
Reducing Concurrent Analysis Under a Context

Bound to Sequential Analysis⋆

Akash Lal1⋆⋆ and Thomas Reps1,2

1 University of Wisconsin; Madison, WI; USA. {akash, reps}@cs.wisc.edu
2 GrammaTech, Inc.; Ithaca, NY; USA.

Abstract. This paper addresses the analysis of concurrent programs
with shared memory. Such an analysis is undecidable in the presence of
multiple procedures. One approach used in recent work obtains decid-
ability by providing only a partial guarantee of correctness: the approach
bounds the number of context switches allowed in the concurrent pro-
gram, and aims to prove safety, or find bugs, under the given bound. In
this paper, we show how to obtain simple and efficient algorithms for the
analysis of concurrent programs with a context bound. We give a general
reduction from a concurrent program P , and a given context bound K,
to a sequential program P K

s such that the analysis of P K
s can be used to

prove properties about P . We give instances of the reduction for common
program models used in model checking, such as Boolean programs and
pushdown systems.

1 Introduction

The analysis of concurrent programs is a challenging problem. While in general
the analysis of both concurrent and sequential programs is undecidable, what
makes concurrency hard is the fact that even for simple program models, the
presence of concurrency makes their analysis computationally very expensive.
When the model of each thread is a finite-state automaton, the analysis of such
systems is PSPACE-complete; when the model is a pushdown system, the anal-
ysis becomes undecidable [18]. This is unfortunate because it does not allow
the advancements made on such models in the sequential setting, i.e., when the
program has only one thread, to be applied in the presence of concurrency.

This paper addresses the problem of automatically extending analyses for
sequential programs to analyses for concurrent programs under a bound on the
number of context switches.3 We refer to analysis of concurrent programs under
a context bound as context-bounded analysis (CBA). Previous work has shown
the value of CBA: KISS [17], a model checker for CBA with a fixed context
bound of 2, found numerous bugs in device drivers; a study with explicit-state

⋆ Supported by NSF under grants CCF-0540955 and CCF-0524051 and by AFRL
under contract FA8750-06-C-0249.

⋆⋆ Supported by a Microsoft Research Fellowship.
3 A context switch occurs when execution control passes from one thread to another.

model checkers [13] found more bugs with slightly higher context bounds. It also
showed that the state space covered with each increment to the context-bound
decreases as the context bound increases. Thus, even a small context bound is
sufficient to cover many program behaviors, and proving safety under a context
bound should provide confidence towards the reliability of the program. Unlike
the above-mentioned work, this paper addresses CBA with any given context
bound and with different program abstractions (for which explicit-state model
checkers would not terminate).

The decidability of CBA, when each program thread is abstracted as a push-

down system (PDS)—which serves as a general model for a recursive program
with finite-state data—was shown in [16]. These results were extended to PDSs
with bounded heaps in [3] and to weighted PDSs (WPDSs) in [10]. All of this
work required devising new algorithms. Moreover, each of the algorithms have
certain disadvantages that make them impractical to implement.

In the sequential setting, model checkers, such as those described in [1, 21,
5], use symbolic techniques in the form of BDDs for scalability. With the CBA
algorithms of [16, 3], it is not clear if symbolic techniques can be applied. Those
algorithms require the enumeration of all reachable states of the shared memory
at a context switch. This can potentially be very expensive. However, those
algorithms have the nice property that they only consider those states that
actually arise during valid (abstract) executions of the model. (We call this lazy

exploration of the state space.)

Our recent paper [10] showed how to extend the algorithm of [16] to use
symbolic techniques. However, the disadvantage there is that it requires com-
puting auxiliary information for exploring the reachable state space. (We call
this eager exploration of the state space.) The auxiliary information summarizes
the effect of executing a thread from any control location to any other control
location. Such summarizations may consider many more program behaviors than
can actually occur (whence the term “eager”).

This problem can also be illustrated by considering interprocedural analysis
of sequential programs: for a procedure, it is possible to construct a summary
for the procedure that describes the effect of executing it for any possible inputs
to the procedure (eager computation of the summary). It is also possible to
construct the summary lazily (also called partial transfer functions [12]) by only
describing the effect of executing the procedure for input states under which it is
called during the analysis of the program. The former (eager) approach has been
successfully applied to Boolean programs4 [1], but the latter (lazy) approach is
often desirable in the presence of more complex abstractions, especially those
that contain pointers (based on the intuition that only a few aliasing scenarios
occur during abstract execution). The option of switching between eager and
lazy exploration exists in the model checkers described in [1, 20].

Contributions. This paper makes two main contributions. First, we show how
to reduce a concurrent program to a sequential one that simulates all its execu-
tions for a given number of context switches. This has the following advantages:

4 Boolean programs are imperative programs with only the Boolean datatype (§3).

2

– It allows one to obtain algorithms for CBA using different program abstrac-
tions. We specialize the reduction to Boolean programs (§3), PDSs (§4), and
symbolic PDSs (see [8]). The former shows that the use of PDS-based tech-
nology, which seemed crucial in previous work, is not necessary: standard
interprocedural algorithms [19, 22, 7] can also be used for CBA. Moreover,
it allows one to carry over symbolic techniques designed for sequential pro-
grams for CBA.

