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Abstract
This paper presents a randomized scheduler for finding concur-
rency bugs. Like current stress-testing methods, it repeatedly runs
a given test program with supplied inputs. However, it improves on
stress-testing by finding buggy schedules more effectively and by
quantifying the probability of missing concurrency bugs. Key to its
design is the characterization of the depth of a concurrency bug as
the minimum number of scheduling constraints required to find it.
In a single run of a program with n threads and k steps, our sched-
uler detects a concurrency bug of depth d with probability at least
1/nkd−1. We hypothesize that in practice, many concurrency bugs
(including well-known types such as ordering errors, atomicity vio-
lations, and deadlocks) have small bug-depths, and we confirm the
efficiency of our schedule randomization by detecting previously
unknown and known concurrency bugs in several production-scale
concurrent programs.

Categories and Subject Descriptors D [2]: 5

General Terms Algorithms, Reliability, Verification

Keywords Concurrency, Race Conditions, Randomized Algo-
rithms, Testing

1. Introduction
Concurrent programming is known to be error prone. Concurrency
bugs can be hard to find and are notorious for hiding in rare thread
schedules. The goal of concurrency testing is to swiftly identify
and exercise these buggy schedules from the astronomically large
number of possible schedules. Popular testing methods involve
various forms of stress testing where the program is run for days
or even weeks under heavy loads with the hope of hitting buggy
schedules. This is a slow and expensive process. Moreover, any
bugs found are hard to reproduce and debug.

In this paper, we present PCT (Probabilistic Concurrency Test-
ing), a randomized algorithm for concurrency testing. Given a con-
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current program and an input test harness, PCT randomly schedules
the threads of the program during each test run. In contrast to prior
randomized testing techniques, PCT uses randomization sparingly
and in a disciplined manner. As a result, PCT provides efficient
mathematical probability of finding a concurrency bug in each run.
Repeated independent runs can increase the probability of finding
bugs to any user-desired level of certainty. In this paper, we demon-
strate the ability of PCT to find bugs both theoretically, by stating
and proving the probabilistic guarantees, and empirically, by apply-
ing PCT to several production-scale concurrent programs.

At the outset, it may seem impossible to provide effective prob-
abilistic guarantees without exercising an astronomical number of
schedules. Let us take a program with n threads that together ex-
ecute at most k instructions. This program, to the first-order of
approximation, has nk possible thread schedules. If an adversary
picks any one of these schedules to be the only buggy schedule,
then no randomized scheduler can find the bug with a probabil-
ity greater than 1/nk. Given that realistic programs create tens of
threads (n) and can execute millions, if not billions, of instructions
(k), such a bound is not useful.

PCT relies on the crucial observation that bugs in practice are
not adversarial. Concurrency bugs typically involve unexpected in-
teractions among few instructions executed by a small number of
threads [19, 20]. If PCT is able to schedule these few instructions
correctly, it succeeds in finding the bug irrespective of the numer-
ous ways it can schedule instructions irrelevant to the bug. The fol-
lowing characterization of concurrency bugs captures this intuition
precisely.

We define the depth of a concurrency bug as the minimum
number of scheduling constraints that are sufficient to find the bug.
Intuitively, bugs with a higher depth exhibit in fewer schedules and
are thus inherently harder to find. Fig. 1 explains this through a
series of examples. The bug in Fig. 1(a) manifests whenever Thread
2 accesses t before the initialization by Thread 1. We graphically
represent this ordering constraint as an arrow. Any schedule that
satisfies this ordering constraint finds the bug irrespective of the
ordering of other instructions in the program. By our definition,
this bug is of depth 1. Fig. 1 shows two more examples of common
concurrency errors, an atomicity violation in (b) and a deadlock in
(c). Both these errors require two ordering constraints and are thus
of depth 2.
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Thread 2
…
…
if (t->state == 1)
…

…

Thread 1
…
t = new T()
…
…
…

Thread 2
…
…
if (x != null)

x->print();
…

Thread 1
…
…
x = null;
…
…

Thread 2
…
…
lock(b);
…
lock(a);

Thread 1
…
lock(a);
…
lock(b);
…

(a) (b) (c)

Figure 1. Three typical concurrency bugs, and ordering edges sufficient to find each. (A) This ordering bug manifests whenever the test by
thread 2 is executed before the initialization by thread 1. (B) This atomicity violation manifests whenever the test by thread 2 executed before
the assignment by thread 1, and the latter is executed before the method call by thread 2. (C) This deadlock manifests whenever thread 1
locks a before thread 2, and thread 2 locks b before thread 1.

On each test run, PCT focuses on probabilistically finding bugs
of a particular1 depth d. PCT is a priority-based scheduler and
schedules the runnable thread with the highest priority at each
scheduling step. Priorities are determined as follows. On thread
creation, PCT assigns a random priority to the created thread.
Additionally, PCT changes thread priorities at d − 1 randomly
chosen steps during the execution.

These few but carefully designed random choices are provably
effective for finding concurrency bugs of low depth. Specifically,
when run on a program that creates at most n threads and executes
at most k instructions, PCT finds a bug of depth dwith a probability
of at least 1/nkd−1. For small d, this bound is much better than
the adversarial bound 1/nk. In particular, for the cases d = 1 and
d = 2 (which cover all examples in Fig. 1), the probability for
finding the bug in each run is at least 1/n and 1/nk, respectively.2

We describe the randomized algorithm informally in Section 2
and the formal treatment with the proof of the bound in Section 3.
As described above, the scheduler is simple and can readily be
implemented on large systems without knowledge of the proof
mechanics. Note that the proof was instrumental to the design of
PCT because it provided the insight on how to use randomization
sparingly, yet effectively.

The probabilistic bound implies that on average, one can expect
to find a bug of depth d within nkd−1 independent runs of PCT. As
our experiments show (Section 5), PCT finds depth 1 bugs in the
first few runs of the program. These bugs are certainly not trivial
and were discovered by prior state-of-art research tools [20, 24] in
well-tested real-world programs.

Our implementation of PCT, described in Section 4, works on
executables compiled from C/C++ programs. In addition to the
base algorithm described in Section 2, our implementation employs
various optimizations including one that reduces k to the maximum
number of synchronization operations (rather than the number of
instructions) performed in any run for a given test input.

We evaluate PCT on six benchmarks from prior work [21,
24] that contain known concurrency bugs. This includes the open
source program PBZIP2 [24], three SPLASH2 benchmarks [24],
an implementation of a work stealing queue [21], and Dryad Chan-
nels [21]. PCT finds all of the known bugs much faster than re-

1 For exposition, we assume that the bug depth parameter d is provided as
an input by the user. In practice, our tool chooses d automatically from an
appropriate random distribution.
2 In theory, d can be as large as k. In this case, our bound (as required)
is worse than 1/nk . However, we consider a depth k bug a practical
impossibility, especially for modern software that is built from a large
number of loosely-coupled components.

spectively reported in prior work. We also find two new bugs that
were missed by prior work in these benchmarks. To test our scala-
bility, we ran PCT on unmodified recently-shipped versions of two
popular web browsers Mozilla and Internet Explorer. We find one
previously unknown bug in each of them. Finally, we empirically
demonstrate that PCT often detects bugs with probabilities greater
than the theoretical worst-case bound.

