
Lecture 1

Course Overview & Introduction

CS 5110/6110 – Software Verification | Spring 2018

Jan-8

Zvonimir Rakamarić
University of Utah

About Me

 Name: Zvonimir Rakamarić

 Born and raised in Croatia

 BS from the University of Zagreb

 Moved to Canada in 2004

 MS and PhD from the University of British

Columbia

 Worked for a year with NASA Ames

 Started at the University of Utah in 2012

 Leading SOARlab

 Software Analysis Research Laboratory

 http://soarlab.org/

 Always looking for great students to join the lab

http://soarlab.org/

Course Overview

 Course page is on Canvas

 Main goals

 Gain solid understanding of basic theory and practice

behind proving correctness of programs

 Cover advanced topics (interpolants, dealing with

concurrency) in second part of the course

 Textbook: The Calculus of Computation by Aaron

R. Bradley and Zohar Manna

 Electronic version is free through SpringerLink

Topics

 Propositional logic and SAT

 First-order logic and SMT

 Verification conditions

 Weakest precondition

 Proving program correctness

 Pre- and post-conditions

 Loop invariants

 Symbolic and concolic execution

 Advanced topics

 Analyzing concurrent programs

Course Organization

 Lectures

 Discuss basic and advanced verification topics

 Emphasize on lasting foundations and theory

 Reading research papers

 Homework assignments

 Hands-on exercises accompanying presented

material

 Coding in your programming language of choice

 Projects

 Focused, practical exploration of a topic related to

software verification (and ideally your interests!)

Course Communication

 Leverage Canvas

 Post questions

 Discuss concerns

 Ask for help and clarifications

 No fixed time for office hours

 Catch me after class

 Find me in my office

 Message me

 Email: zvonimir@cs.utah.edu

 Private questions (e.g., questions related to your

grade)

mailto:zvonimir@cs.utah.edu

Grading

 50% homework assignments
 5-6 practical homework assignments

 Each assignment is worth the same

 50% course project
 Project proposal (10 points)

 Final presentation (30 points)

 Final report (50 points)

 Peer review (10 points)

 5110 students are graded slightly differently
(see course syllabus)

Course Projects

 Mini research projects

 Publishing a (workshop) paper is the ultimate goal

 Deadlines still not defined

 I will update the webpage by the end of this week

 I will also come up with a list of potential topics

 Team work

 Allowed (up to 2 students)

 You have to do twice as much work

 If it is not clearly specified who did how much work,

both students will get the same grade

Collaboration vs Cheating

 Discussing homework and project solutions at
high-level is fine and encouraged

 Basing your code/write-up on any other
code/write-up is cheating
 do not copy solutions from another student

 do not copy solutions from the internet

 do not even look at solutions from another
student

 do not ask for solutions on online forums

 ………

 Acknowledge appropriately any outside
materials you used or rely on

Collaboration vs Cheating cont.

 I will officially report instances of cheating

I will request that you

fail this class
 If confirmed, cheating will be on your record

with this department

 Ignorance is not a valid excuse

 Read our policies on cheating

 Talk to professors if you are still not sure

Typical Cheating Scenario I

 Part of a student report copied from Wikipedia

In the context of hardware and software systems,

formal verification is the act of proving or

disproving the correctness of intended algorithms

underlying a system with respect to a certain

formal specification or property, using formal

methods of mathematics.

Typical Cheating Scenario II

In the context of hardware and software systems,

formal verification is the act of proving or

disproving the correctness of intended algorithms

underlying a system with respect to a certain

formal specification or property, using formal

methods of mathematics [1].

[1] https://en.wikipedia.org/wiki/Formal_verification

Typical Cheating Scenario III

Wikipedia defines formal verification as follows
[1]:

“In the context of hardware and software
systems, formal verification is the act of proving
or disproving the correctness of intended
algorithms underlying a system with respect to a
certain formal specification or property, using
formal methods of mathematics.”