– The reduction introduces symbolic constants and assume statements. Thus,
any sequential analysis that can deal with these two additions can be ex-
tended to handle concurrent programs as well (under a context bound).

– For the case in which a PDS is used to model each thread, we obtain better
asymptotic complexity than previous algorithms, just by using the standard
PDS algorithms (§4).

– The reduction shows how to obtain algorithms that scale linearly with the
number of threads (whereas previous algorithms scaled exponentially).

Second, we show how to obtain a lazy symbolic algorithm for CBA on Boolean
programs (§5). This combines the best of previous algorithms: the algorithms of
[16, 3] are lazy but not symbolic, and the algorithm of [10] is symbolic but not
lazy.

The rest of the paper is organized as follows: §2 gives a general reduction from
concurrent to sequential programs; §3 specializes the reduction to Boolean pro-
grams; §4 specializes the reduction to PDSs; §5 gives a lazy symbolic algorithm
for CBA on Boolean programs; §6 reports early results with our algorithms; §7
discusses related work. Additional details and proofs can be found in [8].

2 A General Reduction

This section gives a general reduction from concurrent programs to sequential
programs under a given context bound. This reduction transforms the non-
determinism in control, which arises because of concurrency, to non-determinism
on data. (The motivation is that the latter problem is understood much better
than the former one.)

The execution of a concurrent program proceeds in a sequence of execution

contexts, defined as the time between consecutive context switches during which
only a single thread has control. In this paper, we do not consider dynamic
creation of threads, and assume that a concurrent program is given as a fixed
set of threads, with one thread identified as the starting thread.

Suppose that a program has two threads, T1 and T2, and that the context
bound is 2K − 1. Then any execution of the program under this bound will
have up to 2K execution contexts, with control alternating between the two
threads, informally written as T1; T2; T1, · · · . Each thread has control for at most
K execution contexts. Consider three consecutive execution contexts T1; T2; T1.
When T1 finishes executing the first of these, it gets swapped out and its local
state, say l, is stored. Then T2 gets to run, and when it is swapped out, T1 has
to resume execution from l (along with the global store produced by T2).

3

The requirement of resuming from the same local state is one difficulty that
makes analysis of concurrent programs hard—during the analysis of T2, the local
state of T1 has to be remembered (even though it is unchanging). This forces
one to consider the cross product of the local states of the threads, which causes
exponential blowup when the local state space is finite, and undecidability when
the local state includes a stack. An advantage of introducing a context bound is
the reduced complexity with respect to the size |L| of the local state space: the
algorithms of [16, 3] scale as O(|L|5), and [10] scales as O(|L|K). Our algorithm,
for PDSs, is O(|L|). (Strictly speaking, in each of these, |L| is the size of the
local transition system.)

The key observation is the following: for analyzing T1; T2; T1, we modify the
threads so that we only have to analyze T1; T1; T2, which eliminates the require-
ment of having to drag along the local state of T1 during the analysis of T2. For
this, we assume the effect that T2 might have on the shared memory, apply it
while T1 is executing, and then check our assumption after analyzing T2.

Consider the general case when each of the two threads have K execution
contexts. We refer to the state of shared memory as the global state. First, we
guess K − 1 (arbitrary) global states, say s1, s2, · · · , sK−1. We run T1 so that
it starts executing from the initial state s0 of the shared memory. At a non-
deterministically chosen time, we record the current global state s′1, change it to
s1, and resume execution of T1. Again, at a non-deterministically chosen time,
we record the current global state s′2, change it to s2, and resume execution of
T1. This continues K − 1 times. Implicitly, this implies that we assumed that
the execution of T2 will change the global state from s′i to si in its ith execution
context. Next, we repeat this for T2: we start executing T2 from s′1. At a non-
deterministically chosen time, we record the global state s′′1 , we change it to
s′2 and repeat K − 1 times. Finally, we verify our assumption: we check that
s′′i = si+1 for all i between 1 and K − 1. If these checks pass, we have the
guarantee that T2 can reach state s if and only if the concurrent program can
have the global state s after K execution contexts per thread.

The fact that we do not alternate between T1 and T2 implies the linear scal-
ability with respect to |L|. Because the above process has to be repeated for all
valid guesses, our approach scales as O(|G|K), where G is the global state space.
In general, the exponential complexity with respect to K may not be avoidable
because the problem is NP-complete when the input has K written in unary [9].
However, symbolic techniques can be used for a practical implementation.

We show how to reduce the above assume-guarantee process into one of an-
alyzing a sequential program. We add more variables to the program, initialized
with symbolic constants, to represent our guesses. The switch from one global
state to another is made by switching the set of variables being accessed by the
program. We verify the guesses by inserting assume statements at the end.

