CS 5110/6110 – Software Verification | Spring 2018 Jan-17

Lecture 3 First-Order Logic

Zvonimir Rakamarić University of Utah

Announcements

- Homework 1 is due Friday morning
- Posted project ideas

Propositional logic

Syntax of Propositional Logic (PL)

```
truth_symbol ::= \top (true), \perp (false)
variable ::= p, q, r, \dots
atom ::= truth_symbol | variable
literal ::= atom | ¬atom
formula ::= literal |
              -formula |
             formula \wedge formula
             formula \vee formula
             formula \rightarrow formula
              formula \leftrightarrow formula
```

Semantics

- Semantics provides meaning to a formula
 - Defines mechanism for evaluating a formula
 - Formula evaluates to truth values true/1 and false/0
- Formula F evaluated in two steps
 - 1) Interpretation / assigns truth values to propositional variables
 - $I: \{p \mapsto false, q \mapsto true...\}$
 - Compute truth value of F based on I using e.g. truth table
- formula F + interpretation I = truth value

Satisfiability and Validity

- F is <u>satisfiable</u> iff (if and only if) there exists I such that I ⊨ F
 - Otherwise, F is unsatisfiable
- F is <u>valid</u> iff for all $I, I \vDash F$
 - Otherwise, F is invalid
- We write \models *F* if *F* is valid
- Duality between satisfiablity and validity:
 F is valid iff ¬*F* is unsatisfiable
 Note: only holds if logic is closed under negation

Decision Procedure for Satisfiability

- Algorithm that in some finite amount of computation decides if given PL formula F is satisfiable
 - NP-complete problem
- Modern decision procedures for PL formulae are called SAT solvers
- Naïve approach
 - Enumerate truth table
- Modern SAT solvers
 - DPLL algorithm
 - Davis-Putnam-Logemann-Loveland
 - Operates on Conjunctive Normal Form (CNF)

Normal Forms

- Negation Normal Form (NNF)
 - Only allows \neg , \land , \lor
 - Negation only in literals
- Disjunctive Normal Form (DNF)
 - Disjunction of conjunction of literals:

Conjunction of disjunction of literals:

$$\bigwedge_i \bigvee_j l_{i,j}$$

Tseitin Transformation – Main Idea

- Introduce a fresh variable e_i for every subformula G_i of F
 - e_i represents the truth value of G_i
- Assert that every e_i and G_i pair are equivalent
 - Assertions expressed as CNF
- Conjoin all such assertions in the end

This Time

- First-order logic
- Reading: Chapter 2

Basic Verifier Architecture

First-Order Logic (FOL)

- Extends propositional logic with predicates, functions, and quantifiers
 - More expressive than propositional logic
 - Suitable for reasoning about computation
- Examples
 - The length of one side of a triangle is less than the sum of the lengths of the other two sides

 $\forall x, y, z. triangle(x, y, z) \rightarrow len(x) < len(y) + len(z)$

► All elements of array A are 0 $\forall i. 0 \le i \land i < size(A) \rightarrow A[i] = 0$

Syntax

- variables x, y, z,...
 constants a, b, c, ...
 functions f, g, h, ...
 terms variables, constants, or n-ary function
 applied to n terms as arguments
 predicates p, q, r, ...
- atom op, \perp , or n-ary predicate applied to n terms
- *literal* atom or its negation

Syntax cont.

formula literal, application of a logical connective $\{\neg, \land, \lor, \rightarrow, \leftrightarrow\}$ to formulas, or application of a *quantifier* to a formula

Quantifiers

- Existential: ∃x. F[x]
 "there exists an x such that F[x]"
- Universal: ∀x. F[x] "for all x, F[x]"

Example

$\forall x. \ p(f(x), x) \rightarrow (\exists y. \ p(f(g(x, y)), g(x, y))) \land q(x, f(x))$

Semantics

- An interpretation $I: (D_l, \alpha_l)$ is a pair
 - Domain D_l
 - Non-empty set of values or objects
 - Assignment α_l maps
 - each variable x into value $x_l \in D_l$
 - each n-ary function f into $f_I : D_I^n \to D_I$
 - ▶ each n-ary predicate p into $p_I : D_I^n \rightarrow \{\text{true, false}\}$
 - Boolean connectives evaluated as in propositional logic

Example

 $F: p(f(x,y),z) \rightarrow p(y,g(z,x))$ Interpretation $I: (D_{l},\alpha_{l})$ with $D_{l} = \mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\} \quad \text{(integers)}$ $\alpha_{l}: \{f \mapsto +, g \mapsto -, p \mapsto > \}$ $F_{l}: x + y > z \rightarrow y > z - x$ $\alpha_{l}: \{x \mapsto 13, y \mapsto 42, z \mapsto 1\}$ $F_{l}: 13 + 42 > 1 \rightarrow 42 > 1 - 13$

