Lecture 3 First-Order Logic

Zvonimir Rakamarić University of Utah

Announcements

- Homework 1 is due Friday morning
- Posted project ideas

Last Time

- Propositional logic

Syntax of Propositional Logic (PL)

truth_symbol ::= † (true), \perp (false)
variable ::= p, q, r, \ldots
atom ::= truth_symbol | variable
literal $::=$ atom | \neg atom
formula ::= literal |
\rightarrow formula
formula \wedge formula | formula \vee formula | formula \rightarrow formula \mid formula \leftrightarrow formula

Semantics

- Semantics provides meaning to a formula
- Defines mechanism for evaluating a formula
- Formula evaluates to truth values true/1 and false/0
- Formula F evaluated in two steps

1) Interpretation / assigns truth values to propositional variables
$1:\{p \mapsto$ false, $q \mapsto$ true... $\}$
2) Compute truth value of F based on / using e.g. truth table

- formula $F+$ interpretation $I=$ truth value

Satisfiability and Validity

- Fis satisfiable iff (if and only if) there exists I such that $I F F$
- Otherwise, F is unsatisfiable
- F is valid iff for all $I, I \vDash F$
- Otherwise, F is invalid
- We write $\vDash F$ if F is valid
- Duality between satisfiablity and validity: F is valid iff $\neg F$ is unsatisfiable
Note: only holds if logic is closed under negation

Decision Procedure for Satisfiability

- Algorithm that in some finite amount of computation decides if given PL formula F is satisfiable
, NP-complete problem
- Modern decision procedures for PL formulae are called SAT solvers
- Naïve approach
- Enumerate truth table
- Modern SAT solvers
- DPLL algorithm
- Davis-Putnam-Logemann-Loveland
, Operates on Conjunctive Normal Form (CNF)

Normal Forms

- Negation Normal Form (NNF)
- Only allows \neg, \wedge, \vee
- Negation only in literals
- Disjunctive Normal Form (DNF)
- Disjunction of conjunction of literals:

$$
V \Lambda_{t}
$$

- Conjunctive Normal Form (CNF)
- Conjunction of disjunction of literals:

$$
\bigwedge_{i j} V_{l,}
$$

Tseitin Transformation - Main Idea

- Introduce a fresh variable e_{i} for every subformula G_{i} of F
- e_{i} represents the truth value of G_{i}
- Assert that every e_{i} and G_{i} pair are equivalent
- Assertions expressed as CNF
- Conjoin all such assertions in the end

This Time

- First-order logic
- Reading: Chapter 2

Basic Verifier Architecture

First-Order Logic (FOL)

- Extends propositional logic with predicates, functions, and quantifiers
- More expressive than propositional logic
- Suitable for reasoning about computation
- Examples

The length of one side of a triangle is less than the sum of the lengths of the other two sides $\forall x, y, z$. $\operatorname{triangle}(x, y, z) \rightarrow \operatorname{len}(x)<\operatorname{len}(y)+\operatorname{len}(z)$

- All elements of array A are 0 $\forall i .0 \leq i \wedge i<\operatorname{size}(A) \rightarrow A[i]=0$
variables x, y, z, \ldots
constants a, b, c, \ldots
functions f, g, h, \ldots
terms variables, constants, or n-ary function applied to n terms as arguments
predicates p, q, r, \ldots
atom $\quad \mathrm{T}, \perp$, or n -ary predicate applied to n terms
literal atom or its negation

Syntax cont.

formula literal, application of a logical connective $\{\neg, \wedge, \vee, \rightarrow, \leftrightarrow\}$ to formulas, or application of a quantifier to a formula

Quantifiers
, Existential: $\exists x . F x]$ "there exists an x such that $F x]$ "

- Universal: $\forall x$. $\mp x]$ "for all $x, F[x]$ "

Example

$\forall x . p(f(x), x) \rightarrow(\exists y . p(f(g(x, y)), g(x, y))) \wedge q(x, f(x))$

Semantics

- An interpretation I: $\left(D_{l}, \alpha_{l}\right)$ is a pair
- Domain D_{1}
- Non-empty set of values or objects
- Assignment α_{l} maps
- each variable x into value $x_{l} \in D_{l}$
- each n-ary function f into $f_{l}: D_{l}^{n} \rightarrow D_{l}$
, each n-ary predicate p into $p_{l}: D_{l}^{n} \rightarrow\{$ true, false $\}$
- Boolean connectives evaluated as in propositional logic

Example

$F: p(f(x, y), z) \rightarrow p(y, g(z, x))$
Interpretation $/:\left(D_{l}, \alpha_{l}\right)$ with
$D_{l}=\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\} \quad$ (integers)
$\alpha_{l}:\{f \mapsto+, g \mapsto-, p \mapsto>\}$
$F_{1}: x+y>z \rightarrow y>z-x$
$\alpha_{1}:\{x \mapsto 13, y \mapsto 42, z \mapsto 1\}$
$F_{l}: 13+42>1 \rightarrow 42>1-13$
Compute the truth value of F under I

1. \quad 隹 $x+y>z$ since $13+42>1$
2. IF $y>z-x$ since $42>1-13$
3. \quad F F follows from 1,2 , and \rightarrow
F is true under I

