Lecture 2
 Propositional Logic \& SAT

Zvonimir Rakamarić University of Utah

Announcements

- Posted Homework 1
, Due on Friday morning next week
- Propositional logic: Chapter 1 of our textbook
- You can download it for free as a PDF

Syntax of Propositional Logic (PL)

truth_symbol ::= † (true), \perp (false)
variable ::= p, q, r, \ldots
atom ::= truth_symbol | variable
literal $::=$ atom | \neg atom
formula ::= literal |
\rightarrow formula
formula \wedge formula | formula \vee formula | formula \rightarrow formula \mid formula \leftrightarrow formula

Examples of PL Formulae

F: T
$F: p$
$F: \neg p$
$F:(p \wedge q) \rightarrow(p \vee \neg q)$
$F:(p \vee \neg q \vee r) \wedge(q \vee \neg r)$
$F:(\neg p \vee q) \leftrightarrow(p \rightarrow q)$
$F: p \leftrightarrow(q \rightarrow r)$

Semantics

- Semantics provides meaning to a formula
- Defines mechanism for evaluating a formula
- Formula evaluates to truth values true/1 and false/0
- Formula F evaluated in two steps

1) Interpretation / assigns truth values to propositional variables
$1:\{p \mapsto$ false, $q \mapsto$ true... $\}$
2) Compute truth value of F based on / using e.g. truth table

- formula $F+$ interpretation $I=$ truth value

Notation

- Let F be a formula and I an interpretation...
- $I[F$] denotes evaluation of F under I
- If $I[F]=$ true then we say that
- F is true in $/$
, I satisfies F
- $/$ is a model of F
and write $I \vDash F$
- If $I[F]=$ false we write $I \neq F$

Example

$F:(p \wedge q) \rightarrow(p \vee \neg q)$
$I:\{p \mapsto 1, q \mapsto 0\}$
(i.e., $I[p]=1, I[q]=0$)

p	q	$\neg q$	$p \wedge q$	$p \vee \neg q$	F
1	0	1	0	1	1

F evaluates to true under I or $I[F]=\operatorname{true}$ or $I \vDash F \ldots$

Satisfiability and Validity

- Fis satisfiable iff (if and only if) there exists I such that $I F F$
- Otherwise, F is unsatisfiable
- F is valid iff for all $I, I \vDash F$
- Otherwise, F is invalid
- We write $\vDash F$ if F is valid
- Duality between satisfiablity and validity: F is valid iff $\neg F$ is unsatisfiable
Note: only holds if logic is closed under negation

Equivalence

- Two formulae F_{1} and F_{2} are equivalent, denoted by $F_{1} \Leftrightarrow F_{2}$, iff they have the same models

Decision Procedure for Satisfiability

- Algorithm that in some finite amount of computation decides if given PL formula F is satisfiable
, NP-complete problem
- Modern decision procedures for PL formulae are called SAT solvers
- Naïve approach
- Enumerate truth table
- Modern SAT solvers
- DPLL algorithm
- Davis-Putnam-Logemann-Loveland
, Operates on Conjunctive Normal Form (CNF)

Normal Forms

- Negation Normal Form (NNF)
- Only allows \neg, \wedge, \vee
- Negation only in literals
- Disjunctive Normal Form (DNF)
- Disjunction of conjunction of literals:

$$
V \Lambda_{t}
$$

- Conjunctive Normal Form (CNF)
- Conjunction of disjunction of literals:

$$
\bigwedge_{i j} V_{l,}
$$

Negation Normal Form

To transform F into F' in NNF recursively apply the following equivalences:

$$
\begin{gathered}
\neg \neg F_{1} \Leftrightarrow F_{1} \\
\neg \top \Leftrightarrow \perp \\
\neg \perp \Leftrightarrow \top \\
\neg\left(F_{1} \wedge F_{2}\right) \Leftrightarrow \neg F_{1} \vee \neg F_{2} \\
\neg\left(F_{1} \vee F_{2}\right) \Leftrightarrow \neg F_{1} \wedge \neg F_{2} \\
F_{1} \rightarrow F_{2} \Leftrightarrow \neg F_{1} \vee F_{2} \\
F_{1} \leftrightarrow F_{2} \Leftrightarrow\left(F_{1} \rightarrow F_{2}\right) \wedge\left(F_{2} \rightarrow F_{1}\right)
\end{gathered}
$$