2. PCT Overview
In this section we provide necessary background and an informal
description of our algorithm.

2.1 Concurrency Testing
The general problem of testing a program involves many steps. In
this paper, we focus on concurrency testing. We define a concur-
rency bug as one that manifests on a strict subset of possible sched-
ules. Bugs that manifest in all schedules are not concurrency bugs.
The problem of concurrency testing is to find schedules that can
trigger these bugs among the vast number of potential schedules.

We assume that inputs to our program are already provided,
and the only challenge is to find buggy schedules for that input.
Determining bug-triggering inputs for concurrent programs is a
challenging open problem beyond the scope of this paper. Our
assumption is validated by the fact that there already exists large
suites of stress tests carefully constructed by programmers over the
years.

2.2 State of the Art
We identify the following basic strategies for flushing out concur-
rency bugs. We describe them in detail in Section 6.

Stress Testing relies on repetition and heavy load to find bug-
triggering schedules by chance. The schedules explored are not
uniformly distributed and are determined by the chaotic noise in
the system.

Heuristic-Directed Testing improves upon stress testing by us-
ing runtime monitors and heuristics to (1) detect suspicious activity
in a program (such as variable access patterns that indicate potential
atomicity violations [24], or lock acquisition orderings that indicate
potential deadlocks [15]), and (2) direct the schedule towards sus-
pected bugs.

Systematic Scheduling controls the scheduler to systematically
enumerates possible schedules either exhaustively or within some
bound (such as a bound on the number of preemptions) [21].

Randomized Scheduling is similar to stress testing, but at-
tempts to amplify the ’randomness’ of the OS scheduler[1]. It can
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Filewriter Thread
…
mutex.unlock()

Main Thread
…
free(mutex)
exit(0);

Figure 2. An example of a bug of depth 2 we found in PBZIP2.
The bug surfaces if (1) the mutex is unlocked after it is freed, and
(2) the mutex is unlocked before the main thread terminates the
process by calling exit.

do so by inserting random delays, context switches, or thread pri-
ority changes.

PCT falls in the last category. But unlike all the methods above,
PCT provides a guaranteed probability of finding bugs in every run
of the program. Our experiments validate this guarantee. Note that
PCT is orthogonal to heuristic-directed testing methods above, in
the sense that the analysis used in these methods can be used to
further improve PCT.

2.3 Bug Depth
We classify concurrency bugs according to a depth metric. Intu-
itively, deeper bugs are inherently harder to find. PCT is designed
to provide better guarantees for bugs with smaller depth.

Concurrency bugs happen when instructions are scheduled in an
order not envisioned by the programmer. We identify a set of these
ordering constraints between instructions from different threads
that are sufficient to trigger the bug. It is possible for different sets
of ordering constraints to trigger the same bug. In such a case, we
focus on the set with lesser number of constraints. We define the
depth of a concurrency bug as the minimum number of ordering
constraints sufficient to find the bug.

For example, Fig. 1 shows examples of common concurrency
errors with ordering constraints, represented by arrows, that are
sufficient to find the bug. Any schedule that satisfies these ordering
constraints is guaranteed to find the bug irrespective of how it
schedules instructions not relevant to the bug. For the examples
in Fig. 1 the depth respectively is 1, 2, and 2. We expect many
concurrency bugs to have small depths. This is further validated by
our experimental results.

2.3.1 Relationship with Prior Classification
Fig. 1 also demonstrates how previous classifications of concur-
rency bugs correspond to bugs of low depth. For example, ordering
bugs [19] have depth 1, atomicity violations and non-serializable
interleavings [24], in general, have depth 2, and deadlocks caused
by circular lock acquisition [15] have depth 2, or more generally n
if n threads are involved. However, this classification is not strict.
For instance, not all atomicity violations have a depth 2, and in fact,
three of the bugs reported by prior work as atomicity violations [24]
have a depth 1.

However, our notion of bug depth is more general and can
capture concurrency bugs not classified before. Fig. 2 shows an
example of a bug of depth 2 that does not directly fall into any of
the mentioned categories. In particular, the ordering constraints do
not have to be between instructions that access the same variable.

Another characterization of a concurrency bug is its preemption
bound [20]. A preemption bound is the smallest number of preemp-
tions sufficient to find a concurrency bug. For the examples shown
in Fig. 1, d−1 preemptions are sufficient to find the bugs. However,
that is not always the case, as shown in the example in Fig. 3 where
d = 1, yet at least one preemption is required to find the bug.

Thread 2
…
…
Wait(e);
t->state == 1
…

Thread 1
…
Set(e);
t = new T()
…
…

Figure 3. A variation of the example in Fig. 1(a), with the same
bug depth of d = 1. Unlike in the other example, however, this bug
requires Thread 1 to be preempted right after the instruction that
sets the event e, and thus has a preemption bound of 1.

Thread 2
…
…
if ( init )

t->state == 1
…

Thread 1
…
init = true
t = new T()
…
…

Figure 4. Although it may seem like one constraint (black arrow)
is sufficient to find this bug, an extra constraint (gray arrow) is
needed to ensure that thread 2 really executes the access of t. Thus,
the depth of this bug is 2.

2.3.2 Interaction with Control Flow
Fig. 4 shows a slight modification to Fig. 1(a). In this example,
the program (incorrectly) maintains a Boolean variable init to
indicate whether t is initialized or not. Now, the single ordering
constraint (black arrow) between the initialization and access of t
is not sufficient to find the bug. The scheduler should also ensure
the right ordering constraint between init accesses (grey arrow).
Thus, the presence of control flow increases the bug depth to 2.

This example brings out two interesting points. First, the notion
of bug depth is inherently tied to the difficulty of the concurrency
bug. Fig. 4 is arguably a more subtle bug than Fig. 1(a). Second, in a
program with complex control flow, the depth of a bug might not be
readily apparent to the programmer. However, our technique does
not require the programmer or a prior program analysis to identify
these constraints explicitly. It relies on the mere existence of the
right number of ordering constraints.

2.4 Naive Randomization
Using a randomized scheduler may appear like an obvious choice.
However, it is not a priori clear how to design such a scheduler with
a good detection probability for concurrency bugs. For illustration
purposes, let us consider the simple case of a program shown in
Fig. 5 with two threads containing a bug of depth 1, shown by the
black arrow. (Neglect the grey arrow for now.) Even this simple bug
can frustrate a naive randomization technique.

Consider a naive randomized scheduler that flips a coin in each
step to decide which thread to schedule next. This scheduler is
unlikely to detect the bug in Fig. 5 even though its depth is only
1. To force the black constraint, this scheduler has to consistently
schedule Thread 1 for m + 2 steps, resulting in a probability that
is inverse exponential in m — a small quantity even for moderate
m. One could then try to improve this scheduler by biasing the
coin towards Thread 1 to increase the likelihood of hitting this bug.
This still contains an exponential in m. But more importantly, any
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Thread 2
assert(a != 0)
step(1);
step(2);
…
…
step(n);
b = 0;

Thread 1
assert(b != 0)
step(1);
step(2);
…
step(m);
a = 0;

Figure 5. A program with two bugs of depth 1 that are hard to find
with naive randomized schedulers that flip a coin in each step. PCT
finds both these bugs with a probability 1/2.

bias towards the black constraint, will be equally biased against the
second bug represented by the grey constraint.

In contrast, our PCT scheduler will find both bugs (and all other
bugs with depth 1) with probability 1/2 for this program.