Semantics of Quantifiers

- x-variant of interpretation $I:\left(D_{l}, \alpha_{l}\right)$ is an interpretation J : $\left(D_{J}, \alpha_{J}\right)$ such that
- $D_{1}=D_{J}$
- $\left.\alpha_{a}[y]=\alpha \int y\right]$ for all symbols y, except possibly x
I and J agree on everything except maybe the value of x
Denote $J: I \triangleleft\{x \mapsto v\}$ the x-variant of l in which $\alpha_{J}[x]=v$ for some $v \in D_{l}$. Then
-仨 $\forall x . F$ iff for all $v \in D_{l}, \triangleleft\{x \mapsto v\} \vDash F$
$\downarrow I \vDash \exists x . F$ iff there exists $v \in D_{l}$ such that $I \triangleleft\{x \mapsto v\} \vDash F$

Example

- For $D_{I}=\mathbb{Q}$ (set of rational numbers), consider

$$
F: \forall x . \exists y .2^{*} y=x
$$

- Compute the value of F_{l} :

Let

$$
J_{1}: I \triangleleft\{x \mapsto v\} \text { be } x \text {-variant of } /
$$

$J_{2}: J_{1} \triangleleft\{y \mapsto v / 2\}$ be y-variant of J_{1}
for $v \in \mathbb{Q}$.
Then

1. $J_{2} \vDash 2$ * $y=x \quad$ since $2 * v / 2=v$
2. $J_{1} \vDash \exists y .2 * y=x$
3. $I \vDash \forall x . \exists y .2^{*} y=x$ since $v \in \mathbb{Q}$ is arbitrary

Satisfiability and Validity

- F is satisfiable iff there exists $/$ such that $I \vDash F$
- F is valid iff for all $I, I \vDash F$
F is valid iff $\neg F$ is unsatisfiable
- FOL is undecidable
- There does not exist an algorithm for deciding if a FOL formula F is valid/unsat
- l.e., that always halts and returns "yes" if F is valid/unsat or "no" if F is invalid/sat.
- FOL is semi-decidable
- There is a procedure that always halts and returns "yes" if F is valid, but may not halt if F is invalid.

Semantic Argument Method

- For proving validity of F in FOL
- Assume F is not valid and I is a falsifying interpretation: $I \not \models F$
- Exhaustively apply proof rules
- If no contradiction reached and no more rules are applicable
- F is invalid
- If in every branch of proof a contradiction reached
, F is valid

Proof Rule

- Consists of:
- Premises (one or more)
- Deductions (one or more)
- Application
- Match premises to existing facts and form deductions
- Branch (fork) when needed
- Example - proof rules for \wedge

$$
\begin{aligned}
& I \models F \wedge G \\
& \hline I \models F \\
& I \models G
\end{aligned}
$$

\[

\]

Proof Rules for Propositional Part I

$$
\frac{I \models \neg F}{I \not \models F} \quad \frac{I \not \models \neg F}{I \not \models F}
$$

$$
\begin{array}{c|c}
I \models F \vee G \\
\hline I \models F & I \models G
\end{array}
$$

$$
\begin{aligned}
& \frac{I \not \models F \vee G}{I \not \models F} \\
& I \not \models G
\end{aligned}
$$

Proof Rules for Propositional Part II

$$
\begin{array}{ll}
I \models F \rightarrow G \\
I \not \models F \mid I \models G
\end{array} \quad \begin{aligned}
& I \not \models F \rightarrow G \\
& I \models \mid F \\
& I \not \models G
\end{aligned}
$$

$$
\left.\frac{I \models F \leftrightarrow G}{I \models F \wedge G} \right\rvert\, I \not \models F \vee G
$$

$$
\frac{I \not \vDash F \leftrightarrow G}{I \models F \wedge \neg G \quad \mid \quad I \models \neg F \wedge G}
$$

$$
\begin{aligned}
& I \not F F \\
& I \not \models F \\
& \hline I \models \perp
\end{aligned}
$$

Proof Rules for Quantifiers

$$
\begin{array}{ll}
\frac{I \models \forall x . F}{I \triangleleft\{x \mapsto \mathrm{v}\} \models F} & \text { for any } \mathrm{v} \in D_{I} \\
\frac{I \not \models \forall x \cdot F}{I \triangleleft\{x \mapsto \mathrm{v}\} \not \models F} & \text { for a fresh } \mathrm{v} \in D_{I} \\
\frac{I \models \exists x \cdot F}{I \triangleleft\{x \mapsto \mathrm{v}\} \models F} & \text { for a fresh } \mathrm{v} \in D_{I} \\
\frac{I \not \vDash \exists x \cdot F}{I \triangleleft\{x \mapsto \mathrm{v}\} \not \vDash F} & \text { for any } \mathrm{v} \in D_{I}
\end{array}
$$ any - usually use v introduced earlier in the proof

fresh - use v that has not been previously used in the proof

Example 1

$F:(p \wedge q) \rightarrow(p \vee \neg q)$

Example 2

$F:(p \wedge q) \rightarrow(p \vee q)$

Example 3

$F:((p \rightarrow q) \wedge(q \rightarrow r)) \rightarrow(p \rightarrow r)$

Example 4

$F: p(a) \rightarrow \exists x . p(x)$

Example 5

$F:(\forall x . p(x)) \leftrightarrow(\neg \exists x . \neg p(x))$

Next Lecture

- Issues with FOL
- Validity in FOL is undecidable
- Too general
- First-order logic theories
- Often decidable fragments of FOL suitable for reasoning about particular domain
, Equality
- Arithmetic
- Arrays

