
Ø 1

Place & Route

Cadence Innovus place & route

CS/ECE 6710 Tool Suite
Synopsys

Design Compiler

Cadence
EDI

Cadence
Composer
Schematic

Cadence
Virtuoso
Layout

CCAR
AutoRouter

Your
Library

Verilog sim

Verilog sim

Behavioral
Verilog

Structural
Verilog

Circuit
Layout

LVS

Layout-XL

Ø 2

In the CAD Book

w Chapter 11 on SOC Encounter Place and Route
n  That’s an old name – In 2015 they changed it to

Cadence EDI (Encounter Design Implementation)
n  Now that’s an old name – it’s now called Cadence

Innovus…

n  Need additional information about your cells
w Specifically, a .lef (physical place &route) file

l  This basically describes the abstract views of your cells
in a way that place and route understands…

Encounter Innovus Place & Route

1.  Import Design
2.  Floorplan
3.  Power plan
4.  Place cells
5.  Synthesize clock tree?
6.  Route signal nets
7.  Verify results
8.  Write out results

Convert str
uctural Verilog

(From Synopsys)

Into physical layout

Ø 3

Innovus Usage

w  Need…
n  Structural Verilog <design>.v (from Synopsys)
n  Structural Verilog timing, <design>.sdc (from Synopsys)
n  Library timing information <library>.lib (from Liberate)
n  Library layout information <library>.lef (from Abstract)
n  6710.tcl file with Innovus variable settings (from /uusoc/facility/

cad_common/local/class/6710/F17/cadence/Innovus
n  mmmc.tcl file with timing information (multi-mode multi-corner

timing)

w  Make a new dir for Innovus... (I call mine INN)
w Call with cad-inn

cad-innFlow

1.  Import Design
n  .v, .sdc, .lib, .lef, mmmc.tcl

2.  Source 6710.tcl file to get things set up
3.  Floorplan

n  Choose physical size, ratio, utilization percentage,
etc.

4.  Power plan
n  rings, stripes, row-routing (sroute)

Ø 4

cad-edi Flow

5.  Placement
n  place cells in the rows
n  …with optimization step

6.  Synthesize clock tree?
n  use your buf and inv footprint cells
n  maybe not needed – Synopsys already did this…

7.  Global routing
n  NanoRoute
n  …with optimization step

cad-edi Flow

8.  Add filler cells
n  Fill in the spots in the row with no cells
n  Adds NWELL for continuity

9.  Write out results
n  <name>.def can be imported as layout
n  <name>_innovus.v is the placed and routed

Verilog dscription
n  Write out timing information if

desired. .spef, .sdc, _innovus.lib

Ø 5

To start…

mmmc.tcl timing description

The set of files needed…

mmmc.tcl
set the name of your .lib file (e.g. Lib6710_01.lib)
You can create multiple library sets if you have multiple libraries
such as fast, slow, and typ
If you have multiple .lib files put them in a [list lib1 lib2] structure
create_library_set -name typical_lib \
 -timing {!!your-lib-file!!.lib}
Specify the .sdc timing constraint file to use
This file comes from Synopsys synthesis. (e.g. design_struct.sdc)
create_constraint_mode -name typical_constraint \
 -sdc_files {!!your-sdc-file!!.sdc}
…

Ø 6

mmmc.tcl

Below here you shouldn't have to change, unless you're doing
something different than the basic EDI run...

Create an RC_corner that has specific capacatance info.
create_rc_corner -name typical_rc\
…
Define delay corners and analysis views.
create_delay_corner -name typical_corner \

-library_set {typical_lib} \
-rc_corner {typical_rc}

create_analysis_view -name typical_view \
-constraint_mode {typical_constraint} \
-delay_corner {typical_corner}

Now define which analysis view to use for setup and for hold.
set_analysis_view -setup {typical_view} -hold {typical_view}

cad-inn gui

Ø 7

Design
Import

Design Import

Ø 8

Result of Successful Import

Source 6710.tcl
Type command to
the Innovus command
line

Ø 9

Floorplan

Specify -> Floorplan

Floorplan

Specify -> Floorplan

Ø 10

Floor
plan

Power Rings

Power -> Power Planning

Ø 11

Power
Stripes

Power
Stripes

Annoying… This will
start the stripes from
0 offset…

Ø 12

Power
Stripes

Power
Rings
and

Stripes

Ø 13

Select and remove
the leftmost
power stripe…

Power
Rings
and

Stripes

Sroute to connect things up
Route -> Sroute

Ø 14

Sroute to connect rows to power
Route -> Sroute

Place cells
Place -> Place Standard Cell...