2.5 The PCT Algorithm
We now describe our key contribution, a randomized scheduler
that detects bugs of depth d with a guaranteed probability in every
run of the program. Our scheduler is priority-based. The scheduler
maintains a priority for every thread, where lower numbers indicate
lower priorities. During execution, the scheduler schedules a low
priority thread only when all higher priority threads are blocked.
Only one thread is scheduled to execute in each step. A thread can
get blocked if it is waiting for a resource, such as a lock that is
currently held by another thread.

Threads can change priorities during execution when they pass
a priority change point. Each such point is a step in the dynamic
execution and has a predetermined priority value associated with it.
When the execution reaches a change point, the scheduler changes
the priority of the current thread to the priority value associated
with the change point.

Given inputs n, k, and d, PCT works as follows.

1. Assign the n priority values d, d+1, . . . , d+n randomly to the
n threads (we reserve the lower priority values 1, . . . , (d − 1)
for change points).

2. Pick d − 1 random priority change points k1, . . . , kd−1 in the
range [1, k]. Each ki has an associated priority value of i.

3. Schedule the threads by honoring their priorities. When a thread
reaches the i-th change point (that is, when it executes the ki-th
step of the execution), change the priority of that thread to i.

This randomized scheduler provides the following guarantee.

Given a program that creates at most n threads and exe-
cutes at most k instructions, PCT finds a bug of depth d
with probability at least 1/nkd−1.

2.6 Intuition Behind the Algorithm
See Fig. 6 for an illustration of how our algorithm finds the errors in
Fig. 1. This figure shows the initial thread priorities in white circles
and the priority change points in black circles. To understand the
working of the scheduler, observe that a high priority thread runs
faster than a low priority thread. So, barring priority inversion
issues, an ordering constraint a→ b is satisfied if a is executed by a
higher priority thread. In Fig. 6(a), the bug is found if PCT chooses
a lower priority for Thread 1 than Thread 2. The probability of this
is 1/2 and thus PCT is expected to find this bug within the first two
runs.

If there are more than two threads in the program in Fig. 6(a),
then the algorithm has to work harder because of priority inversion
issues. Even if Thread 1 has a lower priority than Thread 2, the
latter can be blocked on a resource held by another thread, say
Thread 3. If Thread 3 has a priority lower than Thread 1, then this
priority inversion can allow Thread 1 to execute the initialization
before Thread 2 reads t. However, such a priority inversion cannot
happen if Thread 1 has the lowest priority of all threads in the
program. The probability of this happening is 1/n which is our
guarantee.

For bugs with depth greater than 1, we need to understand the
effects of priority change points. (Our algorithm does not introduce
priority change points when d = 1.) In Fig. 6(b), the atomicity
violation is induced if PCT inserts a priority change point after
the null check but before executing the branch. The probability of
this is 1/k as PCT will pick the change point uniformly over all
dynamic instructions. In addition, PCT needs to ensure the first
constraint by running Thread 1 with lowest priority till Thread
2 does the null check. Together, the probability of finding this
atomicity violation is at least 1/nk.

The same argument holds for the deadlock in Fig. 6(c). PCT
has to insert a priority change point after Thread 1 acquires the first
lock before acquiring the second. The probabilistic guarantee of
our algorithm with multiple priority change points in the presence
of arbitrary synchronizations and control flow in the program, and
issues of priority inversion is not readily apparent from the discus-
sion above. Section 3 provides a formal proof that accounts for all
these complications.

2.6.1 Worst-case vs. actual probability
The probabilistic guarantee provided by PCT is a worst-case
bound. In other words, for any program that an adversary might
pick, and for any bug of depth d in that program, PCT is guaran-
teed to find the bug with a probability not less than 1/nkd−1. This
bound is also tight. There exists programs, such as the one in Fig. 4,
for which PCT can do no better than this bound.

In practice, our experiments (discussed in Section 5) show that
PCT often detects bugs with much better probability than the worst-
case guarantee. The reason is that there are often multiple indepen-
dent ways to find the same bug, and the probability of these adds
up. More specifically, consider the following 3 example scenarios.

1. Sometimes it is good enough for priority change points to fall
within some range of instructions. For example, Thread 1 in
Fig. 6(c) may perform lots of instructions between the two
acquires. PCT will find the deadlock if it picks any one of them
to be a priority change point.

2. Sometimes a bug can be found in different ways. For instance,
in Fig. 6(c), there exists a symmetric case in which PCT inserts
a priority change point in Thread 2.

3. Sometimes a buggy code fragment is repeated many times in a
test, by the same thread or by different threads, and thus offers
multiple opportunities to trigger the bug.

3. Algorithm
In this section, we build a formal foundation for describing our
scheduler and prove its probabilistic guarantees.

3.1 Definitions
We briefly recount some standard notation for operations on se-
quences. Let T be any set. Define T ∗ to be the set of finite se-
quences of elements from T . For a sequence S ∈ T ∗, define
length(S) to be the length of the sequence. We let ε denote the
sequence of length 0. For a sequence S ∈ T ∗ and a number n
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Thread 2
…
…
if (t->state == 1)
…

…

Thread 1
…
t = new T()
…
…
…

Thread 2
…
…
if (x != null)

x->print();

Thread 1
…
…
x = null;
…
…

Thread 2
…
…
lock(b);
…
lock(a);

Thread 1
…
lock(a);
…
lock(b);
…

1 2 2 3

1
1

23

d=1 d=2 d=2

(a) (b) (c)

Figure 6. Illustration on how our randomized scheduler finds bugs of depth d, using the examples from Fig. 1. The scheduler assigns random
initial thread priorities {d, . . . , d+ n− 1} (white circles) and randomly places d− 1 priority change points of values {1, . . . , d− 1} (black
circles) into the execution. The bug is found if the scheduler happens to make the random choices shown above.

Require: program P , d ≥ 0
Require: n ≥ maxthreads(P ), k ≥ maxsteps(P )
Require: random variables k1, . . . , kd−1 ∈ {1, . . . , k}
Require: random variable π ∈ Permutations(n)

1: procedure RandS(n, k, d) begin
2: var S : schedule
3: var p : array[n] of N
4: S ← ε

// set initial priorities
5: for all t ∈ {1, . . . , n} do
6: p[t]← d+ π(t)− 1
7: end for
8: while enP (S) 6= ∅ do
9: /* schedule thread of maximal priority */

10: t← element of enP (S) such that p[t] maximal
11: S ← S t

/* are we at priority change point? */
12: for all i ∈ {1, . . . , d− 1} do
13: if length(S) = ki then
14: p[t] = d− i
15: end if
16: end for
17: end while
18: return S
19: end

Figure 7. The randomized scheduler.

such that 0 ≤ n < length(S), let S[n] be the n-th element of S
(where counting starts with 0). For t ∈ T and S ∈ T ∗, we write
t ∈ S as a shorthand for ∃m : S[m] = t. For any S ⊂ T ∗ and
for any n,m such that 0 ≤ n ≤ m ≤ length(S), let S[n,m] be
the contiguous subsequence of S starting at position n and ending
at (and including) position m. For two sequences S1, S2 ∈ T ∗, we
let S1S2 denote the concatenation as usual. We do not distinguish
between sequences of length one and the respective element. We
call a sequence S1 ∈ T ∗ a prefix of a sequence S ∈ T ∗ if there
exists a sequence S2 ∈ T ∗ such that S = S1S2. A set of sequences
P ⊆ T ∗ is called prefix-closed if for any S ∈ P , all prefixes of P
are also in P .