The reduction. Consider a concurrent program P with two threads T1 and
T2 that only has scalar variables (i.e., no pointers, arrays, or heap).5 We assume
that the threads share their global variables, i.e., they have the same set of global

5 Such models are often used in model checking and numeric program analysis.

4

Program P s st ∈ Ti Checker

L1 : T s
1 ;

L2 : T s
2 ;

L3 : Checker
if k = 1 then

τ (st, 1);
else if k = 2 then

τ (st, 2);
· · ·

else if k = K then

τ (st, K);
end if

if k ≤ K and ∗ then

k ++
end if

if k = K + 1 then

k = 1
goto Li+1

end if

for i = 1 to K − 1 do

for j = 1 to n do

assume (xi
j = vi+1

j)
end for

end for

Fig. 1. The reduction for general concurrent programs under a context bound 2K − 1.
In the second column, ∗ stands for a nondeterministic Boolean value.

variables. Let VarG be the set of global variables of P . Let 2K−1 be the bound
on the number of context switches.

The result of our reduction is a sequential program P s. It has three parts,
performed in sequence: the first part T s

1 is a reduction of T1; the second part T s
2

is a reduction of T2; and the third part, Checker, consists of multiple assume

statements to verify that a correct interleaving was performed. Let Li be the
label preceding the ith part. P s has the form shown in the first column of Fig. 1.

The global variables of P s are K copies of VarG. If VarG = {x1, · · · , xn},
then let Var

i
G = {xi

1, · · · , xi
n}. The initial values of Var

i
G are a set of symbolic

constants that represent the ith guess si. P s has an additional global variable
k, which will take values between 1 and K + 1. It tracks the current execution
context of a thread: at any time P s can only read and write to variables in
Var

k

G. The local variables of T s
i are the same as those of Ti.

Let τ(x, i) = xi. If st is a program statement in P , let τ(st, i) be the state-
ment in which each global variable x is replaced with τ(x, i), and the local vari-
ables remain unchanged. The reduction constructs T s

i from Ti by replacing each
statement st by what is shown in the second column of Fig. 1. The third column
shows Checker. Variables Var

1
G are initialized to the same values as VarG in

P . Variable xi
j , when i 6= 1, is initialized to the symbolic constant vi

j (which is
later referenced inside Checker), and k is initialized to 1.

Because local variables are not replicated, a thread resumes execution from
the same local state it was in when it was swapped out at a context switch.

The Checker enforces a correct interleaving of the threads. It checks that
the values of global variables when T1 starts its i+1st execution context are the
same as the values produced by T2 when T2 finished executing its ith execution
context. (Because the execution of T s

2 happens after T s
1 , each execution context of

T s
2 is guaranteed to use the global state produced by the corresponding execution

context of T s
1 .)

5

The reduction ensures the following property: when P s finishes execution,
the variables Var

K
G can have a valuation s if and only if the variables VarG in

P can have the same valuation after 2K − 1 context switches.

Symbolic constants. One way to deal with symbolic constants is to consider
all possible values for them (eager computation). We show instances of this
strategy for Boolean programs (§3) and for PDSs (§4). Another way is to lazily
consider the set of values they may actually take during the (abstract) execution
of the concurrent program, i.e., only consider those values that pass the Checker.
We show an instance of this strategy for Boolean programs (§5).

Multiple threads. If there are n threads, n > 2, then a precise reasoning for K

context switches would require one to consider all possible thread schedulings,
e.g., (T1; T2; T1; T3), (T1; T3; T2; T3), etc. There are O((n − 1)K) such schedul-
ings. Previous analyses [16, 10, 3] enumerate explicitly all these schedulings, and
thus have O((n − 1)K) complexity even in the best case. We avoid this ex-
ponential factor as follows: we only consider the round-robin thread schedule
T1; T2; · · ·Tn; T1; T2; · · · for CBA, and bound the length of this schedule instead
of bounding the number of context switches. Because a thread is allowed to
perform no steps during its execution context, CBA still considers other sched-
ules. For example, when n = 3, the schedule T1; T2; T1; T3 will be considered by
CBA only when K = 5 (in the round-robin schedule, T3 does nothing in its first
execution context, and T2 does nothing in its second execution context).

Setting the bound on the length of the round-robin schedule to nK allows
CBA to consider all thread schedulings with K context switches (as well as
some schedulings with more than K context switches). Under such a bound, a
schedule has K execution contexts per thread. The reduction for multiple threads
proceeds in a similar way to the reduction for two threads. The global variables
are copied K times. Each thread Ti is transformed to T s

i , as shown in Fig. 1, and
P s calls the T s

i in sequence, followed by Checker. Checker remains the same
(it only has to check that the state after the execution of T s

n agrees with the
symbolic constants).

The advantages of this approach are as follows: (i) we avoid an explicit enu-
meration of O((n−1)K) thread schedules, thus, allowing our analysis to be more
efficient in the common case; (ii) we explore more of the program behavior with
a round-robin bound of nK than with a context-switch bound of K; and (iii) the
cost of analyzing the round-robin schedule of length nK is about the same (in
fact, better) than what previous analyses take for exploring one schedule with a
context bound of K (see §4). These advantages allow our analysis to scale much
better in the presence of multiple threads than previous analyses.

