
Lecture 7

Concolic Execution

Zvonimir Rakamarić
University of Utah

CS 5110/6110 – Software Verification | Spring 2018

Jan-31



Last Time

 Drawbacks of concrete testing

 Symbolic execution

 Solutions for the path explosion problem

 Structural abstraction

 Compositional symbolic execution



Symbolic Execution

 Key idea: execution of programs using 

symbolic input values instead of concrete data

 Concrete vs symbolic 

 Concrete execution

 Program takes only one path determined by input 

values

 Symbolic execution

 Program can take any feasible path – coverage!



Symbolic Program State

 Symbolic values of program variables

 Path condition (PC)

 Logical formula over symbolic inputs

 Accumulates constraints that inputs have to satisfy 

for the particular path to be executed

 If a path is feasible its PC is satisfiable

 Program location



Symbolic Execution Tree

 Characterizes execution paths constructed 

during symbolic execution

 Nodes are symbolic program states

 Edges are labeled with program transitions



Example

1) int x, y;

2) if (x > y) {

3) x = x + y;

4) y = x – y;

5) x = x – y;

6) if (x > y)

7) assert false;

8) }



x:X, y:Y
PC:true

x:X, y:Y
PC:X>Y

x:X, y:Y
PC: X<=Y

x:X+Y, y:Y
PC:X>Y

x:X+Y, y:X
PC:X>Y

x:Y, y:X
PC:X>Y

x:Y, y:X
PC:X>Y Æ Y>X

x:Y, y:X
PC:X>Y Æ Y<=X

true

true false

false

SAT

SATUNSAT

SAT



Example

int foo(int a, int b) {
int k = a – b;
int t = a + b + 3;
if (a % 2 == 0) {

a = b++;
if (t > 0)

k = t – 2;
}
if (a + 6 > k)

b = 5;
if (t + a + b == 20)

assert false;
return t + a + b;

}



Further Limitations of Symbolic Execution

 Limited by the power of constraint solver

 Cannot handle non-linear and very complex 

constraints

 Inherently white-box technique

 Source code (or equivalent) is required for precise 

symbolic execution

 Modeling libraries is a huge problem



This Time

 Combining concrete and symbolic execution

 Many names referring to the same thing:

 DART (directed automated random testing)

 Concolic (concrete + symbolic) execution

 Dynamic symbolic execution

 Playing with KLEE

 Try aptlab.net



Concolic Execution

 Combination of concrete and symbolic 

execution to overcome the two weaknesses of 

classic symbolic execution

 Algorithm

 Execute program concretely

 Collect the symbolic path condition along the way

 Negate a constraint on the path condition after the 

run and solve it to get a model

 Execute again with the newly found concrete input 

values



High-Level Picture

T F

T T

T

T

F

F

F

F

F

F

T

T



High-Level Picture

T F

T T

T

T

F

F

F

F

F

F

T

T



High-Level Picture

T F

T T

T

T

F

F

F

F

F

F

T

T



Simple Example I

void foo(int x, int y) {

if (x == y) {

assert false;

}

}



Simple Example II

void foo(int x, int y) {

if (x == hash(y)) {

assert false;

}

}



Concolic Covering Middle Ground

Concrete

+ Complex 
programs

+ Binaries

+ Scalable

- Less coverage

+ No false 
positives

Concolic

+ Complex 
programs

+ Binaries

+/- Scalable

+ High coverage

+ No false 
positives

Symbolic

- Simple 
programs

- Source code

- Not scalable

+ High coverage

- False positives



Recent Success Stories

 SAGE

 Microsoft’s internal tool for finding security bugs

 White-box fuzzing

 Concolic execution for finding bugs in file parsers (jpeg, 

docx, ppt,…)

 Last line of defense

 Big clusters continuously running SAGE

 KLEE

 Open source concolic executor

 Runs on top of LLVM

 Has found lots of problems in open-source software