DEFINITION 1. Define T = N to be the set of thread identifiers.
Define Sched = T ∗ to be the set of all schedules. Define a
program to be a prefix-closed subset of Sched . For a given program
P ⊆ Sched , we say a schedule S ∈ P is complete if it is not the
prefix of any schedule in P beside itself, and partial otherwise.

Thus, we represent a program abstractly by its schedules, and each
schedule is simply a sequence of thread identifiers. For example,
the sequence 1 2 2 1 represents the schedule where thread 1 takes
one step, followed by two steps by thread 2, followed by another
step of thread 1. We think of schedules as an abstract representation
of the program state. Not all threads can be scheduled from all
states, as they may be blocked. We say a thread is enabled in a
state if it can be scheduled from that state.

DEFINITION 2. Let P ⊆ Sched be a program. For a sched-
ule S ∈ P , define enP (S) to be the set {t ∈ T | S t ∈
P}. Define maxsteps(P ) = max{length(S) | S ∈ P} and
maxthreads(P ) = max{S[i] | S ∈ P} (or∞ if unbounded).

Finally, we represent a concurrency bug abstractly as the set of
schedules that find it:

DEFINITION 3. Let P ⊆ Sched be a program. Define a bug B of
P to be a subset B ⊂ P .

3.2 The Algorithm
We now introduce the randomized scheduler (Fig. 7). It operates
as described informally in Section 2.5. We expect RandS(n, k, d)
to be called with a conservative estimate for n (number of threads)
and k (number of steps). During the progress of the algorithm, we
store the current schedule in the variable S, and the current thread
priorities in an array p of size n. The thread priorities are initially
assigned random values (chosen by the random permutation π). In
each iteration, we pick an enabled thread of maximal priority t
and schedule it for one step. Then we check if we have reached
a priority change point (determined by the random values ki),
and if so, we change the priority of t accordingly. This process
repeats until no more threads are enabled (that is, we have reached
a deadlock or the program has terminated).

3.3 Probabilistic Coverage Guarantee
In this section, we precisely state and then prove the probabilistic
coverage guarantees for our randomized scheduler, in three steps.
First, we introduce a general mechanism for identifying dynamic
events in threads, which is a necessary prerequisite for defining or-
dering constraints on such events. Next, we build on that basis to
define the depth of a bug as the minimum number of ordering con-
straints on thread events that will reliably reveal the bug. Finally,
we state and prove the core theorem.

3.3.1 Event Labeling
The first problem is to clarify how we define the events that par-
ticipate in the ordering constraints. For this purpose, we introduce
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a general definition of event labeling. Event labels must be unique
within each execution, but may vary across executions. Essentially,
an event labeling E defines a set of labels LE (where each label
a ∈ LE belongs to a particular thread threadE(a)) and a function
nextE(S, t) that tells us what label (if any) the thread t is going to
emit if scheduled next after schedule S. More formally, we define:

DEFINITION 4. Let P be a program. An event labelingE is a triple
(LE , threadE ,nextE) where LE is a set of labels, threadE is a
function LE → T , and nextE is a function P ×T → (LE∪{⊥}),
such that the following conditions are satisfied:

1. (Affinity) If nextE(S, t) = a for some a ∈ LE , then threadE(a) =
t.

2. (Stability) If nextE(S, t) = a for some a ∈ LE , and if t 6= t′,
then nextE(S t′, t) = a.

3. (Uniqueness) If nextE(S1, t) = nextE(S1S2, t) = a for some
a ∈ LE , then t /∈ S2.

4. (NotFirst) nextE(ε, t) =⊥ for all t ∈ T .

Sometimes, we would like to talk about labels that have already
been emitted in a schedule. For this purpose we define the auxiliary
functions labelE and labelsE as follows. For S ∈ P and 0 ≤ m <
length(S), we define labelE(S,m) = a if the label a is being
emitted at position m, and we define labelsE(S) to be the set of
all labels emitted in S (more formally, labelE(S,m) = a if there
exists k < m and an a ∈ LE such that nextE(S[0, k], S[m]) = a
and S[m] /∈ S[k + 1,m − 1], and labelE(S,m) =⊥ otherwise;
and labelsE(S) = {labelE(S,m) | 0 ≤ m < length(S)}).

3.3.2 Bug Depth
We now formalize the notion of ’ordering constraints’ and ’bug
depth’ that we motivated earlier. Compared to our informal intro-
duction from Section 2.3, there are two variations worth mention-
ing. First, we generalize each edge constraint (a, b) (where a and
b are event labels) to allow multiple sources (A, b), where A is a
set of labels all of which have to be scheduled before b to satisfy
the constraint. Second, because we are using dynamically gener-
ated labels as our events, we require that the ordering constraints
are sufficient to guide the scheduler to the bug without needing to
know about additional constraints implied by the program structure
(as motivated by the example in Fig. 4).

We formulate the notion of a directive D of size d, which
consists of a labeling and d constraints. The idea is that a directive
can guide a schedule towards a bug, and that the depth of a bug is
defined as the minimal size of a directive that is guaranteed to find
it.

DEFINITION 5. For some d ≥ 1, a directive D for a program
P is a tuple (E,A1, b1, A2, b2, . . . , Ad, bd) where E is an event
labeling for P , where A1, . . . , Ad ⊆ LE are sets of labels, and
where b1, . . . bd ∈ LE are labels that are pairwise distinct (bi 6= bj
for i 6= j). The size of D is d and is denoted by size(D).

DEFINITION 6. Let P be a program and letD be a directive for P .
We say a schedule S ∈ P violates the directiveD if either (1) there
exists an i ∈ {1, . . . , d} and an a ∈ Ai such that bi ∈ labelsE(S),
but a /∈ labelsE(S), or (2) there exist 1 ≤ i < j ≤ d such that
bj ∈ labelsE(S), but bi /∈ labelsE(S). We say a schedule S ∈ P
satisfies D if it does not violate D, and if bi ∈ labelsE(S) for all
1 ≤ i ≤ d.

DEFINITION 7. Let P be a program, B be a bug of P , and D be a
directive for P . We say D guarantees B if and only if the following
conditions are satisfied:

1. For any partial schedule S ∈ P that does not violate D, there
exists a thread t ∈ enP (S) such that S t does not violate D.

Require: program P , d ≥ 0
Require: n >= maxthreads(P )
Require: k1, . . . , kd−1 ≥ 1
Require: π ∈ Permutations(n)
Require: random variables k1, . . . , kd−1 ∈ {1, . . . , k}
Require: random variable π ∈ Permutations(n)
Require: bug B
Require: directive D = (E,A1, b1, . . . , Ad, bd) for B

1: procedure DirS(n, k, d,D) begin
2: var S : schedule
3: var p : array[n] of N
4: S ← ε

// set initial priorities
5: for all t ∈ {1, . . . , n} do
6: p[t]← d+ π(t)− 1
7: end for
8: [ assert: p[threadE(b1)] = d ]
9: while enP (S) 6= ∅ do

/* schedule thread of maximal priority */
10: t← element of enP (S) such that p[t] maximal
11: S ← S t

/* change priority first time we peek a b-label */
12: for all i ∈ {1, . . . , d− 1} do
13: if nextE(S, t) = bi+1 and p[t] 6= d− i then
14: p[t] = d− i
15: [ assert: length(S) = ki ]
16: end if
17: end for
18: end while
19: return S
20: end

Figure 8. The directed scheduler.