In the rest of the paper, we only consider two threads because the extension
to multiple threads is straightforward for round-robin scheduling.

Applicability of the reduction to different analyses. Certain analysis,
like affine-relation analysis (ARA) over integers, as developed in [11], cannot
make use of this reduction. The presence of assume statements makes the ARA
problem undecidable. However, any abstraction prepared to deal with branching
conditions can also handle assume statements.

6

It is harder to make a general claim as to whether most sequential analy-
ses can handle symbolic values. One place where symbolic values are used in
sequential analyses is to construct summaries for recursive procedures. Eager
computation of a procedure summary is similar to analyzing the procedure while
assuming symbolic values for the parameters of the procedure.

3 The Reduction for Boolean programs

Boolean Programs. A Boolean program consists of a set of procedures,
represented using their control-flow graphs (CFGs). The program has a set of
global variables, and each procedure has a set of local variables, where each
variable can only receive a Boolean value. Each edge in the CFG is labeled
with a statement that can read from and write to variables in scope, or call a
procedure. An example is shown in Fig. 2.

For ease of exposition, we assume that all procedures have the same number
of local variables, and that they do not have any parameters. Furthermore, the
global variables can have any value when program execution starts, and similarly
for the local variables when a procedure is invoked.

n1

n4 n5

n6

x=0 x=1 y=x

n7

n8n2 n3
bar() bar()

proc foo proc bar

n9

assume(y=1)

Fig. 2. A Boolean pro-
gram

Let G be the set of valuations of the global vari-
ables, and L be the set of valuations of the local vari-
ables. A program data-state is an element of G × L.
Each program statement st can be associated with
a relation [[st]] ⊆ (G × L) × (G × L) such that
(g0, l0, g1, l1) ∈ [[st]] when the execution of st on the
state (g0, l0) can lead to the state (g1, l1). For instance,
in a procedure with one global variable x1 and one lo-
cal variable x2, [[x1 = x2]] = {(a, b, b, b) | a, b ∈ {0, 1}}
and [[assume(x1 = x2)]] = {(a, a, a, a) | a ∈ {0, 1}}.

The goal of analyzing such programs is to com-
pute the set of data-states that can reach a program
node. This is done using the rules shown in Fig. 3

[1]. These rules follow standard interprocedural analyses [19, 22]. Let entry(f)
be the entry node of procedure f, proc(n) the procedure that contains node n,
ep(n) = entry(proc(n)), and exitnode(n) is true when n is the exit node of its
procedure. Let Pr be the set of procedures of the program, which includes a dis-
tinguished procedure main. The rules of Fig. 3 compute three types of relations:
Hn(g0, l0, g1, l1) denotes the fact that if (g0, l0) is the data state at entry(n),
then the data state (g1, l1) can reach node n; Sf is the summary relation for
procedure f, which captures the net transformation that an invocation of the
procedure can have on the global state; Rn is the set of data states that can
reach node n. All relations are initialized to be empty.
Eager analysis. Rules R0 to R6 describe an eager analysis. The analysis pro-
ceeds in two phases. In the first phase, the rules R0 to R3 are used to saturate
the relations H and S. In the next phase, this information is used to build the
relation R using rules R4 to R6.

7

First phase Second phase

g ∈ G, l ∈ L, f ∈ Pr
R0

Hentry(f)(g, l, g, l)

Hn(g0, l0, g1, l1) n
st

−−→ m (g1, l1, g2, l2) ∈ [[st]]
R1

Hm(g0, l0, g2, l2)

Hn(g0, l0, g1, l1) n
call f()

−−−−−→ m Sf(g1, g2)
R2

Hm(g0, l0, g2, l1)

Hn(g0, l0, g1, l1) exitnode(n) f = proc(n)
R3

Sf(g0, g1)

g ∈ G, l ∈ L
R4

Rentry(main)(g, l)

Rep(n)(g0, l0) Hn(g0, l0, g1, l1)
R5

Rn(g1, l1)

Rn(g0, l0) n
call f()

−−−−−→ m l ∈ L
R6

Rentry(f)(g0, l)

Hn(g0, l0, g1, l1) n
call f()

−−−−−→ m l2 ∈ L
R7

Hentry(f)(g1, l2, g1, l2)

Hn(g0, l0, g1, l1)
R8

Rn(g1, l1)

Fig. 3. Rules for the analysis of Boolean programs.

Lazy analysis. Let rule R′
0 be the same as R0 but restricted to just the main

procedure. Then the rules R′
0,R1,R2,R3,R7,R8 describe a lazy analysis. The

rule R7 restricts the analysis of a procedure to only those states it is called in.
As a result, the second phase gets simplified and consists of only the rule R8.

Practical implementations [1, 20] use BDDs to encode each of the relations
H, S, and R and the rule applications are changed into BDD operations. For
example, rule R1 is simply the relational composition of relations Hn and [[st]],
which can be implemented efficiently using BDDs.