Ø 15

Place cells

Make sure
to have your
I/O signals
placed!

Placed Cells…

Ø 16

Clock Tree Synthesis…

w Probably don’t have to do this explicitly
n  Synopsys has already generated a clock tree

during synthesis…
n  Innovus can make a new one for you, and might

have better information because of floorplan and
placement…

n  But, seems like it can’t be done at the GUI. Only
through scripts…

NanoRoute

Route -> NanoRoute -> Route

Ø 17

Routed circuit

Routed circuit – another example..

Ø 18

Routed circuit – yet another example..

Figure 6: Placed and routed circuit implementing our im-
proved noise function as a four-stage pipeline (105kµm2).
This image is a screen capture from Cadence SOC Encounter
and shows only metal routing layers.

per second on a single core of 2.8GHz Core 2 Duo. Our final
design uses three 256 entry hash tables where, to avoid ad-
ditional adders, each table entry encodes the hash value for
the input, and for the input + 1 (see Figure 4). We also use
eight copies of a 64 entry gradient table, where each gradient
is a three element vector of fixed point values.

As graphics pipelines demand more and more memory
bandwidth we believe that providing a method for high qual-
ity textures through a hardware accelerated noise function
provides a good trade-o↵. Much of the bandwidth of high-
performance graphics chips is devoted to image-based (look-
up) texturing. Procedural textures using noise o↵er an al-
ternative that trades memory bandwidth for computation.
The scene in Figure 1 is an example that uses an average of
552 calls to the noise function per shading sample. 37.2% of
the total execution time for rendering the image was spent in
the evaluation of noise for various aspects of the image. The
textures on all of the surfaces and the smoke use noise to im-
prove visual quality. The use of image-based textures would
require far more memory bandwidth than our approach.

Admittedly, many applications would see more modest
improvements in performance than the specific scene used
here which is designed to demonstrate heavy use of noise-
based textures. However, any time noise is used there would
be a speedup using our hardware over a software implemen-
tation. At least one place where this could encourage vi-
sually complex images at a reduced memory bandwidth re-
quirement would be video games. Games typically use very
large image textures to avoid the appearance of repetition.
While we do not have specific projections of memory band-
width savings, it is well known that the large image tex-
tures are a significant fraction of the memory bandwidth in
video games. Our design could increase the performance of
applications that use noise by as much as 50% and would
be a good step toward high quality procedural texture gen-

eration and could become a viable real-time alternative to
image-based texturing.

5. REFERENCES
[1] A. A. Apodoca and L. Gritz. Advanced RenderMan:

Creating CGI for Motion Pictures. Morgan Kaufmann
Publishers, 2000.

[2] R. Bridson, J. Hourihan, and M. Nordenstam.
Curl-Noise for Procedural Fluid Flow. ACM
Transactions on Graphics (SIGGRAPH ’07), 26(3),
2007.

[3] R. L. Cook and T. DeRose. Wavelet Noise. ACM
Transactions on Graphics (SIGGRAPH ’05),
24(3):803–811, 2005.

[4] T. Erber and G. M. Hockney. Equilibrium
Configurations of N Equal Charges On a Sphere.
Journal of Physics A: Mathematical and General,
24(23):L1369–L1377, 1991.

[5] S. Gustavson. Simplex Noise Demystified. In
http://websta↵.itn.liu.se/⇠stegu/simplexnoise/, 2005.

[6] A. Kensler, A. Knoll, and P. Shirley. Better Gradient
Noise. Technical Report UUSCI-2008-001, SCI
Institute, University of Utah, 2008.

[7] J. P. Lewis. Algorithms for Solid Noise Synthesis.
ACM SIGGRAPH Computer Graphics, 23(3):263–270,
1989.