2. Any complete schedule S that does not violate D does satisfy
D and is in B.

DEFINITION 8. Let P be a program, and letB be a bug of P . Then
we define the depth of B to be

depth(B) = min{size(D) | D guarantees B}

3.3.3 Coverage Theorem
The following theorem states the key guarantee: the probability
that one invocation RandS(n, k, d) of our randomized scheduler
(Fig. 7) detects a bug of depth d is at least 1

nkd−1 .

THEOREM 9. Let P be a program with a bug B of depth d, let
n ≥ maxthreads(P ), and let k ≥ maxsteps(P ). Then

Pr[RandS(n, k, d) ∈ B] ≥ 1

nkd−1

Proof Because B has depth d, we know there exists a directive D
forB of size d. Of course, in any real situation, we do not knowD,
but by Def. 8 we know that it exists, so we can use it for the pur-
poses of this proof. Essentially, we show that even without know-
ing D, here is a relatively high probability that RandS(n, k, d)
follows the directive D by pure chance. To prove that, we first con-
struct an auxiliary algorithm DirS(n, k, d,D) (Fig. 8) that uses
the same random variables as RandS , but has knowledge of D and
constructs its schedule accordingly.

Comparing the two programs, we see two differences. First,
Line 13 uses a condition based on D to decide when to change pri-
orities. In fact, this is where we make sure the call to DirS(n, k, d,D)
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is following the directiveD: whenever we catch a glimpse of thread
t executing one of the labels bi (for i > 1), we change the priority
of t accordingly. Second, DirS has assertions which are not present
in RandS . We use these assertions for this proof to reason about
the probability that DirS guesses the right random choices. The
intended behavior is that DirS fails (terminating immediately) if it
executes a failing assertion.

The following three lemmas (the proofs are provided in the
appendix) are key for our proof construction:

• DirS succeeds with probability ≥ 1
nkd−1 (Lemma 16).

• If DirS succeeds, it returns a schedule that finds the bug
(Lemma 12).

• If DirS succeeds, it returns the same schedule as RandS
(Lemma 15).

We can formally assemble these lemmas into a proof as follows.
Our sample space consists of all valuations of the random variables
π and k1, . . . , kd−1. By construction, each variable is distributed
uniformly and independently (thus, the probability of each valua-
tion is equal to n!kd−1). Define S to be the event (that is, set of all
valuations) such that DirS(n, k, d,D) succeeds, and let S be its
complement. Then

Pr[RandS(n, k, d) ∈ B]

= Pr[RandS(n, k, d) ∈ B | S] · Pr[S]

+ Pr[RandS(n, k, d) ∈ B | S] · Pr[S]

≥ Pr[RandS(n, k, d) ∈ B | S] · Pr[S]

= Pr[DirS(n, k, d,D) ∈ B | S] · Pr[S] (by Lemma 15)
= 1 · Pr[S] (by Lemma 12)

≥ 1

nkd−1
(by Lemma 16).

4. Implementation
This section describes our implementation of the PCT scheduler for
x86 binaries.

4.1 Design Choices
The PCT scheduler, as informally described in Section 2, is based
on thread priorities. The obvious way to implement PCT would
be to reuse the priority mechanisms already supported by mod-
ern operating systems. We chose not to for the following reason.
The guarantees provided by PCT crucially rely on a low priority
thread proceeding strictly slower than a high priority thread. OS
priorities do not provide this guarantee. In particular, priority boost-
ing [13] techniques can arbitrarily change user-intended priorities.
Similarly, our scheduler would not be able to control the relative
speeds of two threads with different priorities running concurrently
on different processors.

For fine-grained priority control, we implemented PCT as a
user-mode scheduler. PCT works on unmodified x86 binaries. It
employs binary instrumentation to insert calls to the scheduler
after every instruction that accesses shared memory or makes a
system call. The scheduler gains control of a thread the first time
the thread calls into the scheduler. From there on, the scheduler
ensures that the thread makes progress only when all threads with
higher priorities are blocked. Thread priorities are determined by
the algorithm as described in Section 2.

Our scheduler is able to reliably scale to large programs. We are
successfully able to run unmodified versions of Mozilla Firefox and
Internet Explorer, two popular web browsers, and find bugs in them.
Our initial prototype slows down the execution of the program by

2 to 3 times. This is well within the expected slowdowns for any
binary instrumentation tool.

One challenge we identified during our implementation is the
need for our scheduler to be starvation free. It is common for con-
current programs to use spin loops. If, under PCT, a high priority
thread spins waiting for a low priority thread, the program will live-
lock — PCT does not schedule the low priority thread required for
the high priority thread to make progress. To avoid such starvation
issues, PCT uses heuristics, such as repeated yields performed by a
thread, to identify threads that are not making progress and lowers
their priorities with a small probability.

4.2 Optimizations
The base algorithm described in Section 2 requires that the sched-
uler have the capability of inserting a priority change point at ran-
domly selected instructions. This has two disadvantages. First, the
need to insert a change point at an arbitrary instruction requires
PCT to insert a callback after every instruction, slowing down the
performance. Second, by counting the number of instructions ex-
ecuted the large value for the parameter k can reduce the effec-
tiveness especially for bugs with depth ≥ 2. We introduced the
optimizations below to address this problem.

Identifying Synchronization Operations: The first optimiza-
tion relies on identifying synchronization operations and inserting
priority change points only at these operations. We first classify
thread operations into two classes: synchronization operations and
local operations. A synchronization operation can be used to com-
municate between threads, while a local operation is used for local
computation within a thread. Synchronization operations include
system calls, calls to synchronization libraries (such as pthreads),
and hardware synchronization instructions (such as interlocked in-
structions). In addition, we also treat accesses to flag variables,
volatile accesses, and data races (both programmer intended and
unintended) as “shared-memory synchronization.” Our classifica-
tion reflects the fact that these memory accesses result in commu-
nication between the threads. Local operations include instructions
that do not access memory and memory accesses that do not partic-
ipate in a data race (such as accessing the stack or accessing con-
sistently protected shared memory). Any of the existing data-race
detection tools [8, 10] or hardware mechanisms [22] can be used to
classify memory accesses into local or synchronization operations.
Other forms of synchronization are straightforward to identify from
the program binary.

This optimization relies on the following observation. For ev-
ery execution in which a priority change point occurs before a local
operation, there exists a behaviorally-equivalent execution in which
the priority change point occurs before the synchronization opera-
tion that immediately follows the local operation. This is because
the two executions differ only in the order of local operations. This
means that we only need to insert priority change points before
synchronization operations. This effectively reduces k in the prob-
abilistic bound by several orders of magnitude, from the maximum
number of instructions executed by the program to the maximum
number of synchronization operations. In the rest of the paper, we
only report the number of synchronization operations as k.

Identifying Sequential Execution: We observed for some
benchmarks that a significant portion of a concurrent execution
is actually sequential where there is only one enabled thread. In-
serting priority change points during this sequential execution is
not necessary. The same effect can be achieved by reducing the
priority at the point the sequential thread enables/creates a second
thread.

Identifying Join Points: Programs written with a fork-join
paradigm typically have multiple phases where a single thread
waits for a flurry of concurrent activity belonging to one phase to
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Programs Bug
Symptom Known?