Concurrent Boolean Programs. A concurrent Boolean program consists of
one Boolean program per thread. The Boolean programs share their set of global
variables. In this case, we can apply the reduction presented in §2 to obtain
a single Boolean program by making the following changes to the reduction:
(i) the variable k is modeled using a vector of log(K) Boolean variables, and
the increment operation implemented using a simple Boolean circuit on these
variables; (ii) the if conditions are modeled using assume statements; and (iii)
the symbolic constants are modeled using additional global variables that are
not modified in the program. Running any sequential analysis algorithm, and
projecting out the values of the Kth set of global variables from Rn gives the
precise set of reachable global states at node n in the concurrent program.

The worst-case complexity of analyzing a Boolean program P is bounded
by O(|P ||G|3|L|2), where |P | is the number of program statements. Thus, using
our approach, a concurrent Boolean program Pc with n threads, and K execu-
tion contexts per thread (with round-robin scheduling), can be analyzed in time
O(K|Pc|(K|G|K)3|L|2|G|K): the size of the sequential program obtained from
Pc is K|Pc|; it has the same number of local variables, and its global variables
have K|G|K number of valuations. Additionally, the symbolic constants can take
|G|K number of valuations, adding an extra multiplicative factor of |G|K . The
analysis scales linearly with the number of threads (|Pc| is O(n)).

8

This reduction actually applies to any model that works with finite-state
data, which includes Boolean programs with references [2, 14]. In such models,
the heap is assumed to be bounded in size. The heap is included in the global
state of the program, hence, our reduction would create multiple copies of the
heap, initialized with symbolic values. Our experiments (§6) used such models.

Such a process of duplicating the heap can be expensive when the number of
heap configurations that actually arise in the concurrent program is very small
compared to the total number of heap configurations possible. The lazy version
of our algorithm (§5) addresses this issue.

4 The Reduction for PDSs

PDSs are also popular models of programs. The motivation for presenting the
reduction for PDSs is that it allows one to apply the numerous algorithms de-
veloped for PDSs for CBA. For instance, one can use backward analysis of PDSs
to get a backward analysis on concurrent programs.

Definition 1. A pushdown system is a triple P = (P, Γ, ∆), where P is a

set of states, Γ is a set of stack symbols, and ∆ ⊆ P × Γ × P × Γ ∗ is a finite

set of rules. A configuration of P is a pair 〈p, u〉 where p ∈ P and u ∈ Γ ∗. A

rule r ∈ ∆ is written as 〈p, γ〉 →֒ 〈p′, u〉, where p, p′ ∈ P , γ ∈ Γ and u ∈ Γ ∗.

These rules define a transition relation ⇒P on configurations of P as follows: If

r = 〈p, γ〉 →֒ 〈p′, u′〉 then 〈p, γu′′〉 ⇒P 〈p′, u′u′′〉 for all u′′ ∈ Γ ∗. The reflexive

transitive closure of ⇒P is denoted by ⇒∗
P
.

Without loss of generality, we restrict the PDS rules to have at most two
stack symbols on the right-hand side [21].

The standard way of modeling control-flow of programs using PDSs is as
follows: the set P consists of a single state {p}; the set Γ consists of program
nodes, and ∆ has one rule per edge in the control-flow graph as follows: 〈p, u〉 →֒
〈p, v〉 for an intraprocedural edge (u, v); 〈p, u〉 →֒ 〈p, e v〉 for a procedure call at
node u that returns to v and calls the procedure starting at e; 〈p, u〉 →֒ 〈p, ε〉 if
u is the exit node of a procedure. Finite-state data is encoded by expanding P

to be the set of global states, and expanding Γ by including valuations of local
variables. Under such an encoding, a configuration 〈p, γ1γ2 · · · γn〉 represents the
instantaneous state of the program: p is the valuation of global variables, γ1 has
the current program location and values of local variables in scope, and γ2 · · · γn

store the return addresses and values of local variables for unfinished calls.
A concurrent program with two threads is represented with two PDSs that

share their global state: P1 = (P, Γ1, ∆1),P2 = (P, Γ2, ∆2). A configuration of
such a system is the triplet 〈p, u1, u2〉 where p ∈ P, u1 ∈ Γ ∗

1 , u2 ∈ Γ ∗
2 . Define

two transition systems: if 〈p, ui〉 ⇒Pi
〈p′, u′

i〉 then 〈p, u1, u〉 ⇒1 〈p′, u′
1, u〉 and

〈p, u, u2〉 ⇒2 〈p′, u, u′
2〉 for all u. The problem of interest with concurrent pro-

grams, under a context bound 2K − 1, is to find the reachable states under the
transition system (⇒∗

1;⇒
∗
2)

K (here the semicolon denotes relational composi-
tion, and exponentiation is repeated relational composition).

9

For each 〈p, γ〉 →֒ 〈p′, u〉 ∈ (∆1 ∪ ∆2) and for all pi ∈ P, k ∈ {1, · · · , K}:
〈(k, p1, · · · , pk−1, p, pk+1, · · · , pK), γ〉 →֒ 〈(k, p1, · · · , pk−1, p

′, pk+1, · · · , pK), u〉

For each γ ∈ Γj and for all pi ∈ P, k ∈ {1, · · · , K}:
〈(k, p1, · · · , pK), γ〉 →֒ 〈(k + 1, p1, · · · , pK), γ〉
〈(K + 1, p1, · · · , pK), γ〉 →֒ 〈(1, p1, · · · , pK), ej+1 γ〉

Fig. 4. PDS rules for Ps.

