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Announcements

 Graded homework 1

 Points lost due to incomplete/unreliable 

implementations

 Budget time for thorough testing

 Many solutions do not follow the prescribed

input/output specification

 “Program input: An integer n > 0 entered as a

command line argument…”

 Program output is also well-specified

 I did not deduct points for this



Last Time

 First-order logic

 Syntax and semantics

 Quantifiers

 Undecidable

 Proving validity with semantic argument method



This Time

 First-order theories

 Reading: Chapter 3



First-Order Theories

 Software manipulates structures

 Numbers, arrays, lists, bitvectors,…

 Software (and hardware) verification

 Reasoning about such structures

 First-order theories

 Formalize structures to enable reasoning about 

them

 Validity is sometimes decidable



Definition

 First-order theory T defined by:

 Signature T – set of constant, function, and 

predicate symbols

 Have no meaning

 Axioms AT – set of closed (no free variables)

T –formulae

 Provide meaning for symbols of T



T -formula

 T -formula is a formula constructed of:

 Constants, functions, and predicate symbols 

from T

 Variables, logical connectives, and quantifiers



T-interpretation

 Interpretation I is T-interpretation if it satisfies all 

axioms AT of T:

I ² A for every A ∈ AT



Satisfiability and Validity

 T -formula F is satisfiable in theory T (T-

satisfiable) if there is a T-interpretation I that 

satisfies F

 T -formula F is valid in theory T (T-valid, T ² F) 

if every T-interpretation I satisfies F

 Theory T consists of all closed T-valid formulae

 Two T -formulae F1 and F2 are equivalent in T
(T-equivalent) if T ² F1 $ F2



Fragment of a Theory

 Fragment of theory T is a syntactically restricted 

subset of formulae of the theory

 Example:

 Quantifier-free fragment of theory T is the set of 

formulae without quantifiers that are valid in T

 Often decidable fragments for undecidable

theories



Decidability

 Theory T is decidable if T-validity is decidable for 

every T -formula F

 There is an algorithm that always terminates with 

“yes” if F is T-valid, and “no” if F is T-invalid

 Fragment of T is decidable if T-validity is 

decidable for every T -formula F in the fragment



Common First-Order Theories

 Theory of equality

 Peano arithmetic

 Presburger arithmetic

 Linear integer arithmetic

 Reals

 Rationals

 Arrays

 Recursive data structures

 Bitvectors



Theory of Equality TE

Signature

E : {=,a,b,c,…,f,g,h,…,p,q,r,…}

consists of:

 a binary predicate “=“ interpreted using provided 

axioms

 constant, function, and predicate symbols



1. ∀x. x=x (reflexivity)

2. ∀x,y. x=y  y=x (symmetry)

3. ∀x,y,z. x=y Æ y=z  x=z (transitivity)

4. for each positive int. n and n-ary function symbol f,

∀x1,…,xn,y1,…,yn. ( Æ xi=yi)  f(x1,…,xn) = f(y1,…,yn)

(function congruence)

5. for each positive int. n and n-ary predicate symbol p,

∀x1,…,xn,y1,…,yn. ( Æ xi=yi)  (p(x1,…,xn)$ p(y1,…,yn))

(predicate congruence)

Axioms of TE

i=1

n

n

i=1



Decidability of TE

 Bad news

 TE is undecidable

 Good news

 Quantifier-free fragment of TE is decidable

 Very efficient algorithms



Z3 Example

x=y Æ y=z  g(f(x),y)=g(f(z),x)



Arithmetic: Natural Numbers and Integers

Natural numbers ℕ = {0,1,2,…}

Integers ℤ = {…,-2,-1,0,1,2,…}

Three theories:

 Peano arithmetic TPA

 Natural numbers with addition (+), multiplication (*), 
equality (=)

 Presburger arithmetic Tℕ
 Natural numbers with addition (+), equality (=)

 Theory of integers Tℤ
 Integers with addition (+), subtraction (-), 

comparison (>), equality (=), multiplication by 
constants



Peano Arithmetic TPA

PA : {0,1,+,*,=}

 TPA-satisfiability and TPA-validity are undecidable

 Restrict the theory more



Presburger Arithmetic Tℕ

ℕ : {0,1,+,=} no multiplication!

