Lecture 5 First-Order Theories

Zvonimir Rakamarić University of Utah

Announcements

- Posted homework assignment 2
- Implement KenKen puzzle solver using Z3 (or some other SMT solver)
- Present your solution in class on Jan 31
- Project deadlines
- Project ideas (2 points, Feb 14 at 1:25pm)
, Project proposal (8 points, Feb 28 at $1: 25$ pm)
- Final presentation (30 points, Apr 18 at 1:25pm, presenting on Apr 23 in class)
- Can you stay later (or start earlier) on Apr 23?
- Final report (50 points, Apr 25 at 08:00am)

Peer review of other students' final reports (10 points, Apr 28 at 08:00am)

Last Time

- First-order theories
- Theory of equality
- Arithmetic over integers and natural numbers
, Peano arithmetic
- Undecidable
, Presburger arithmetic
- No multiplication between two variables
- Decidable

Theory of integers

- Same expressiveness as Presburger arithmetic
- Reals, rationals, arrays

This Time

- Exercises with SMT solver Z3

Discussion

First-order logic

$$
\forall x . \exists y . \mathrm{p}(\mathrm{x}, \mathrm{y}) \rightarrow \neg \mathrm{p}(\mathrm{y}, \mathrm{x})
$$

Is this formula satisfiable?
Is this formula valid?

Theory of integers

$$
\forall x . \exists y . x>y \rightarrow \neg(y>x)
$$

Is this formula satisfiable?
Is this formula valid?

Z3 SMT Solver

- http://rise4fun.com/z3/
- Input format is an extension of SMT-LIB standard
- Commands
- declare-const - declare a constant of a given type
- declare-fun - declare a function of a given type
b assert - add a formula to Z3's internal stack
b check-sat - determine if formulas currently on stack are satisfiable
- get-model - retrieve an interpretation
, exit

Linear Integer Arith. Example 1

$$
x \leq y \wedge z=x+1 \rightarrow z \leq y
$$

Linear Integer Arith. Example 2

$$
x \leq y \wedge z=x-1 \rightarrow z \leq y
$$

Linear Integer Arith. Example 3

$$
1 \leq x \wedge x+y \leq 3 \wedge 1 \leq y \rightarrow x=1 \vee x=2
$$

Dog, Cat, and Mouse Puzzle (from Z3 page)

- Puzzle
- Spend exactly $\$ 100$ and buy exactly 100 animals.
- Dogs cost $\$ 15$, cats cost $\$ 1$, and mice cost 25 cents each.
- You have to buy at least one of each.
- How many of each should you buy?
- Use linear integer arithmetic
- Hint: turn dollar amounts into cents

XOR Swap Algorithm

- Use Z3 to prove that the XOR swap algorithm is correct for 32 bits bitvectors
- XOR swap does not use a temporary variable:
$X:=X X O R Y$
$Y:=Y$ XOR X
$X:=X X O R Y$
- Help with syntax
(declare-const x (_ BitVec 32))
(bvxor xy)
- SMT solvers are used to prove correctness of compiler optimizations
- And to synthesize them (project Souper)!

Scheduling Example

	Machine I	Machine 2
Job 1	2	1
Job 2	3	1
Job 3	2	3

- Table gives time units required to process Job x on Machine y
- For a job, complete a phase on Machine 1 before starting the next on Machine 2
- Find using Z3 whether jobs can be scheduled in T time units
- Try T=6, T=7, T=8

Next Time

- Symbolic execution