We reduce the concurrent program (P1,P2) to a single PDS Ps = (Ps, Γs, ∆s).
Let Ps be the set of all K +1 tuples whose first component is a number between
1 and K, and the rest are from the set P , i.e., Ps = {1, · · · , K}×P ×P ×· · ·×P .
This set relates to the reduction from §2 as follows: an element (k, p1, · · · , pK) ∈
Ps represents that the value of the variable k is k; and pi encodes a valuation of
the variables Var

i
G. When Ps is in such a state, its rules would only modify pk.

Let ei ∈ Γi be the starting node of the ith thread. Let Γs be the disjoint union
of Γ1, Γ2 and an additional symbol {e3}. Ps does not have an explicit checking
phase. The rules ∆s are defined in Fig. 4.

We deviate slightly from the reduction presented in §2 by changing the goto

statement, which passes control from the first thread to the second, into a pro-
cedure call. This ensures that the stack of the first thread is left intact when
control is passed to the next thread. Furthermore, we assume that the PDSs
cannot empty their stacks, i.e., it is not possible that 〈p, e1〉 ⇒∗

P1
〈p′, ε〉 or

〈p, e2〉 ⇒
∗
P2

〈p′, ε〉 for all p, p′ ∈ P (in other words, the main procedure should
not return). This can be enforced for arbitrary PDSs [8].

Theorem 1. Starting execution of the concurrent program (P1,P2) from the

state 〈p, e1, e2〉 can lead to the state 〈p′, c1, c2〉 under the transition sys-

tem (⇒∗
1;⇒

∗
2)

K if and only if there exist states p2, · · · , pK ∈ P such that

〈(1, p, p2, · · · , pK), e1〉 ⇒Ps
〈(1, p2, p3, · · · , pK , p′), e3 c2 c1〉.

Note that the checking phase is implicit in the statement of Thm. 1.
Complexity. Using our reduction, one can find the set of all reachable configu-
rations of the concurrent program (P1,P2) in time O(K2|P |2K |Proc||∆1 +∆2|),
where |Proc| is the number of procedures in the program6 [8]. Using backward
reachability algorithms, one can verify if a given configuration in reachable in
time O(K3|P |2K |∆1 + ∆2|). Both these complexities are asymptotically better
than those of previous algorithms for PDSs [16, 10], with the latter being linear
in the program size |∆1 + ∆2|.

A similar reduction works for multiple threads as well (under round-robin
scheduling). Moreover, the complexity of finding all reachable states under a
bound of nK with n threads, using a standard PDS reachability algorithm, is
O(K3|P |4K |Proc||∆|), where |∆| = Σn

i=1|∆i| is the total number of rules in the
concurrent program.

6 The number of procedures of a PDS is defined as the number of symbols appearing
as the first of the two stack symbols on the right-hand side of a call rule.

10

This reduction produces a large number of rules in Ps, but we can leverage
work on symbolic PDSs [21] to obtain symbolic implementations [8].

5 Lazy CBA of Concurrent Boolean Programs

In the reduction presented in §3, the analysis of the generated sequential program
had to assume all possible values for the symbolic constants. The lazy analysis
will have the property that at any time, if the analysis considers the K-tuple
(g1, · · · , gK) of valuations of the symbolic constants, then there is a single valid
execution of the concurrent program in which the global state is gi at the end
of the ith execution context of the first thread for all 1 ≤ i ≤ K.

The idea is to iteratively build up the effect that each thread can have on the
global state in their K execution contexts. Note that T s

1 (or T s
2) does not need

to know the values of Var
i
G when k < i. Hence, the analysis proceeds by making

no assumptions on the values of Var
i
G when i > k. When k is incremented to

k + 1 in the analysis of T s
1 , it consults a table E2 that stores the effect that

T s
2 can have in its first k execution contexts. Using that table, it figures out a

valuation of Var
k+1
G to continue the analysis of T s

1 , and stores the effect that
T s

1 can have in its first k execution contexts in table E1. These tables are built
iteratively. More technically, if the analysis can deduce that T s

1 , when started in
state (1, g1, · · · , gk), can reach the state (k, g′1, · · · , g′k), and T s

2 , when started in
state (1, g′1, · · · , g′k) can reach (k, g2, g3, · · · , gk, gk+1), then an increment of k in
T s

1 produces the global state s = (k + 1, g′1, · · · , g′k, gk+1). Moreover, s can be
reached when T s

1 is started in state (1, g1, · · · , gk+1) because T s
1 could not have

touched Var
k+1
G before the increment that changed k to k + 1. The algorithm is

shown in Fig. 5. The entities used in it have the following meanings:

– Let G = ∪K
i=1G

i, where G is the set of global states. An element from the
set G is written as g. Let L be the set of local states.

