
Lecture 11

Explicit State Checkers

Zvonimir Rakamarić
University of Utah

CS 5110/6110 – Software Verification | Spring 2018

Feb-21

Last Time

 Loops and loops invariants

 Strategies for proving programs correct

Desugaring While Loop Using Invariant

 while E invariant J do S end

assert J;

havoc x; assume J;

(

assume E; S; assert J; assume false



assume :E

)

check that the loop

invariant holds initially

where x denotes the

assignment targets of S

jump to an arbitrary

iteration of the loop

check that the loop invariant is

maintained by the loop body

exit the loop

Dafny

 Simple “verifying compiler”

 Proves procedure contracts statically for all

possible inputs

 Uses theory of weakest preconditions

 Input

 Annotated program written in simple imperative

language

 Preconditions

 Postconditions

 Loop invariants

 Output

 Correct or list of failed annotations

Proving Correctness: Strategies

 Read Chapter 6

 Heuristics, requires intuition and practice

 Loop invariants are key and typically hardest

part

 Strategies

 Include all basic simple facts

 For example, loop counter should be between 0 and n

 Come up with complex invariants using the

“precondition method”

 Figure out which fact is failing, and compute its weakest

precondition up to loop header

 Comes more naturally with practice

This Time

 Checking concurrent programs using explicit-

state model checking

Concurrency is Pervasive

 Old problem of computer science

 Ancient supercomputers

 Today

 Multi-cores even in cell phones

 Many-cores in desktops

 Most programs are concurrent

 At least the ones you care about

Concurrency is Hard I

 Inefficient (dumb) concurrency is easy

 Big fat lock around everything

 Poor performance

 Efficient concurrency is hard

 A concurrent program should

 Function correctly

 Maximize throughput

 Finish as many tasks as possible

 Minimize latency

 Respond to requests as soon as possible

 While handling nondeterminism in the environment

Concurrency is Hard II

 Huge number of possible thread

interleavings/schedules

 Concurrent program with n threads where each

thread has k instructions has

(n*k)! / (k!)n ¸ (n!)k

interleavings

 Exponential in both n and k!

 Example: 5 threads with 5 instruction each

25! / 5!5 = 6.2336074e+14

= 623 trillion interleavings

Concurrency is Hard III

 Concurrent executions (thread interleavings)

are highly nondeterminisitic

 Stress testing

 Trying to explore many different thread

interleavings by creating hundreds of threads

 Stress testing is highly inefficient

 Some concurrency bugs occur only in certain

thread interleavings

 Finding the “right” thread interleaving is pure luck

 No notion of coverage

 Running for days, even months

Concurrency Bugs

 Rare thread interleavings result in Heisenbugs

 Difficult to find, reproduce, and debug

 Observing the bug can “fix” it

 E.g., likelihood of interleavings changes when you

add printf statements

 A huge productivity problem

 Developers and testers can spend weeks chasing

a single Heisenbug

Model Checking I

 Model checking is

 checking whether a program satisfies a property by

exploring its state space

 systematic state-space exploration = exhaustive

testing

 checking whether a system satisfies a temporal-logic

formula

Model Checking II

 Simple, automatic, and yet effective technique

for finding bugs in high-level hardware and

software models

 Invented in the early 1980s

 2008 Turing Award

 Edmund M. Clarke, E. Allen Emerson, Joseph

Sifakis

Software Model Checking Evolution

 General model checkers
 Examples: Spin, SMV, Murphi

 Custom input specification languages

 Require translation of the program into the input
language of the model checker
 Not automated

 Ad-hoc simplifications and abstractions

 Specialized software model checkers
 Work directly on source code

 Input language is a programming language

 Well-defined techniques for restricting the state
space

 Automated abstraction techniques

Simple Example

int x, y;

Thread 1:

1) x = 1;

2) y = 2;

3) x++;

4) y++;

Thread 2:

5) y = 3;

6) x = 2;

7) y++;

8) x++;

