CS 5110/6110 – Software Verification | Spring 2018 Jan-10

Lecture 2 Propositional Logic & SAT

Zvonimir Rakamarić University of Utah

Announcements

- Posted Homework 1
 - Due on Friday morning next week
- Propositional logic: Chapter 1 of our textbook
 You can download it for free as a PDF

Syntax of Propositional Logic (PL)

```
truth_symbol ::= \top (true), \perp (false)
variable ::= p, q, r, \dots
atom ::= truth_symbol | variable
literal ::= atom | ¬atom
formula ::= literal |
              -formula
             formula \wedge formula
             formula \vee formula
             formula \rightarrow formula
             formula \leftrightarrow formula
```

Examples of PL Formulae

F : ⊤ *F*:p $F: \neg p$ $F: (p \land q) \rightarrow (p \lor \neg q)$ $F: (p \lor \neg q \lor r) \land (q \lor \neg r)$ $F: (\neg p \lor q) \leftrightarrow (p \rightarrow q)$ $F: p \leftrightarrow (q \rightarrow r)$

Semantics

- Semantics provides meaning to a formula
 - Defines mechanism for evaluating a formula
 - Formula evaluates to truth values true/1 and false/0
- Formula F evaluated in two steps
 - 1) Interpretation / assigns truth values to propositional variables
 - $I: \{p \mapsto false, q \mapsto true...\}$
 - Compute truth value of F based on I using e.g. truth table
- formula F + interpretation I = truth value

Notation

- Let *F* be a formula and *I* an interpretation...
- I [F] denotes evaluation of F under I
- If / [F] = true then we say that
 - F is true in I
 - ► I satisfies F
 - ▶ *I* is a model of *F* and write $I \models F$
- If I [F] = false we write $I \not\models F$

$$F: (p \land q) \rightarrow (p \lor \neg q)$$

$$I: \{p \mapsto 1, q \mapsto 0\}$$

(i.e., $I[p] = 1, I[q] = 0$)

$$p$$
 q
 $\neg q$
 $p \land q$
 $p \lor \neg q$
 F

 1
 0
 1
 0
 1
 1

F evaluates to *true* under *I* or *I* [*F*] = *true* or *I* \models *F*...

Satisfiability and Validity

- F is <u>satisfiable</u> iff (if and only if) there exists I such that I ⊨ F
 - Otherwise, F is unsatisfiable
- F is <u>valid</u> iff for all $I, I \vDash F$
 - Otherwise, F is invalid
- We write \models *F* if *F* is valid
- Duality between satisfiablity and validity:
 F is valid iff ¬*F* is unsatisfiable
 Note: only holds if logic is closed under negation

Equivalence

• Two formulae F_1 and F_2 are <u>equivalent</u>, denoted by $F_1 \Leftrightarrow F_2$, iff they have the same models

Decision Procedure for Satisfiability

- Algorithm that in some finite amount of computation decides if given PL formula F is satisfiable
 - NP-complete problem
- Modern decision procedures for PL formulae are called SAT solvers
- Naïve approach
 - Enumerate truth table
- Modern SAT solvers
 - DPLL algorithm
 - Davis-Putnam-Logemann-Loveland
 - Operates on Conjunctive Normal Form (CNF)

Normal Forms

- Negation Normal Form (NNF)
 - Only allows \neg , \land , \lor
 - Negation only in literals
- Disjunctive Normal Form (DNF)
 - Disjunction of conjunction of literals:

• Conjunction of disjunction of literals:

$$\bigwedge_i \bigvee_j l_{i,j}$$

Negation Normal Form

To transform F into F' in NNF recursively apply the following equivalences:

$$\neg \neg F_{1} \Leftrightarrow F_{1}$$
$$\neg \top \Leftrightarrow \bot$$
$$\neg \bot \Leftrightarrow \top$$
$$\neg (F_{1} \land F_{2}) \Leftrightarrow \neg F_{1} \lor \neg F_{2}$$
$$\neg (F_{1} \lor F_{2}) \Leftrightarrow \neg F_{1} \land \neg F_{2}$$
$$F_{1} \rightarrow F_{2} \Leftrightarrow \neg F_{1} \land \neg F_{2}$$
$$F_{1} \rightarrow F_{2} \Leftrightarrow \neg F_{1} \lor F_{2}$$
$$F_{1} \leftrightarrow F_{2} \Leftrightarrow (F_{1} \rightarrow F_{2}) \land (F_{2} \rightarrow F_{1})$$