– The relation Hj
n is related to program node n of the jth thread. It is a

subset of {1, · · · , K} × G × G × L × G × L. If Hj
n(k, g0, g1, l1, g2, l2) holds,

then each of the gi are an element of Gk (i.e., a k-tuple of global states), and
the thread Tj is in its kth execution context. Moreover, if the valuation of
Var

i
G, 1 ≤ i ≤ k, was g0 when T s

j (the reduction of Tj) started executing,
and if the node ep(n) could be reached in data state (g1, l1), then n can be
reached in data state (g2, l2), and the variables Var

i
G, i > k are not touched

(hence, there is no need to know their values).
– The relation Sf captures the summary of procedure f.
– The relations Ej store the effect of executing a thread. If Ej(k, g0, g1) holds,

then g0, g1 ∈ Gk, and the execution of thread T s
j , starting from g0 can lead

to g1, without touching variables in Var
i
G, i > k.

– The function check(k, (g1, · · · , gk), (g′1, · · · , g′k)) returns g′k if gi+1 = g′i for
1 ≤ i ≤ k−1, and is undefined otherwise. This function checks for the correct
transfer of the global state from T2 to T1 at a context switch.

– Let [(g1, · · · , gi), (gi+1, · · · gj)] = (g1, · · · , gj). We sometimes write g to mean
(g), i.e., [(g1, · · · , gi), g] = (g1, · · · , gi, g).

11

Hj
n(k, g0, g1, l1, [g2, g3], l3) n

st
−−→ m (g3, l3, g4, l4) ∈ [[st]]

R
′

1
Hj

m(k, g0, g1, l1, [g2, g4], l4)

Hj
n(k, g0, g1, l1, g2, l2) n

call f()
−−−−−→ m Sf(k + i, [g2, g], [g3, g′])

R
′

2
Hj

m(k + i, [g0, g], [g1, g], l1, [g3, g′], l2)

Hj
n(k, g0, g1, l1, g2, l2) exitnode(n) f = proc(n)

R
′

3
Sf(k, g1, g2)

Hj
n(k, g0, g1, l1, g2, l2) n

call f()
−−−−−→ m l3 ∈ L

R
′

7
H

j

entry(f)
(k, g0, g2, l3, g2, l3)

H1
n(k, g0, g1, l1, g2, l2) E2(k, g2, g3) g = check(g0, g3)

R8
H1

n(k + 1, [g0, g], [g1, g], l1, [g2, g], l2)

H2
n(k, g0, g1, l1, g2, l2) E1(k + 1, [g3, g2], [g0, g4])

R9
H2

n(k + 1, [g0, g4], [g1, g4], l1, [g2, g4], l2)

g ∈ G, l ∈ L, e = entry(main)
R10

H1
e (1, g, g, l, g, l)

Hj
n(k, g0, g1, l1, g2, l2)

R11
Ej(k, g0, g2)

E1(1, g0, g1), l ∈ L
R12

H2
e2

(1, g1, g1, l, g1, l)

Fig. 5. Rules for lazy analysis of concurrent Boolean programs.

Understanding the rules. The rules R′
1,R

′
2,R

′
3, and R′

7 describe intra-
thread computation, and are similar to the corresponding unprimed rules in
Fig. 3. The rule R10 initializes the variables for the first execution context of T1.
The rule R12 initializes the variables for the first execution context of T2. The
rules R8 and R9 ensure proper hand off of the global state from one thread to
another. These two are the only rules that change the value of k. For example,
consider rule R8. It ensures that the global state at the end of kth execution
context of T2 is passed to the (k+1)th execution context of T1, using the function
check. The value g returned by this function represents a reachable valuation of
the global variables when T1 starts its (k + 1)th execution context.

The following theorem shows that the relations E1 and E2 are built lazily,
i.e., they only contain relevant information. A proof can be found in [8].

Theorem 2. After running the algorithm described in Fig. 5,

E1(k, (g1, · · · , gk), (g′1, · · · , g′k)) and E2(k, (g′1, · · · , g′k), (g2, · · · , gk, g)) hold

if and only if there is an execution of the concurrent program with 2k − 1
context switches that starts in state g1 and ends in state g, and the global state

is gi at the start of the ith execution context of T1 and g′i at the start of the

ith execution context of T2. The set of reachable global states of the program in

2K − 1 context switches are all g ∈ G such that E2(K, g1, [g2, g]) holds.

6 Experiments

We did a proof-of-concept implementation of the eager algorithm for Boolean
programs, presented in §3, using the model checker Moped [20]. We took sequen-

12

tial programs and assumed that there were two copies of the program running
concurrently (except for BlueT). The input programs are obtained from a variety
of sources: BlueT is a model of a Bluetooth driver [17]; Java* are the result of
abstracting Java programs [2]; Reg* are from the regression suite of Moped; Toy
is a toy program we wrote for checking correctness. Some programs, especially
ones obtained from Java programs, have pointers and a bounded heap (which is
accounted for in the number of variables). We verified if a certain program node
was reachable by finding the set of reachable data-states at the node. In most
cases, we modified the programs to have both positive and negative instances.

