifying certain library functions). This essentially involves 

constructing a monitor for the property of interest, and up- 
dating the monitor state whenever there is an interesting 
state change. For example, to check for correct locking be- 
havior, we instrument calls to lock() and unlock() to call 
the monitor function, which updates some internal state, 
and goes to an error label if the internal state reaches an er- 
ror configuration. We make an optimistic assumption about 
unknown library functions: we assume they do not affect 
the values of the tracked predicates. Finally, we check the 
code using a model of the kernel that exercises the driver. 
The model first calls the driver initialization routine, then 
calls the driver functions (read, write, etc.) in a loop, and 
finally unloads the driver. 

The program driver.c is the driver code from [5]; the 
program fun lock . c  is the example from Section 2. The 
file r ead .c  is a (simplified) serial driver and f loppy .c  is a 
floppy driver from the Microsoft Windows DDK. Finally, 
qpmouse.c and ll . .rw_block.c are Linux device drivers 
(from the 2.4.9 kernel). We check locking disciplines in 
floppy.c and ll_rw_block.c. We check for null pointer 
dereferences in qpmouse, c. In read. c we check the property 

discussed in [5], namely, that the driver dispatch routine cor- 
rectly handles both immediate and asynchronous services. 
In most cases, correctness cannot be proven using a data- 
independent analysis [19], and requires the automatic dis- 
covery of relevant predicates. Moreover, correctness spans 
several functions, so an interprocedural analysis is required. 

In ll_rw_block.c, a spinlock is acquired in function 
_make_request, and passed on to function add_request. 
Under normal circumstances, add_request returns with the 
lock held, and __make_request unlocks it. However, in case 
there is a system bug, the driver invokes the macro BUG(), 
and the lock is unlocked. The first run of the tool did not 
model the behavior of BUG() (which causes the system to 
crash), and found an error trace that involved a call to 
add_request from _make_request with the lock held, a sys- 
tem bug, an unlock and return, and a subsequent unlock in 
__make.request. We then modified the specification to check 
for the locking discipline only when no system bugs occur. 
The property could now be proved. 

In Table 6, LOC refers to lines of code. The total number 
of predicates is the total number required in the run; the 
active column gives the total number of support predicates 
active at any particular node in the reachability tree. There 
are many redundant theorem prover calls (the fraction of 
cached calls is very high). In all cases, the tool can prove 
the property quite fast. 2 Moreover, in several examples, 
the benefits of local predicates can be seen as the number 
of active predicates is less than the total number of predi- 
cates. This is especially true for read.  c, because the prop- 
erty being checked has two disjoint branches, which require 
different sets of predicates to be verified. While this is not 
a complete experimental validation of the method, the ini- 
tial results are encouraging. We are currently investigating 
the limits of the tool by running it on larger examples and 
checking for more complicated properties. 

7. THEORETICAL ISSUES 
In this section we consider two theoretical issues regarding 

lazy abstraction. First, we provide sufficient conditions for 

2All times are on a 800MHz Pentium III with 256M RAM, 
and do not include parsing time. 
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N a A n e  

driver.c 
funlock.c 

read.c 
floppy.c 
qpmouse.c 

ll_rw_block.c 

LOC Predicates ThmProve r  Calls Running 
Total Active Total Cached Time (s) 

95 3 3 260 165 0.08 
40 4 3 340 182 0.14 
370 28 18 5643 2862 4.42 

6473 5 5 4137 3759 2.05 
400 3 3 3117 2925 0.74 
1281 9 7 10143 9483 5.82 

T a b l e  1: E x p e r i m e n t a l  r e s u l t s  w i t h  B L A S T  

the  t e rmina t ion  of the  a lgor i thm LazyAbstraction. Second, 
we show tha t  i t  is undeeidable  to check if there  is a finite 
predicate  abs t rac t ion  tha t  is sufficient to prove a given safety 
property.  

7.1 Termination 
Let $ = (S, G,----~) be a labeled t rans i t ion  system. For 

a s ta te  s C S and a sequence ~r C ~* of labels, we write  
sZ+ if there  is a s ta te  s r C S such tha t  sZ+s r. Two states 
sl, s2 C S are trace-equivalent if for every ~r C G*, we have 
s lZ+ iff s2Z+. The  labeled t ransi t ion sys tem $ has a finite 
trace equivalence if the  t race-equivalence relat ion on S has 
a finite index. 

Let  .,4 be  an abs t rac t ion  s t ruc ture  for $ wi th  region set 
R and extension funct ion N .  The  abs t rac t ion  s t ruc ture  .,4 
satisfies the  ascending-chain condition if there  does not  exist 
an infinite s t r ic t ly  increasing sequence r0 E r~ E . . .  E r~ E 
• .. of regions in R,  where r E r '  if [r] C ~r']. 

In the  following theorem we make two assumptions.  Firs t ,  
in order to  relate  t race  equivalence wi th  the  reachabil i ty of 
error states,  we assume wi thou t  loss of general i ty  t ha t  error 
s tates  have no outgoing transit ions;  t ha t  is, for every s ta te  

• l 
s C ~$], there  is no label l C G such tha t  s---+. Second, we 
assume tha t  the  keep_sab t r ee  funct ion used by a lgor i thm 
LazyAbstraction on line 11 always returns  false, to avoid in- 
finite loops as in Example  2. 