Explicit-State Model Checking of Programs

 Verisoft from Bell Labs

 C programs

 Handles concurrency, bounded search, bounded

recursion

 Uses stateless search and partial order reduction

 Java Path Finder (JPF) from NASA Ames

 Java programs

 Handles concurrency, bounded search, bounded

recursion

 Uses techniques similar to the ones in Spin

 CMC from Stanford for checking systems code

written in C

Java Path Finder (JPF)

 Program checker for Java

 Properties to be verified

 Program assertions

 LTL properties

 Depth-first and breadth-first search, heuristics

 Uses static analysis techniques to improve the

efficiency of the search

 Requires a complete Java program

 Cannot handle native code

JPF: First Version

 Translate from Java into the input language of
Spin (Promela)

 Spin cannot handle unbounded data
 Restrict the program to finite domains

 Fixed number of objects from each class
 Fixed bounds for array sizes

 Does not scale well when these fixed bounds
are increased

 Java source code is required for translation

JPF: Current Version

 Implements its own virtual machine
 Executes Java bytecode

 Doesn’t need source code

 Stores visited states and current path
 Exposes various “knobs” to the user to optimize

verification

 Traversal algorithm
 Traverses the state-graph of the program
 Tells VM to move forward, backward in the

state space, evaluate an assertion,…

Storing Program States

 JPF implements a systematic search on the

state space of the given Java program

 Systematic search requires storing visited states

 Program state consists of

 Information for each program thread

 Stack of frames, one for each called method

 Static fields in classes

 Locks and fields for classes

 Dynamic fields in objects

 Locks and fields for objects

Storing States Efficiently

 Intuition: different states have common parts

 Divide each state into a set of components and
store them separately

 Keep a pool for each component
 A table of field values, lock values, frame values

 Instead of storing the value of a component in a
state, store an index at which the component is
stored in the table in the state
 The whole state becomes an integer vector

 JPF collapses states to integer vectors using
this idea

State Space Explosion

 Major challenge in model checking

 Reduce the number of states that have to be

visited during state space exploration

Combating State Space Explosion

 Symmetry reduction

 Search equivalent states only once

 Partial order reduction

 Do not search thread interleavings that generate

equivalent behavior

 Static analyses

 Reduce state space using static analyses

 User-provided restrictions

 Manually bound variable domains, array sizes,…

Symmetry Reduction

 Some states of the program may be equivalent
 Equivalent states should be searched only once

 Some states may differ only in their memory
layout, the order objects are created, etc.
 May not have any effect on program behavior

Symmetry Reduction in JPF

 Order in which classes are loaded shouldn’t
effect the state
 There is a canonical ordering of classes

 Location of dynamically allocated heap objects

shouldn’t effect the state

 If we store the memory location as the state, then

we can miss equivalent states which have different

memory layouts

 Store some information about the new statements

and the number of times they are executed

Simple Symmetry Example

int x, y;

Foo a, b;

Thread 1:

1) a = new Foo();

2) x = 1;

3) y = 2;

4) x++;

5) y++;

Thread 2:

5) b = new Foo();

6) y = 3;

7) x = 2;

8) y++;

9) x++;

Partial Order Reduction

 Statements of concurrently executing threads

can generate many different interleavings

 All these different interleavings are allowable

behavior of the program

 Model checker checks all possible interleavings

for errors

 But different interleavings may generate equivalent

behaviors

 Partial order reduction

 It is sufficient to check just one representative

interleaving

Simple POR Example

int x, y;

Thread 1:

int a;

1) a = 5;

2) a++;

3) x = 1;

4) y = 2;

5) x++;

6) y++;

Thread 2:

int b;

5) b = 10;

6) b--;

7) y = 3;

8) x = 2;

9) y++;

10)x++;

Static Analysis in JPF

 Using static analysis techniques to reduce the

state space

 Slicing

 Partial evaluation

Static Analysis in JPF

 Slicing

 Remove program parts with no effect on the slicing

criterion

 A slicing criterion could be a program point

 Program slices are computed using dependency

analysis

 Partial evaluation

 Propagate constant values and simplify expressions

User-Provided Restrictions

 To improve scalability, users can restrict
domains of variables, sizes of arrays,…

 Restrictions under-approximate program
behaviors
 May result in missed errors

 Still useful in finding bugs

Next Time

 Checking concurrent programs using symbolic

techniques