Prog Inst 2K Time (s) |Prog| #gvars #lvars
Toy pos 20 0.3 12 5 0
Reg-blast1 neg 20 3.9 19 7 21
Reg-blast1 pos 20 4.1 19 7 21
Reg-slam1 pos 20 19.6 19 1 10
BlueT neg 20 7.2 30 10 1
BlueT pos 10 7.6 30 10 1
JavaMeeting neg 10 168.5 537 16 64
JavaMeeting pos 10 361.3 537 16 64
JavaChange neg 10 770.8 601 24 38
JavaChange pos 10 1134.4 601 24 38

Fig. 6. Experiments on finite-data-
state models.

The results are shown in Fig. 6.
The last three columns give the total
number of CFG edges, the number of
global variables, and the maximum num-
ber of local variables in a procedure,
respectively. They show that our algo-
rithm is practical—the data-state space
of JavaChange has about 2158 possible
states. The negative cases take less time
than positive cases because of the way
we implemented the BDD operations. In
some cases, we can conclude that a set is
empty, i.e., a node is not reachable, with-
out applying all the required operations.

For positive cases this never happens, and all the operations are applied.

7 Related Work

Most of the related work on CBA has been covered in the body of the paper. A
reduction from concurrent programs to sequential programs was given in [17] for
the case of two threads and two context switches (it has a restricted extension to
multiple threads as well). In such a case, the only thread interleaving is T1; T2; T1.
The context switch from T1 to T2 is simulated by a procedure call. Then T2 is
executed on the program stack of T1, and at the next context switch, the stack of
T2 is popped off to resume execution in T1. Because the stack of T2 is destroyed,
the analysis cannot return to T2 (hence the context bound of 2). Their algorithm
cannot be generalized to an arbitrary context bound.

Analysis of message-passing concurrent systems, as opposed to ones having
shared memory, has been considered in [4]. They bound the number of messages
that can be communicated, similar to bound the number of contexts.

There has been a large body of work on verification of concurrent programs.
Some recent work is [6, 15]. However, CBA is different because it allows for
precise analysis of complicated program models, including recursion. As future
work, it would be interesting to explore CBA with the abstractions used in the
aforementioned work.

13

References

1. T. Ball and S. Rajamani. Bebop: A symbolic model checker for Boolean programs.
In SPIN, 2000.

2. F. Berger, S. Schwoon, and D. Suwimonteerabuth. jMoped, 2005. http://www.

informatik.uni-stuttgart.de/fmi/szs/tools/moped/jmoped/.
3. A. Bouajjani, S. Fratani, and S. Qadeer. Context-bounded analysis of multi-

threaded programs with dynamic linked structures. In CAV, 2007.
4. S. Chaki, E. M. Clarke, N. Kidd, T. W. Reps, and T. Touili. Verifying concurrent

message-passing C programs with recursive calls. In TACAS, 2006.
5. T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In POPL,

2002.
6. T. A. Henzinger, R. Jhala, and R. Majumdar. Race checking by context inference.

In PLDI, 2004.
7. J. Knoop and B. Steffen. The interprocedural coincidence theorem. In CC, 1992.
8. A. Lal and T. Reps. Reducing concurrent analysis under a context bound to

sequential analysis. Technical Report 1629, University of Wisconsin, 2008.
9. A. Lal, T. Touili, N. Kidd, and T. Reps. Interprocedural analysis of concurrent

programs under a context bound. TR-1598, University of Wisconsin, July 2007.
10. A. Lal, T. Touili, N. Kidd, and T. Reps. Interprocedural analysis of concurrent

programs under a context bound. In TACAS, 2008.
11. M. Müller-Olm and H. Seidl. Precise interprocedural analysis through linear alge-

bra. In POPL, 2004.
12. B. Murphy and M. Lam. Program analysis with partial transfer functions. In

PEPM, 2000.
13. M. Musuvathi and S. Qadeer. Iterative context bounding for systematic testing of

multithreaded programs. In PLDI, 2007.
14. S. Qadeer and S. Rajamani. Deciding assertions in programs with references.

Technical Report MSR-TR-2005-08, Microsoft Research, Redmond, Jan. 2005.
15. S. Qadeer, S. K. Rajamani, and J. Rehof. Summarizing procedures in concurrent

programs. In POPL, 2004.
16. S. Qadeer and J. Rehof. Context-bounded model checking of concurrent software.

In TACAS, 2005.
17. S. Qadeer and D. Wu. KISS: Keep it simple and sequential. In PLDI, 2004.
18. G. Ramalingam. Context-sensitive synchronization-sensitive analysis is undecid-

able. In TOPLAS, 2000.
19. T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via

graph reachability. In POPL, 1995.
20. S. Schwoon. Moped. http://www.fmi.uni-stuttgart.de/szs/tools/moped/.
21. S. Schwoon. Model-Checking Pushdown Systems. PhD thesis, Technical Univ. of

Munich, Munich, Germany, July 2002.
22. M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis.

In Program Flow Analysis: Theory and Applications. Prentice-Hall, 1981.

14