THBORBM 3. [ T e r m i n a t i o n ]  Let .,4 be an abstraction 
structure for a labeled transition system $,  and let a2 be a 
focus operator for A.  I f  

(i) $ has a finite trace equivalence, and 

(ii) A satisfies the ascending chain condition, 

then for every initial region ro and error region $, the ex- 
ecution of kazyAbstraction(A, ~ ,  r0, $) (Algorithm 2) termi- 
nates. 

In the  proof, we use finite t race equivalence to  show tha t  
a node in the  reaehabi l i ty  t ree  cannot  be refined infinitely 
often, and then  derive (by way of contradict ion)  an infinite 
ascending chain of regions for any nonte rmina t ing  run. Un- 
fortunately,  the  regions obta ined  from predicate  abs t rac t ion  
wi th  respect  to  an infinite predicate  language usual ly do not  
satisfy the  ascending chain condition.  However,  for a given 
labeled t rans i t ion  sys tem wi th  a finite t race equivalence,  we 
may  be able to  choose a predicate  language wi th  a finite 
set of predicates,  such as predicates tha t  define (unions of) 
t race-equivalence classes. For example,  this is the  case for 
t imed  a u t o m a t a  [2]. As the  boolean combinat ions  of a fi- 
ni te  set of predicates t r iv ia l ly  satisfy the  ascending chain 
condit ion,  the  theorem guarantees  terminat ion .  

7.2 Finite predicate abstraction is undecidable 
T h e  lazy-abst rac t ion a lgor i thm wi th  predicate  abs t rac t ion 

does not  necessarily t e rmina te  on labeled t rans i t ion  systems 
wi th  infinite s ta te  spaces. Indeed,  we show tha t  the  prob- 
lem whether  there  is a finite set of suppor t  predicates t ha t  
witnesses a given safety p roper ty  is undeeidable.  Let  /2 
be a predicate  language for the  labeled t rans i t ion  sys tem 
$ = (S, ~,  ----~). Let  F be a finite set of predicates f r om/2 ,  
and define the  induced equivalence ~ r  on S as s l  ~ r  s2 iff 
for all predicates p C F, we have s l  C ~p] iff s2 C ~p]; denote  
by [s]_~ r the  equivalence class of s ta te  s. The  quogent $-~r 
is the  labeled t rans i t ion  system (S/_~r, ~ ,  ~-+), where S/_~ r 
is the  (finite) set of .equivalence classes of ~ r ,  and for all 
l G ~,  we have s_~---~s_~ lff there  exist two states s G s_~ 
and s r C s~ with  s-ks r. Note  tha t  every pa th  in labeled 
t rans i t ion  sys tem has a counterpar t  in the  quot ient ,  but  not  
necessarily vice versa. 

For a predicate  l anguage /2  for 2-counter machines,  the  £ -  
finite abstraction problem £ - F I N A B S  is defined as follows: 

• I n p u t  A 2-counter machine  M ,  an init ial  s ta te  m0 and 
a final s ta te  m f  of M, both  definable i n / L  

• O u t p u t  "Yes" if either m f  is reachable in M from 
too, or there  is a finite set F of predicates from ~ such 
tha t  [mf]_~ r is not  reachable in the  quot ient  M_~ r from 
[m0]_~r. 

Notice  tha t  the  problem is not  t r ivial  as the  set of s tates  
reachable f rom m0 (or the  set of s tates t ha t  can reach m r )  
may  not  be expressible as a boolean formula over predicates 
in £.  

Let  P resburger -FINABS be the  finite abs t rac t ion  prob- 
lem where £ contains the  control  locations as proposit ions,  
and the  quantifier-free formulas of Presburger  a r i thmet ic  for 
constra ining the  counter  values. We show undecidabi l i ty  by 
reduct ion  f rom the  hal t ing problem for 2-counter machines.  
In part icular ,  given M ,  we const ruct  a 2-counter machine  

t t M' with  init ial  s ta te  m0 and hal t ing s ta te  my such tha t  
M halts iff ( M  r, m~, m~} is in Presburger -FINABS (we con- 
s t ruct  M r such tha t  the  reachable s tates  of M r cannot  be 
defined by a Presburger  formula).  

THBORBM 4. Presburger-FINABS is complete for ~ 
sets. 

More generally, let /2 be aay  predicate  language for 2- 
counter  machines.  T h e n / : - F I N A B S  is comple te  for ~ sets. 

Related work 
Our work is re la ted to eounterexample-dr iven  abs t rac t ion  re- 
f inement  [5, 10, 13, 28]. As in [3, 12, 20], we au tomat ica l ly  
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construct a predicate abstraction by using an automatic the- 
orem prover to answer satisfiability queries. However, all 
previous counterexample-driven refinement methods do not 
reuse the work done in one pass in the next pass: after ev- 
ery pass, the abstraction is constructed from scratch, and 
the new system is model checked. The results from model 
checking the previous passes are not reused, and a large 
part of the symbolic state space may be traversed repeat- 
edly, even though a coarser abstraction is sufficient to prove 
the property of interest for that  region. Lazy abstraction 
takes advantage of previous runs by abstracting locally. 

Dataflow and type-based analyses have been used to check 
safety properties of systems code (e.g., [17, 19, 30]). These 
analyses typically ignore data dependence and may gener- 
ate false positives owing to infeasible paths. Our work can 
be seen as an extension to such analyses by introducing 
path sensitivity to the analysis. Moreover, eounterexample- 
driven refinement avoids an explosion of spurious error 
traces. 
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