Splash-FFT Platform dependent macro YES
Splash-LU missing a wait leading to YES
Splash-Barnes order violations YES/NO
Pbzip2 Crash during decompression YES
Work Steal Queue Internal assertion fails due YES/NO

to a race condition
Dryad Use after free failing an YES

internal assertion
IE Javascript parse error NO
Mozilla Crash during restoration NO

Table 1. Concurrency benchmarks and bugs. YES/NO indicates
both known and unknown bugs.

finish before starting the next phase. This is also a typical behav-
ior of long running stress tests that perform multiple iterations of
concurrency scenarios. Our implementation of PCT identifies these
phases whenever the program enters a state with one thread en-
abled. The effective k is the maximum number of synchronization
operations performed per phase.

Final Wait: Some concurrency bugs might manifest much later
than when they occur. We found that PCT missed some of the
manifestations as the main thread exits prematurely at the end of
the program. Thus, we artificially insert a priority change point for
the main thread before it exits.

5. Experiments
In this section, we describe the evaluation of our PCT scheduler
on several real-world programs of varying complexity. All experi-
ments were conducted on an quad-core Intel Xeon L5420 running
at 2.50GHz, with 16GB of RAM running 64-bit Windows Server
Enterprise operating system.

5.1 Experimental Setup
5.1.1 Benchmarks and Bugs
In our evaluation, we used open source applications such as Mozilla
Firefox code-named Shiretoko, a commercial web browser-Internet
Explorer, a parallel decompression utility - Pbzip2, three Splash
benchmarks (FFT, LU, Barnes), a work stealing queue implemen-
tation [11] and a component of Dryad [14]. We used these applica-
tions as most of these were used in prior work on discovering con-
currency bugs [20, 24]. Table 1 lists the manifestation of the bug in
these applications and also reports whether the bug was previously
known. PCT discovered all previously known bugs faster than re-
ported in respective prior work [20, 24]. We also find new bugs in
work stealing queue and Barnes benchmark that were missed by
prior work. Finally, we find previously unknown bugs in Firefox
and Internet Explorer.

Table 2 also lists the various properties of the benchmarks. The
table lists the number of threads (n), the total number of synchro-
nization operations executed (k), and the depth of the bug (d) in
the application. It also shows the effective number of operations af-
ter optimization (keff ) described in Section 4. It is interesting to
note that our prototype detected the bugs in Mozilla and Internet
Explorer even though, it has a large value of k. Moreover, Mozilla
Firefox and Internet Explorer are large applications and the ability
to detect bugs in these large applications demonstrates the scalabil-
ity of the tool.

Our prototype counts k (the number of steps) in each execution,
and then uses that value as an estimate for k in the next execution.
It may thus somewhat over- or underestimate the actual number of
steps if k varies between executions. This may somewhat degrade

Programs LOC d n k keff

Splash-FFT 1200 1 2 791 139
Splash-LU 1130 1 2 1517 996
Splash-Barnes 3465 1 2 7917 318
Pbzip2 1978 2 4 1981 1207
Work Steal Queue 495 2 2 1488 75
Dryad 16036 2 5 9631 1990
IE - 1∗ 25 1.4M 0.13M
Mozilla 245172 1∗ 12 38.4M 3M

Table 2. Characteristics of various benchmarks. Here 1M means
one million operations. 1∗ indicates that the previously unknown
bug was found while running with a bug depth of 1.

Programs Stress Random PCT
Sleep Measured Guaranteed

Splash-FFT 0.06 0.27 0.50 0.5
Splash-LU 0.07 0.39 0.50 0.5
Splash-Barnes 0.0074 0.0101 0.4916 0.5
Pbzip2 0 0 0.701 0.0001
Work Steal Queue 0 0.001 0.002 0.0003
Dryad 0 0 0.164 2× 10−5

Table 3. Measured or guaranteed probability of finding the bug
with various methods such as Stress, Random delay insertion meth-
ods and PCT and the worst-case bound (based on n, k and d in
Table 2).

the guaranteed worst-case probability but is not much of a concern
for practical efficiency.

5.1.2 Comparing Other Techniques
As a point of comparison, we also ran the benchmarks in Table 3
with our stress testing infrastructure. Our stress infrastructure ran
all these benchmarks under heavy load a million times. We made
a honest, good-faith effort to tune our stress infrastructure to in-
crease its likelihood of finding bugs. Our effort is reflected by the
fact that our stress infrastructure detected the known bugs in the
benchmarks with a higher probability and a lot quicker than prior
stress capabilities reported in literature [24].

As another interesting comparison, we implemented a scheme
that introduces random sleeps at synchronization operations with a
certain probability [1]. The experiments are sensitive to the partic-
ular probability of sleep. Again, we made a good-faith effort to find
the configuration that works best for our benchmarks. We exper-
imentally discovered a probability of 1/50 performed reasonable
well in detecting bugs.

These two reflect the state of the art concurrency testing tech-
niques that we are able to recreate in our setting. Heuristic-directed
testing [15, 24] and systematic scheduling [21] require sophisti-
cated analysis and we are currently unable to perform quantitative
experiments with these techniques. We compare with these tech-
niques qualitatively.

5.2 Effectiveness
5.2.1 Comparison with worst-case guarantee
Apart from discovering known and unknown bugs, to confirm
whether our prototype attains the worst-case guaranteed probabil-
ity of 1/nkd−1 as discussed in Section 3, we measured empirical
probabilities of detecting the bug with our prototype. In this exper-
iment, our prototype ran each application one million times with
each run having a different random seed. The relative frequency of
occurrence of the bug in these runs represents the empirical proba-
bility. Table 3 reports the empirical and the guaranteed worst-case
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probability of finding the bug with PCT. We report the measured
probabilities only for applications where it was feasible to do one
million runs.

prototype attains the worst-case guaranteed probability of
1/nkd−1 as discussed in Section 3, we measured empirical proba-
bilities of detecting the bug with our prototype. In this experiment,
our prototype ran each application one million times with each run
having a different random seed. The relative frequency of occur-
rence of the bug in these runs represents the empirical probability.
Table 3 reports the empirical and the guaranteed worst-case proba-
bility of finding the bug with PCT. We report the measured proba-
bilities only for applications where it was feasible to do one million
runs.

Table 3 reveals that the measured bug detection probability is as
low as the worst-case guaranteed probability in some cases, but far
exceeds it in others. For Barnes, LU and FFT that have 2 threads,
our implementation finds the bug with a probability approximately
half. For the Barnes benchmark, PCT slightly misses the worst-
case bound. This is the effect of priority perturbations introduced
to guarantee starvation-freedom, as discussed in Section 4.

For benchmarks with a bug of depth 2, namely Pbzip2, Work
Steal Queue, and Dryad, our implementation is orders of magni-
tude better than the worst-case bound. The Pbzip2 bug, shown in
Fig. 2 requires an extra constraint that the main thread does not
prematurely die before the error manifests. Since PCT guarantees
this by default (Section 4), PCT finds the bug as if it was a bug of
depth 1. Both Work Steal Queue and Dryad demonstrate the effect
of optimizations that reduce k. We study our results with the Work
Steal Queue in detail in Section 5.3.

5.2.2 Comparison to other techniques
Table 3 summarizes our experiments comparing PCT with stress,
synchronization based random sleeps. Our sophisticated stress in-
frastructure has trouble finding bugs of depth one which are triv-
ially caught by PCT. Note, that our stress infrastructure detects
bugs of in FFT, LU and Barnes much more successfully than re-
ported in prior literature [24].

