
Lecture 10

Loops and Loop Invariants

Zvonimir Rakamarić
University of Utah

slides acknowledgements: Z. Manna, R. Leino

CS 5110/6110 – Software Verification | Spring 2018

Feb-12

Last Time

 Design by contract

 Procedures

Desugaring Procedure Call

 procedure M(x,y,z) returns (r,s,t)

requires P

ensures Q

{S}

 call a,b,c := M(E,F,G)

desugared into:

x’ := E; y’ := F; z’ := G;

assert P’;

assume Q’;

a := r’; b := s’; c := t’;

where:

•x’,y’,z’,r’,s’,t’ are fresh variables

•P’ is P with x’,y’,z’ for x,y,z

•Q’ is Q with x’,y’,z’,r’,s’,t’ for

x,y,z,r,s,t

Desugaring Procedure Implementation

 procedure M(x,y,z) returns (r,s,t)

requires P

ensures Q

{S}

 Implementation is correct if this is correct:

assume P;

S;

assert Q;

This Time

 Loops

 Loop Invariants

 Strategies for proving programs correct

While Loop

while E

do

S

end

 Loop body S executed as long as loop

condition E holds

loop condition

loop body

Desugar While Loop by Unrolling N Times

while E do S end =

if E {

S;

if E {

S;

if E {

S;

if E {assume false;} // blocks execution

}

}

}

Example

i := 0;

while i < 2 do i := i + 1 end

i := 0;

if i < 2 {

i := i + 1;

if i < 2 {

i := i + 1;

if i < 2 {

i := i + 1;

if i < 2 {assume false;} // blocks execution

}

}

}

First Issue with Unrolling

i := 0;

while i < 4 do i := i + 1 end

i := 0;

if i < 4 {

i := i + 1;

if i < 4 {

i := i + 1;

if i < 4 {

i := i + 1;

if i < 4 {assume false;} // blocks execution

}

}

}

Second Issue with Unrolling

i := 0;

while i < n do i := i + 1 end

i := 0;

if i < n {

i := i + 1;

if i < n {

i := i + 1;

if i < n {

i := i + 1;

if i < n {assume false;} // blocks execution

}

}

}

While Loop with Invariant

while E

invariant J

do

S

end

 Loop body S executed as long as loop

condition E holds

loop condition

loop invariant

loop body

While Loop with Invariant cont.

while E

invariant J

do

S

end

 Loop invariant J must hold on every iteration

 J must hold initially and is evaluated before E

 J must hold even on final iteration when E is false

 Provided by a user or inferred automatically

 Loop invariant J must be inductive

 Must be able to prove it by just assuming it

loop condition

loop invariant

loop body

Desugaring While Loop Using Invariant

 while E invariant J do S end

assert J;

havoc x; assume J;

(

assume E; S; assert J; assume false

assume :E

)

check that the loop

invariant holds initially

where x denotes the

assignment targets of S

jump to an arbitrary

iteration of the loop

check that the loop invariant is

maintained by the loop body

exit the loop

Dafny

 Simple “verifying compiler”

 Proves procedure contracts statically for all

possible inputs

 Uses theory of weakest preconditions

 Input

 Annotated program written in simple imperative

language

 Preconditions

 Postconditions

 Loop invariants

 Output

 Correct or list of failed annotations

Dafny Architecture

Program with
specifications

Verification
condition
generator

Verification
conditions

Theorem
prover

Program
correct or list

of errors

Proving Correctness: Strategies

 Read Chapter 6

 Heuristics, requires intuition and practice

 Loop invariants are key and typically hardest

part

 Strategies

 Include all basic simple facts

 For example, loop counter should be between 0 and n

 Come up with complex invariants using the

“precondition method”

 Figure out which fact is failing, and compute its weakest

precondition up to loop header

 Comes more naturally with practice

(Dumb) Example: Multiply by 2

method Multiply2(n:int) returns (r:int)

{

r := 0;

var i:int := 0;

while (i < n)

{

r := r + 2;

i := i + 1;

}

}

 Specification:
 Given a non-negative integer n, function Multiply2

multiplies it by 2

Example: Initialize Array

 Signature:

InitializeArray(a:array<int>, e:int)

 Specification:

 Initializes elements of array a to e

 Show an example

 Implications

Vacuous Proof in Dafny

Example: Linear Search

 Signature:

LinearSearch(a:array<int>, l:int,

u:int, e:int) returns (r:bool)

 Specification:

 Returns true if e is found in array a between l

and u, otherwise returns false

