
Lecture 2

Propositional Logic & SAT

Zvonimir Rakamarić
University of Utah

CS 5110/6110 – Software Verification | Spring 2018

Jan-10

Announcements

 Posted Homework 1

 Due on Friday morning next week

 Propositional logic: Chapter 1 of our textbook

 You can download it for free as a PDF

Syntax of Propositional Logic (PL)

truth_symbol ::= > (true), ? (false)

variable ::= p, q, r,…

atom ::= truth_symbol | variable

literal ::= atom | :atom

formula ::= literal |
:formula |

formula Æ formula |

formula Ç formula |

formula formula |
formula $ formula

Examples of PL Formulae

F : >

F : p

F : :p

F : (p Æ q) (p Ç :q)

F : (p Ç :q Ç r) Æ (q Ç :r)

F : (:p Ç q) $ (p q)

F : p $ (q r)

Semantics

 Semantics provides meaning to a formula

 Defines mechanism for evaluating a formula

 Formula evaluates to truth values true/1 and

false/0

 Formula F evaluated in two steps

1) Interpretation I assigns truth values to

propositional variables

I : {p false, q true…}

2) Compute truth value of F based on I using e.g.

truth table

 formula F + interpretation I = truth value

Notation

 Let F be a formula and I an interpretation…

 I [F] denotes evaluation of F under I

 If I [F] = true then we say that

 F is true in I

 I satisfies F

 I is a model of F

and write I ² F

 If I [F] = false we write I ⊭ F

Example

F : (p Æ q) (p Ç :q)

I : {p 1, q 0}

(i.e., I [p] = 1, I [q] = 0)

p q :q p Æ q p Ç :q F

1 0 1 0 1 1

F evaluates to true under I or I [F] = true or I ² F…

Satisfiability and Validity

 F is satisfiable iff (if and only if) there exists I
such that I ² F

 Otherwise, F is unsatisfiable

 F is valid iff for all I, I ² F

 Otherwise, F is invalid

 We write ² F if F is valid

 Duality between satisfiablity and validity:

F is valid iff :F is unsatisfiable

Note: only holds if logic is closed under

negation

Equivalence

 Two formulae F1 and F2 are equivalent,
denoted by F1 , F2, iff they have the same

models

Decision Procedure for Satisfiability

 Algorithm that in some finite amount of
computation decides if given PL formula F is
satisfiable
 NP-complete problem

 Modern decision procedures for PL formulae
are called SAT solvers

 Naïve approach
 Enumerate truth table

 Modern SAT solvers
 DPLL algorithm

 Davis-Putnam-Logemann-Loveland

 Operates on Conjunctive Normal Form (CNF)

Normal Forms

 Negation Normal Form (NNF)

 Only allows :, Æ, Ç

 Negation only in literals

 Disjunctive Normal Form (DNF)

 Disjunction of conjunction of literals:

ሧ

𝑖

ሥ

𝑗

𝑙𝑖,𝑗

 Conjunctive Normal Form (CNF)

 Conjunction of disjunction of literals:

ሥ

𝑖

ሧ

𝑗

𝑙𝑖,𝑗

Negation Normal Form

To transform F into F’ in NNF recursively apply

the following equivalences:

::F1 , F1

:> , ?
:? , >

:(F1 Æ F2) , :F1 Ç :F2

:(F1 Ç F2) , :F1 Æ :F2

F1 F2 , :F1 Ç F2

F1 $ F2 , (F1 F2) Æ (F2 F1)

Example

F : p $ (q r)

Conjunctive Normal Form

To transform F into F’ in CNF first transform F

into NNF and then recursively apply the following

equivalences:

(F1 Æ F2) Ç F3 , (F1 Ç F3) Æ (F2 Ç F3)

F1 Ç (F2 Æ F3) , (F1 Ç F2) Æ (F1 Ç F3)

(Note: a disjunction of literals is called a clause.)

Example

F : p $ (q r)

Exponential Blow-Up

 Such a naïve transformation can blow-up

exponentially (in formula size) for some

formulae

 For example: transforming from DNF into CNF

Tseitin Transformation [1968]

 Used in practice
 No exponential blow-up

 CNF formula size is linear wrt original formula

 Does not produce an equivalent CNF

 However, given F, the following holds for the
computed CNF F’:
 F’ is equisatisfiable to F

 Every model of F’ can be translated (i.e., projected)
to a model of F

 Every model of F can be translated (i.e., completed)
to a model of F’

 No model is lost or added in the conversion

Tseitin Transformation – Main Idea

 Introduce a fresh variable ei for every

subformula Gi of F

 ei represents the truth value of Gi

 Assert that every ei and Gi pair are equivalent

 Assertions expressed as CNF

 Conjoin all such assertions in the end

Example

F : p $ (q r)

$

rq

p

e0

e1

SAT Solver Input Format

c

c start with comments

c

p cnf 5 3

1 -5 4 0

-1 5 3 4 0

-3 -4 0

Based around DIMACS

Using a SAT Solver

 Graph coloring

 Given a graph and K colors, decide if each vertex

can be assigned a color so that no two adjacent

vertices have the same color

 How to solve using SAT?

Classical DPLL

 Searching for a model M for a given CNF

formula F

 Incrementally try to build a model M

 Maintain state during search

 State is a pair M | F

 F is a set of clauses and it doesn’t change during

search

 M is a sequence of literals

 No literals appear twice and no contradiction

 Order does matter

 Decision literals marked with ld

Abstract Transition System

 Contains a set of rules of the form

M | F M’ | F’

denoting that search can move from state M | F

to state M’ | F’

DPLL Rules – Extending M

 Propagate

M | G,C Ç l M,l | G,C Ç l
if M ² :C and l not in M

 Decide

M | F M,ld | F
if l or :l in F and l not in M

DPLL Rules – Adjusting M

 Fail

M | G,C fail
if M ² :C and M contains no decision literals

 Backtrack

M,ld,N | G,C M,:l | G,C
if M,ld,N ² :C and N contains no decision literals

 Propagate

M | G,C Ç l M,l | G,C Ç l
if M ² :C and l not in M

 Decide

M | F M,ld | F
if l or :l in F and l not in M

 Fail

M | G,C fail
if M ² :C and M contains no decision literals

 Backtrack

M,ld,N | G,C M,:l | G,C
if M,ld,N ² :C and N contains no decision literals

DPLL Example 1

; | :pÇqÇr, p, :qÇr, :qÇ:r, qÇr, qÇ:r

DPLL Example 2

; | :pÇq, :rÇs, :tÇ:u, uÇ:tÇ:q

Modern SAT Solvers

 DPLL + improvements

 Backjumping

 Dynamic variable ordering

 Learning conflict clauses

 Random restarts

 …

Next Lecture

 First-order logic