[1] https://en.wikipedia.org/wiki/Formal_verification

Typical Cheating Scenario IV

Formal verification encompasses tools and

techniques for proving correctness of complex

systems [1].

[1] https://en.wikipedia.org/wiki/Formal_verification

Late Policy

 Late homework assignments and project

deliverables will not be accepted unless you

contact me well ahead of the deadline and

have a good excuse

Introduction to Software Verification

Discussion

 Where can software be found nowadays?

 Any bad software bugs you heard about?

Introduction to Software Verification

 Software is everywhere

 Personal computers, mobile phones, in cars,

ATMs, banks, planes, pacemakers, hospitals…

 Software has errors

 Software systems are generally large, complex,

and prone to errors…

 And getting larger and more complex…

 Heterogeneous hardware (multicore, GPUs)

 …and more error prone!

Infamous Software Bugs

 1962: Mariner I space probe

 1982: Soviet gas pipeline

 1985-87: Therac-25 medical accelerator

 1988: Berkeley Unix finger daemon

 1988-96: Kerberos Random Number Generator

 1990: AT&T Network Outage

 1993: Intel Pentium floating point divide

 1995-96: The Ping of Death

 1996: Ariane 5 Rocket

 2000: Cancer institute’s therapy planning software

Therac-25 Medical Accelerator

 Radiation therapy machine produced by Atomic

Energy of Canada Limited (AECL)

 Bug: Race condition (concurrency error)

between concurrent tasks in the Therac-25

software

 Massive overdoses of radiation

 Between 1985-87 at least five patients die;

others are seriously injured

Therapy Planning Software

 November 2000, National Cancer Institute,

Panama City

 Therapy planning software miscalculates the

proper dosage of radiation for patients undergoing

radiation therapy

 At least 8 patients die, another 20 receive

overdoses likely to cause significant health

problems

Ariane 5 Rocket

 June 4, 1996: Ariane 5

Flight 501 crash

 Working code for the

Ariane 4 rocket is reused

in the Ariane 5

 Ariane 5's faster engines trigger an overflow

condition in an arithmetic routine inside the

rocket's flight computer

 Flight computer crashes

 The rocket explodes 40 seconds after launch

Automotive Industry

[http://www.embedded.com/columns/embeddedpulse/179100752]

 2001: 52,000 Jeeps recalled due to a software

error that can shut down the instrument cluster.

 2002: BMW recalls the 745i since the fuel pump

would shut off if the tank was less than 1/3 full.

 2003: A BMW trapped a Thai politician when the

computer crashed. The door locks, windows, A/C

and more were inoperable. Responders

smashed the windshield to get him out.

http://www.embedded.com/columns/embeddedpulse/179100752

Automotive Industry cont.

 2004: Pontiac recalls the Grand Prix since the

software didn’t understand leap years. 2004 was

a leap year.

 2005: Toyota recalls 75,000 Prius hybrids due to

a software defect

 Cars stall or shut down while driving at highway

speeds

 Owners advised to bring their cars into dealers for

an hour-long software upgrade

 2010: Toyota recalls 300,000 Prius cars

 Software bug?

Code Red Worm

 2001: Code Red worm attacks the Index Server

ISAPI Extension in Microsoft Internet

Information Services

 Exploit used: Buffer overflow bug

 Worm released on July 13

 The number of infected hosts reached 359,000

on July 19

 Estimated damages are $2.6 billion

Heartbleed Bug

 Vulnerability in the OpenSSL cryptographic

software library

 Simple problem, but discovered only in 2014

 Affected millions of machines

Motivation

 Software errors are costly

 Software Fail Watch report for 2016:
[https://www.tricentis.com/resource-
assets/software-fail-watch-2016/]
“The report identified 548 recorded software fails
impacting 4.4 billion people and $1.1 trillion in
assets.”