Example

$F: p \leftrightarrow(q \rightarrow r)$

Conjunctive Normal Form

To transform F into F' in CNF first transform F into NNF and then recursively apply the following equivalences:

$$
\begin{aligned}
& \left(F_{1} \wedge F_{2}\right) \vee F_{3} \Leftrightarrow\left(F_{1} \vee F_{3}\right) \wedge\left(F_{2} \vee F_{3}\right) \\
& F_{1} \vee\left(F_{2} \wedge F_{3}\right) \Leftrightarrow\left(F_{1} \vee F_{2}\right) \wedge\left(F_{1} \vee F_{3}\right)
\end{aligned}
$$

(Note: a disjunction of literals is called a clause.)

Example

$F: p \leftrightarrow(q \rightarrow r)$

Exponential Blow-Up

- Such a naïve transformation can blow-up exponentially (in formula size) for some formulae
- For example: transforming from DNF into CNF

Tseitin Transformation [1968]

- Used in practice
- No exponential blow-up
, CNF formula size is linear wrt original formula
- Does not produce an equivalent CNF
- However, given F, the following holds for the computed CNF F':
- F ' is equisatisfiable to F
- Every model of F^{\prime} can be translated (i.e., projected) to a model of F
- Every model of F can be translated (i.e., completed) to a model of F^{\prime}
- No model is lost or added in the conversion

Tseitin Transformation - Main Idea

- Introduce a fresh variable e_{i} for every subformula G_{i} of F
- e_{i} represents the truth value of G_{i}
- Assert that every e_{i} and G_{i} pair are equivalent
- Assertions expressed as CNF
- Conjoin all such assertions in the end

Example

$F: p \leftrightarrow(q \rightarrow r)$

SAT Solver Input Format

Based around DIMACS

C
c start with comments
C
p cnf 53
1-540
-15340
-3-4 0

Using a SAT Solver

- Graph coloring
- Given a graph and K colors, decide if each vertex can be assigned a color so that no two adjacent vertices have the same color
- How to solve using SAT?

Classical DPLL

- Searching for a model M for a given CNF formula F
- Incrementally try to build a model M
- Maintain state during search
- State is a pair $M \mid F$
- F is a set of clauses and it doesn't change during search
- M is a sequence of literals
- No literals appear twice and no contradiction
- Order does matter
- Decision literals marked with l^{d}

Abstract Transition System

Contains a set of rules of the form

$$
M\left|F \Rightarrow M^{\prime}\right| F^{\prime}
$$

denoting that search can move from state $M \mid F$ to state $M^{\prime} \mid F^{\prime}$

DPLL Rules - Extending M

- Propagate
$M|G, C \vee l \Rightarrow M, l| G, C \vee l$
if $M \vDash \neg C$ and l not in M
- Decide
$M\left|F \Rightarrow M, l^{d}\right| F$
if l or $\neg l$ in F and l not in M

DPLL Rules - Adjusting M

- Fail
$M \mid G, C \Rightarrow$ fail
if $M \vDash \neg C$ and M contains no decision literals
- Backtrack
$M, l^{d}, N|G, C \Rightarrow M, \neg l| G, C$
if $M, l^{d}, N \vDash \neg C$ and N contains no decision literals
- Propagate
$M|G, C \vee l \Rightarrow M, l| G, C \vee l$
if $M \vDash \neg C$ and l not in M
- Decide
$M\left|F \Rightarrow M, l^{d}\right| F$ if l or $\neg l$ in F and l not in M
- Fail
$M \mid G, C \Rightarrow$ fail
if $M \vDash \neg C$ and M contains no decision literals
- Backtrack
$M, l^{l}, N|G, C \Rightarrow M, \neg l| G, C$
if $M, l^{d}, N \vDash \neg C$ and N contains no decision literals

DPLL Example 1
$\emptyset \quad \mid \neg p \vee q \vee r, p, \neg q \vee r, \neg q \vee \neg r, q \vee r, q \vee \neg r$

DPLL Example 2
\emptyset

$$
\mid \neg p \vee q, \neg N s, \neg+V \neg u, u \vee \neg \neg \neg \neg q
$$

Modern SAT Solvers

- DPLL + improvements
, Backjumping
- Dynamic variable ordering
, Learning conflict clauses
- Random restarts

Next Lecture

- First-order logic