Our random sleep scheme detects bugs in FFT, LU, Barnes
quicker than stress. It also detected the 2-edge bug in work stealing
queue albeit with a low probability. However it is not able to
find the bugs in Pbzip and Dryad. To summarize, PCT scheduler
discovers bugs with a higher probability and more quickly than
other schemes we investigated.

CHESS [21] finds the Work Steal Queue and the Dryad bug
after (approx.) 200 and 1000 runs of the program respectively. The
PCT scheduler detects the same bug in the 6th and 35th run of
the program respectively. We were unable to run CHESS on other
benchmarks. As the next section shows, PCT scales much better if
one increases the number of threads, while we expect CHESS to
perform exponentially worse.

In comparison to CTrigger [24], PCT finds the bug in the bench-
marks common to both well within the first three iterations. This is
more efficient as we do not require a separate profiling run required
by CTrigger.

5.3 Work Steal Queue Case Study
As a case study, we discuss the impact of increasing the number of
synchronization operations and the number of threads with the PCT
scheduler for the applications in Table 3. Due to space constraints,
we report the behavior only with the work stealing queue program.
Other benchmarks show similar behavior.

Work Steal Queue program implements a queue of work items
and was originally designed for the Cilk multithreaded program-
ming system [11]. In this queue, there are two kinds of threads
namely victims and stealers. Victim pushes and pops from the tail
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Figure 9. Measured probability of finding bugs with an increase in
the number of threads and number of items.

of the queue and a stealer steals from the head of the queue. The
application uses sophisticated lock-free synchronization to protect
the queue. To study the impact of increased threads, we increased
the number of stealers and the number of items being pushed and
popped.

5.3.1 Effect of Execution Size on PCT
Fig. 9 shows the probability of finding the bug with our prototype
implementing the PCT scheduler with an increase in the number
of threads and the number of operations for the work stealing
queue program. In this experiment, we increase n by increasing
the number of stealers. (The program requires that there is exactly
one victim.) Each stealer does two steal attempts, while the victim
pushes and pops a specified number of items. We increase k by
increasing the number of items.

Fig. 9 reveals that the probability of finding the bug actually
increases with the increase in the number of threads. Moreover, the
probability of finding the bug is same irrespective of the number
of operations. This result may seem surprising as the worst-case
guaranteed probability is 1/nk, which decreases with growing
parameters of n and k.

However, in this case, an increase of the different opportunities
to find the bug means that the probability adds up (as discussed
in Section 2.6.1). As the number of threads and the operations
increase, there are many opportunities to find the bug. PCT needs
to find the race condition when any one of the stealer is interfering
while attempting to steal any of the items.

5.3.2 PCT vs Stress
Fig. 10 shows the probability of finding the bug with the PCT
scheduler and stress testing with an increase in the number of
threads for the work stealing queue program. In this experiment,
the number of stealers was varied from 2 to 64 with total number
of items being pushed and popped by another thread at a constant
four items. As discussed earlier, the probability of PCT increases
with the number of threads. However, the interesting thing to note,
even with the sophisticated stress testing framework, the probabil-
ity of detecting the bug with stress is low and is non-deterministic.
Irrespective of the system load, PCT scheduler has the same prob-
ability of detecting the bug when given the same random seed.

5.3.3 Interleaving Coverage
To evaluate the coverage of thread events with PCT, we instru-
mented the work stealing queue program with twenty events, four-
teen events in the main thread which does the pushes and the pops
and six events in the stealer thread. There were a total of 168 unique
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Figure 11. Coverage of various thread events with the specified
number of program runs with PCT and Stress for the work stealing
queue program.

event pairs possible in this setting. Fig. 11 plots the cumulative per-
centage of the events covered as the program is run specified num-
ber of times. The horizontal axis represents the number of times the
program was run (in logarithmic scale). We restrict the horizontal
axis to the 8192 runs as stress did not explore any new event pair
beyond those already explored in the new runs after that and PCT
eventually explored all the event pairs. Fig. 10 showed that stress
had a low probability of catching the bug. Fig. 11 shows that stress
does not cover more than 20% of the event pairs, few of which re-
sult in a bug. Thus, stress’s inability/ineffectiveness to detect the
bug is highly correlated with the event pairs not covered. The abil-
ity to cover almost all the event pairs enables PCT to detect the
bug.

6. Related Work
Our work is closely related with concurrency verification and test-
ing techniques that aim to find bugs in programs. We classify prior
work and compare our work below.

Dynamic Scheduling: PCT is related to techniques that control
the scheduler to force the program along buggy schedules. Stress
testing is a commonly used method where the program is subjected
to heavy load in the presence of artificial noise created by both
running multiple unrelated tests simultaneously and by inserting
random sleeps, thread suspensions, and thread priority changes. In
contrast, PCT uses a disciplined, mathematically-random priority

mechanism for finding concurrency bugs. This paper shows that
PCT outperforms stress theoretically and empirically.

Prior approaches for generating randomized schedules [7, 25]
insert random sleep at synchronization points and use heuristics
based on various coverage criteria, concurrency bug patterns and
commutativity of thread actions to guide the scheduler [9]. These
approaches involve a random decision at every scheduling point.
As shown in Section 2, even simple concurrency bugs can frustrate
these techniques. In stark contrast, PCT uses a total of n + d − 1
random decisions, together for the initial thread priorities and d−1
priority change points. Our key insight is that these small but
calculated number random decisions are sufficient for effectively
finding bugs.

Researchers have also proposed techniques that actively look for
concurrency errors [15, 24]. They use sophisticated analysis, either
by running profiling runs that detect suspicious non-serializable ac-
cess patterns [24], or use static or dynamic analysis to find poten-
tial deadlocks [15]. In a subsequent phase these techniques heuris-
tically perturb the OS scheduler guided by the prior phase. Our
technique does not require prior analysis but it still is compara-
ble in bug-finding power of these techniques. For instance, for the
SPLASH2 benchmarks used in the former technique [24], PCT
finds the bug in the first few runs far less time than required for
the profiling runs in the previous approach. However, our technique
is orthogonal to these approaches and identifying potential buggy
locations can improve PCT as well.

Systematic Exploration: Model checking techniques [12, 21]
systematically explore the space of thread schedules of a given
program in order to find bugs. These techniques can prove the
absence of errors only after exploring the state space completely.
In contrast, PCT provides a probabilistic guarantee after every run
of the program. With respect to bug-finding capability, we have
compared PCT with the CHESS tool [21] on two benchmarks. PCT
finds bugs much faster than CHESS in both cases.

CHESS uses a heuristic of exploring schedules with fewer num-
ber of preemptions. By default, CHESS explores executions non-
preemptively except at few chosen steps where it inserts preemp-
tions. In contrast, PCT is a priority based scheduler and can intro-
duce arbitrary number of preemptions in the presence of blocking
operations even if the bug depth is small. For instance, when a low-
priority thread wakes up a higher-priority thread, a priority-based
scheduler preempts the former to scheduler the latter.

Concurrency Bug Detection: Our approach is also related to
numerous hardware and software techniques that find concurrency
errors dynamically but without exercising any scheduler control [8,
10, 18, 27]. PCT’s goal is to direct the scheduler towards buggy
schedules and requires that these bugs are detected by other means,
either by a program assertion or with the use of these concurrency
bug detection engines.