Compute the truth value of *F* under *I* 1. $I \models x + y > z$ since 13 + 42 > 1 2. $I \models y > z - x$ since 42 > 1 - 13 3. $I \models F$ follows from 1, 2, and \rightarrow

F is true under I

Semantics of Quantifiers

- *x-variant* of interpretation $I : (D_I, \alpha_I)$ is an interpretation $J : (D_J, \alpha_J)$ such that
 - $\blacktriangleright D_I = D_J$
 - α_l[y] = α_j[y] for all symbols y, except possibly x
 I and J agree on everything except maybe the value of x
- Denote J: I ⊲ {x ↦ v} the x-variant of I in which α_J[x] = v for some v ∈ D_I. Then
 I ⊨ ∀x.F iff for all v ∈ D_I, I ⊲ {x ↦ v} ⊨ F
 I ⊨ ∃x.F iff there exists v ∈ D_I such that I ⊲ {x ↦ v} ⊨ F

Example

- For D₁ = Q (set of rational numbers), consider
 F: ∀x. ∃y. 2 * y = x
- Compute the value of F_i: Let

$$J_1: I \triangleleft \{x \mapsto v\} \text{ be x-variant of } I$$
$$J_2: J_1 \triangleleft \{y \mapsto v/2\} \text{ be y-variant of } J_1$$
for $v \in \mathbb{Q}$.

Then

1. $J_2 \models 2 * y = x$ since 2 * v/2 = v2. $J_1 \models \exists y. 2 * y = x$ 3. $I \models \forall x. \exists y. 2 * y = x$ since $v \in \mathbb{Q}$ is arbitrary

Satisfiability and Validity

- *F* is satisfiable iff there exists *I* such that $I \vDash F$
- F is valid iff for all $I, I \vDash F$

F is valid iff $\neg F$ is unsatisfiable

- FOL is undecidable
 - There does not exist an algorithm for deciding if a FOL formula F is valid/unsat
 - I.e., that always halts and returns "yes" if F is valid/unsat or "no" if F is invalid/sat.
- FOL is semi-decidable
 - There is a procedure that always halts and returns "yes" if F is valid, but may not halt if F is invalid.

Semantic Argument Method

- For proving validity of F in FOL
- Assume *F* is not valid and I is a falsifying interpretation: $I \not\models F$
- Exhaustively apply proof rules
 - If no contradiction reached and no more rules are applicable
 - F is invalid
 - If in every branch of proof a contradiction reached
 - ► F is valid

Proof Rule

Consists of:

- Premises (one or more)
- Deductions (one or more)

Application

- Match premises to existing facts and form deductions
- Branch (fork) when needed
- Example proof rules for \wedge

Proof Rules for Propositional Part I

$$\frac{I \models \neg F}{I \not\models F} \qquad \qquad \frac{I \not\models \neg F}{I \models F}$$

Proof Rules for Propositional Part II

$$\begin{array}{c|c} I \models F \\ \hline I \not\models F \\ \hline I \models \bot \end{array}$$

Proof Rules for Quantifiers

- $\frac{I \models \forall x. F}{I \triangleleft \{x \mapsto \mathsf{v}\} \models F} \quad \text{for any } \mathsf{v} \in D_I$
- $\begin{array}{c|c} I \not\models \forall x. F \\ \hline I \triangleleft \{x \mapsto \mathsf{v}\} \not\models F \end{array} & \text{for a } fresh \ \mathsf{v} \in D_I \\ I \triangleleft \{x \mapsto \mathsf{v}\} \not\models F \end{array} & \text{for a } fresh \ \mathsf{v} \in D_I \\ \hline I \triangleleft \{x \mapsto \mathsf{v}\} \not\models F \end{array} & \text{for a } fresh \ \mathsf{v} \in D_I \end{array} & \begin{array}{c} \text{any usually use } v \\ \text{introduced earlier in } \\ \text{the proof} \end{array} \\ \hline fresh use \ v \text{ that has } \\ \text{not been previously } \\ \text{used in the proof} \end{array}$

 $\frac{I \not\models \exists x. F}{I \triangleleft \{x \mapsto \mathsf{v}\} \not\models F} \quad \text{for any } \mathsf{v} \in D_I$

 $F: (p \land q) \rightarrow (p \lor \neg q)$

$F: ((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$

 $F: p(a) \rightarrow \exists x. p(x)$

 $F: (\forall x. p(x)) \leftrightarrow (\neg \exists x. \neg p(x))$

Next Lecture

- Issues with FOL
 - Validity in FOL is undecidable
 - Too general
- First-order logic theories
 - Often decidable fragments of FOL suitable for reasoning about particular domain
 - Equality
 - Arithmetic
 - Arrays