Conjunctive Normal Form

To transform F into F' in CNF first transform F into NNF and then recursively apply the following equivalences:

$$(F_1 \land F_2) \lor F_3 \Leftrightarrow (F_1 \lor F_3) \land (F_2 \lor F_3) \\ F_1 \lor (F_2 \land F_3) \Leftrightarrow (F_1 \lor F_2) \land (F_1 \lor F_3)$$

(Note: a disjunction of literals is called a clause.)

Exponential Blow-Up

- Such a naïve transformation can blow-up exponentially (in formula size) for some formulae
 - For example: transforming from DNF into CNF

Tseitin Transformation [1968]

- Used in practice
 - No exponential blow-up
 - CNF formula size is linear wrt original formula
- Does not produce an equivalent CNF
- However, given F, the following holds for the computed CNF F':
 - F' is equisatisfiable to F
 - Every model of F' can be translated (i.e., projected) to a model of F
 - Every model of F can be translated (i.e., completed) to a model of F'
- No model is lost or added in the conversion

Tseitin Transformation – Main Idea

- Introduce a fresh variable e_i for every subformula G_i of F
 - e_i represents the truth value of G_i
- Assert that every e_i and G_i pair are equivalent
 - Assertions expressed as CNF
- Conjoin all such assertions in the end

$F: p \leftrightarrow (q \rightarrow r)$

SAT Solver Input Format

Based around DIMACS

c c start with comments c p cnf 5 3 1 -5 4 0 -1 5 3 4 0 -3 -4 0

Using a SAT Solver

- Graph coloring
 - Given a graph and K colors, decide if each vertex can be assigned a color so that no two adjacent vertices have the same color
- How to solve using SAT?

Classical DPLL

- Searching for a model *M* for a given CNF formula *F*
 - Incrementally try to build a model M
 - Maintain state during search
- State is a pair *M* | *F*
 - F is a set of clauses and it doesn't change during search
 - M is a sequence of literals
 - No literals appear twice and no contradiction
 - Order does matter
 - Decision literals marked with *l*^d

Abstract Transition System

Contains a set of rules of the form

$$M \mid F \Rightarrow M' \mid F'$$

denoting that search can move from state M | F to state M' | F'

DPLL Rules – Extending *M*

• Propagate $M \mid G, C \lor l \Rightarrow M, l \mid G, C \lor l$ if $M \vDash \neg C$ and l not in M

Decide
 M | F ⇒ M,l^d | F
 if l or ¬l in F and l not in M

DPLL Rules – Adjusting M

Fail

$M \mid G, C \Rightarrow fail$

if $M \models \neg C$ and M contains no decision literals

• Backtrack $M,l^d,N \mid G,C \Rightarrow M,\neg l \mid G,C$ if $M,l^d,N \models \neg C$ and N contains no decision literals

Propagate

 $M \mid G, C \lor l \implies M, l \mid G, C \lor l$ if $M \vDash \neg C$ and l not in M

Decide

 $M \mid F \implies M, l^d \mid F$ if *l* or $\neg l$ in *F* and *l* not in *M*

Fail

- $M \mid G, C \Rightarrow fail$
 - if $M \models \neg C$ and M contains no decision literals

Backtrack

 $M, l^d, N \mid G, C \Rightarrow M, \neg l \mid G, C$ if $M, l^d, N \models \neg C$ and N contains no decision literals

DPLL Example 1

\emptyset | $\neg p \lor q \lor r$, p, $\neg q \lor r$, $\neg q \lor \neg r$, $q \lor r$, $q \lor \neg r$

DPLL Example 2

\emptyset | $\neg p \lor q, \neg r \lor s, \neg t \lor \neg u, u \lor \neg t \lor \neg q$

Modern SAT Solvers

- DPLL + improvements
 - Backjumping
 - Dynamic variable ordering
 - Learning conflict clauses
 - Random restarts

...

Next Lecture

First-order logic