Scheduling Control: There are other good reasons for exercis-
ing scheduling control. These techniques either attempt to enforce a
subset of interleavings [4, 23, 28] or prevent potential bugs [16, 18]
inferred during the current (or prior) run of the program. PCT is
doing the opposite — forcing the program towards bugs. A con-
trolled scheduler can also be useful for reproducing buggy execu-
tions [2, 6, 17, 26] once the bugs have manifested. The PCT sched-
uler is deterministic given a random seed, and thus can also be used
to reproduce execution with an appropriate replay mechanism to re-
generate inputs [5]. Finally, researchers have proposed scheduling
variations for debugging concurrent programs [3].

7. Conclusion
This paper describes PCT, a randomized algorithm for concurrency
testing. PCT uses a disciplined schedule-randomization technique
to provide efficient probabilistic guarantees of finding bugs during
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testing. We evaluate an implementation of PCT for x86 executa-
bles on demonstrate its effectiveness in finding several known and
unknown bugs in large-scale software.
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A. Proofs
The lemmas in the section below are part of the proof of Thm. 9 in
Section 3, moved to the appendix as to not disrupt the flow of the
paper.

LEMMA 10. If nextE(S, t) = bj right before executing line 11 of
DirS(n, k, d,D), and if S does not violateD, then p[t] = d−j+1.

Proof Distinguish cases j > 1 and j = 1.
Case j > 1. Def. 4 implies that the first action by any thread is

not labeled, so our assumption nextE(S, t) = bj implies that there
is a m < length(S) such that S[m] = t. Choose a maximal such
m. Then we know nextE(S[0,m], t) = bj (because Def. 4 implies
that the next label does not change if other threads are scheduled).
Thus, in the iteration that added S[m] to the schedule, the test
nextE(S[0,m], t) = bi+1 on line 13 must have evaluated to true
for i = j−1 (and for no other i, because the bi are pairwise distinct
by Def. 4). So we must have assigned p[t]← d− j + 1 on line 14.
Because we chose m maximal, t was never scheduled after that, so
its priority did not change and must thus still be p[t] = d− j + 1.

Case j = 1. If we are about to execute line 11, then the assertion
on line 8 must have succeeded, so at that time it was the case
that p[t] = d − j + 1. After that, p[t] could not have changed:
suppose line 14 was executed at some point to change p[t]. Say the
value of variable S at that point was S[0,m]. Then the condition
nextE(S[0,m], t) = bi+1 on line 13 must have evaluated to true
for some i. Now, because we know nextE(S, t) = bj and because
bj 6= bi+1 (by Def. 4), there must exist a m′ > m such that
S[m′] = t (by Def. 4). But that implies labelE(S,m′) = bi+1,
and since bj /∈ labelsE(S), S violates D which contradicts the
assumption.

LEMMA 11. Let 1 ≤ t′ ≤ n, and let p[t′] = d − j + 1 for some
j ≥ 2 at the time line 10 is executed. Then either bj ∈ labelsE(S),
or nextE(S, t′) = bj .

Proof The only way to assign priorities less than d is through the
assignment p[t] = d− i on line 14. So this line must have executed
with t = t′ and i = j−1. Thus, the condition nextE(S, t) = bi+1

was true at that point, which is identical to nextE(S, t′) = bj .
If t′ is not scheduled after that point, this condition is still true;
conversely, if t′ is scheduled, then it must execute the label bj ,
implying bj ∈ labelsE(S).

LEMMA 12. When executing DirS(n, k, d,D), the following con-
ditions are satisfied.

1. any schedule returned at the end is in B.
2. at all times, the variable S is a schedule that does not violate
D.

Proof Clearly, the second claim follows from the first because if
the while-loop terminates, S is a complete schedule, and by Def. 6,
any complete schedule that does not violate D is in B.

To prove the first claim, we proceed indirectly. If S violates D,
the first moment it does so must be right after executing S ← St
on line 11. Now, consider the state right before that. S does not
violate D. Therefore, by Def. 6 there must exist an alternate choice
t′ ∈ enP (S) such that St′ does not violate D. Because the
algorithm is choosing t over t′, it must be the case that p[t] ≥ p[t′].
Now, we know St violatesD, but S does not, therefore (by Def. 5),
there is an i such that nextE(S, t) = bi. By Lemma 10, this implies
that p[t] = d − i + 1. Thus we know p[t′] < d − i + 1, thus
p[t′] = d− j + 1 for some j > i. By Lemma 11, that implies that
either bj ∈ labelsE(S) or bj ∈ nextE(S, t′). But both of these
lead to a contradiction: bj ∈ labelsE(S) means that S violates D
(because bi /∈ labelsE(S)), and bj ∈ nextE(S, t′) means that St′

violates D.

LEMMA 13. During the execution of DirS(n, k, d,D) the asser-
tion on line 15 is executed at most once for each i ∈ {1, . . . , d−1}.

Proof Consider the first time the assertion length(S) = ki on
line 15 is executed for a given i. Then it must the case that
nextE(S, t) = bi+1. Because labels don’t repeat, the only chance
for this condition to be true again is for the same i (because the bi
are pairwise distinct) during the immediately following iterations
of the while loop, and only if threads other than t are scheduled.
But in that scenario, the priority p[t] does not change, so the second
part p[t] 6= d− i of the condition on line 13 can not be satisfied.

LEMMA 14. If DirS(n, k, d,D) succeeds, it executes the asser-
tion length(S) = ki on line 15 at least once for each i ∈
{1, . . . , d− 1}.

Proof Because DirS(n, k, d,D) succeeds, it produces a complete
schedule S which does not violate D. Thus, bi ∈ labelsE(S) for
all i ∈ {1, . . . , d}. Thus, for each i ∈ {2, . . . , d}, there must be an
m such that S[0,m], threadE(bi)) = bi. Thus, the condition on
line 13 must be satisfied at least once for each i ∈ {1, . . . , d− 1},
so we know the assertion length(S) = ki on line 15 gets executed
for each i ∈ {1, . . . , d− 1}.

LEMMA 15. If DirS(n, k, d,D) succeeds, then

RandS(P, n, d) = DirS(n, k, d,D).

Proof To prove the claim, we now show that the two respective
conditions on lines 13

length(S) = ki (1)
nextE(S, t) = bi+1 and p[t] 6= d− i (2)

evaluate the same way, for any given iteration of the while and
for loops (identified by current values of S and i, respectively).
Clearly, if (2) evaluates to true for some S and i, DirS executes
the assertion on line 15, thus guaranteeing that (1) also evaluates to
true. Conversely, if (1) evaluates to true for some S and i, consider
that DirS must execute an assertion of the form length(S′) = ki

at some point (by Lemma 14); but it turns out that this must
happen in the very same iteration because the length of S uniquely
identifies the iteration of the while loop, so the condition (2) must
be satisfied.

LEMMA 16. The probability that DirS(n, k, d,D) succeeds is at
least 1

nkd−1 .

Proof DirS(n, k, d,D) succeeds if and only if if (1) the asser-
tion p[threadE(b1)] = d on line 8 passes, and (2) the asser-
tion length(S) = ki on line 15 passes every time it is executed.
The probability of the former passing is 1/n (because a random
permutation assigns the lowest priority to any given thread with
probability 1/n), while the probability of each latter passing is
1/k (because the random variables ki range over {1, . . . , k}). By
Lemma 13, the assertions length(S) = ki are executed at most
once for each i. Thus, all of the assertions involve independent
random variables, so we can multiply the invidual success prob-
abilities to obtain a total success probability for DirS of at least
(1/n) · (1/k)d−1.
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