 Improving software quality and reliability is a
major software engineering concern

 2016 NIST Report to the White House Office of
Science and Technology Policy titled
“Dramatically Reducing Software Vulnerabilities”
 Software verification is prominently featured

Testing

 Quality assurance relies heavily on testing

 Pros

 Scalable, precise (no false bugs)

 Easy to adopt and understand

 Testing (even random) does find lots of bugs

 Cons

 Time consuming and costly

 Writing (good) test cases

 Tester:Developer ratio at Microsoft around 1:1

 Coverage

 Important bugs still escape

Simple Testing Example

void foo(int x) {

…

…

…

}

foo(???);

foo(INT_MAX);

foo(INT_MIN);

foo(0);

foo(random());

foo(random());

foo(random());

………

Example Where Testing Works

void foo(int x) {

if (x == 0) {

BUG!

}

}

Example Where Testing Fails

void foo(int x) {

if (x == 914) {

BUG!

}

}

Formal Software Verification

 Definition from Wikipedia:

“Statically proving or disproving the correctness of

a program with respect to a certain formal

specification or property using formal methods of

mathematics.”

 Could be a very effective way to deal with the

software reliability problem

Brief History

 Turing, “Checking a Large Routine”, 1949.

 We need proofs of programs

 Mentions modularity

 Early attempt at a general proof method

 Floyd, “Assigning Meaning to Programs”, 1967.

 Workable proof method

 Hoare, “An Axiomatic Basis for Computer

Programming”, 1969.

 Further formalized

 Dijkstra, “A Discipline of Programming”, 1976.

 Further formalized

Why Formal Verification?

 Static (or source code) analysis

 Doesn’t execute code, no test cases

 High coverage

 Explores all possible paths through code

 Finds more hard bugs

 Lower costs and turn-around time

 No silver bullet

 Undecidable in general

 Either misses bugs or returns false errors

 Scalability and precision

Basic Verifier Architecture

Program with
specifications
(assertions)

Verification
condition
generator

Verification
condition
(formula)

Theorem
prover

Program
correct or list

of errors

Some Industry Success Stories

 Microsoft
 SLAM – device drivers

 Pex – automatic unit testing of .NET

 Code Contracts – contracts for .NET

 SAGE – whitebox fuzzing for security

 Facebook

 Infer verifier

 Startups

 Coverity, Polyspace, Fortify…

 Astree project in France
 Used by Airbus

 Verified software efforts

 NICTA's secure microkernel

 Microsoft project Everest (verified https stack)

SAGE

 Finding security bugs using whitebox fuzzing

 Security bugs are expensive (MSR report)

 Cost of each serious security bug: $Millions

 Cost due to worms: $Billions

 Running on 100s machines 24/7

 Fuzzing 100s of applications

 Media players, image processors, file decoders,

document parsers…

 Finding 100s of security bugs

 Saves tons of money/time/energy

SAGE cont.

“Every second Tuesday of every month, also known
as "Patch Tuesday," Microsoft releases a list of
security bulletins and associated security patches to
be deployed on hundreds of millions of machines
worldwide. Each security bulletin costs Microsoft and
its users millions of dollars. If a monthly security
update costs you $0.001 (one tenth of one cent) in
just electricity or loss of productivity, then this
number multiplied by a billion people is $1 million. Of
course, if malware were spreading on your machine,
possibly leaking some of your private data, then that
might cost you much more than $0.001. This is why
we strongly encourage you to apply those pesky
security updates.”

Verification and Microbrewing ☺

 Deschutes Brewery uses SAGE-based

software testing service to find bugs in their

automation software:

https://www.microsoft.com/en-

us/research/video/osisoft-deschutes-brewery-used-

project-springfield-full/

https://www.microsoft.com/en-us/research/video/osisoft-deschutes-brewery-used-project-springfield-full/

Summary

 Software has bugs

 Bugs can be very expensive

 Catch easy bugs with testing, etc.

 Use software verification techniques to catch

hard bugs

 Understanding basics of software verification

will be a requirement for future software

engineers

Next Lecture

 Propositional logic

 SAT solvers