Axioms:

1. equality axioms for =

2. ∀x. :(x+1=0) (zero)

3. ∀x,y. x+1=y+1  x=y (successor)

4. F[0] Æ (∀x.F[x]  F[x+1])  ∀x.F[x] (induction)

5. ∀x. x+0=x (plus zero)

6. ∀x,y. x+(y+1)=(x+y)+1 (plus successor)



Decidability of Tℕ

 Tℕ-satisfiability and Tℕ-validity are decidable



Theory of Integers Tℤ

ℤ : {…,-2,-1,0,1,2,…,-3*,-2*,2*,3*,…,+,-,=,>}

where

 …,-2,-1,0,1,2,… are constants

 …,-3*,-2*,2*,3*,… are unary functions

(intended meaning: 2*x is x+x, -3*x is -x-x-x)

 +,-,>,= have the usual meaning

 Tℕ and Tℤ have the same expressiveness

 Every ℤ-formula can be reduced to ℕ-formula

 Every ℕ-formula can be reduced to ℤ-formula



Example of Tℤ to Tℕ Reduction

Consider ℤ-formula

F0 : ∀w,x. ∃y,z. x + 2*y - z - 13 > -3*w + 5

Introduce two variables vp and vn (range over natural 

numbers) for each variable v (range over integers) in F0:

F1 : ∀wp,wn,xp,xn. ∃yp,yn,zp,zn.

(xp-xn) + 2*(yp-yn) - (zp-zn) - 13 > -3*(wp-wn) + 5

Eliminate - by moving to the other side of >:

F2 : ∀wp,wn,xp,xn. ∃yp,yn,zp,zn.

xp + 2*yp + zn + 3*wp > xn + 2*yn + zp + 13 + 3*wn + 5



Example of Tℤ to Tℕ Reduction cont.

Eliminate * and >:

F3 : ∀wp,wn,xp,xn. ∃yp,yn,zp,zn. ∃u. :(u=0) Æ

xp + yp+yp + zn + wp+wp+wp

= xn + yn+yn + zp + wn+wn+wn + u

+ 1+1+1+1+1+1+1+1+1

+ 1+1+1+1+1+1+1+1+1

 F3 is a ℕ-formula equisatisfiable to F0



Example of Tℕ to Tℤ Reduction

Consider ℕ-formula

F : ∀x. ∃y. x=y+1

F is equisatisfiable to ℤ-formula

∀x. x > -1  ∃y. y > -1 Æ x=y+1



Decidability of Tℤ

 Tℤ-satisfiability and Tℤ-validity are decidable



Z3 Example

x > z Æ y >= 0  x + y > z



Theory of Reals Tℝ and Rationals Tℚ

ℝ : {0, 1, +, –, *, =, } with multiplication

ℚ : {0, 1, +, –, =, } without multiplication



Decidability of Tℝ and Tℚ

 Both are decidable

 High time complexity

 Quantifier-free fragment of Tℚ is efficiently 

decidable



Theory of Arrays TA

A : {select, store, =}

where

 select(a,i) is a binary function:

 read array a at index i

 store(a,i,v) is a ternary function:

 write value v to index i of array a



Axioms of TA

1. ∀a,i,j. i = j  select(a,i) = select(a,j)

(array congruence)

2. ∀a,v,i,j. i = j  select(store(a,i,v),j) = v

(select-store 1)

3. ∀a,v,i,j. i  j  select(store(a,i,v),j) = select(a,j)

(select-store 2)



Note about TA

 Equality (=) is only defined for array elements…

 Example:

select(a,i)=e  ∀j. select(store(a,i,e),j)=select(a,j)

is TA-valid

 …and not for whole arrays

 Example:

select(a,i)=e  store(a,i,e)=a

is not TA-valid



Decidability of TA

 TA is undecidable

 Quantifier-free fragment of TA is decidable



Theory of Arrays with Extensionality TA
=

 Signature and axioms of TA
= are the same as 

TA, with one additional axiom:

∀a,b. (∀i. select(a,i) = select(b,i)) $ a = b 

(extensionality)

 TA
=-valid example

select(a,i)=e  store(a,i,e)=a



Decidability of TA
=

 TA
= is undecidable

 Quantifier-free fragment of TA
= is decidable



Summary of Decidability Results

Theory Quantifiers 

Decidable

QFF 

Decidable

TE Equality NO YES

TPA Peano Arithmetic NO NO

Tℕ Presburger Arithmetic YES YES

Tℤ Linear Integer Arithmetic YES YES

Tℝ Real Arithmetic YES YES

Tℚ Linear Rationals YES YES

TA Arrays NO YES



Summary of Complexity Results

Theory Quantifiers QF

Conjunctive

PL Propositional Logic NP-complete O(n)

TE Equality – O(n log n)

Tℕ Presburger Arithmetic O(2^2^2^(kn)) NP-complete

Tℤ Linear Integer Arithmetic O(2^2^2^(kn)) NP-complete

Tℝ Real Arithmetic O(2^2^(kn)) O(2^2^(kn))

Tℚ Linear Rationals O(2^2^(kn)) PTIME

TA Arrays – NP-complete

n – input formula size; k – some positive integer



Next Time

 Z3 examples