[8] F. K. Musgrave. Fractal Solid Textures: Some
Examples. In Texturing and Modeling: A Procedural
Approach, chapter 15, pages 447–487. Morgan
Kaufmann Publishers, third edition, 2003.

[9] M. Olano. Modified Noise for Evaluation on Graphics
Hardware. In Proceedings of Graphics Hardware 2005,
pages 105–110, 2005.

[10] D. Peachey. Building Procedural Textures. In
Texturing and Modeling: A Procedural Approach,
chapter 2, pages 7–94. Morgan Kaufmann Publishers,
third edition, 2003.

[11] K. Perlin. An Image Synthesizer. ACM SIGGRAPH
Computer Graphics, 19(3):287–296, 1985.

[12] K. Perlin. In the beginning: The Pixel Stream Editor.
In M. Olano, editor, Real-Time Shading SIGGRAPH
Course Notes, chapter 2. 2001.

[13] K. Perlin. Noise Hardware. In M. Olano, editor,
Real-Time Shading SIGGRAPH Course Notes,
chapter 9. 2001.

[14] K. Perlin. Improving Noise. ACM Transactions on
Graphics (SIGGRAPH ’02), 21(3):681–682, 2002.

[15] K. Perlin. Implementing Improved Perlin Noise. In
GPU Gems, chapter 5, pages 73–85. Addison-Wesley,
2004.

[16] K. Perlin and E. Ho↵ert. Hypertexture. ACM
SIGGRAPH Computer Graphics, 23(3):253–262, 1989.

[17] P. Shirley and R. K. Morley. Realistic Ray Tracing. A.
K. Peters, Natick, MA, 2003.

[18] J. Spjut, D. Kopta, S. Boulos, S. Kellis, and
E. Brunvand. TRaX: A Multi-Threaded Architecture
for Real-Time Ray Tracing. In 6th IEEE Symposium
on Application Specific Processors (SASP), 2008.

[19] T. Whitted. An Improved Illumination Model for
Shaded Display. Communications of the ACM,
23(6):343–349, 1980.

462

Add Filler Cells
Place -> Physical Cell -> Add Filler

Ø 19

Verify connectivity

Verify DRC (only wires!)

Ø 20

Write Results...

Design -> Save -> Netlist
(structural Verilog)

Design -> Save -> DEF
(layout information)

Innovus Scripting

w Usual warnings – know what’s going on!
w Use top.tcl as a starting point

n  And the other .tcl files it calls...
w  Innovus has a floorplanning stage that you

may want to do by hand
n  write another script to read in the floorplan and

go from there...
w Use innovus.cmd to see the text versions of

what you did in the GUI...

Ø 21

Innovus Scritping Usage

w  Need structural Verilog, struct.sdc, library.lib, library.lef
w  Make a new dir for Innovus... (I call mine INN)
w  Make an mmmc.tcl file with timing/library info
w  <design>.globals has design-specific settings

n  use basename.globals as starting point.
w  Usual warnings about scripting…

n  top.tcl and other *.tcl are in the class directory as starting points
n  /uusoc/facility/cad_common/local/class/6710/F17/cadence/Innovus

w Call with cad-inn, but this time source scripts
instead of using GUI

Innovus Scripting Starting Point

Note the same six files as before, but now adding <basename>.globals,
and all the other .tcl files from
/uusoc/facility/cad_common/local/class/6710/F17/cadence/Innovus

Ø 22

<basename>.globals

Set the name of your structural Verlog file
This comes from Synopsys synthesis
set init_verilog {!!your-file-name.v!!}
Set the name of your top module
set init_design {!!your-top-module-name!!}
Set the name of your .lef file
This comes from ELC
set init_lef_file {!!your-file-name.lef!!}
…

<basename>.globals

Ø 23

<basename>.globals

below here you probably don't have to change anything

Set the name of your "muli-mode-multi-corner data file
You don't need to change this unless you're using a
different mmmc.tcl file.
set init_mmmc_file {mmmc.tcl}
Some helpful input mode settings
set init_import_mode {-treatUndefinedCellAsBbox 0 -keepEmptyModule 1 }
Set the names of your gnd and power nets
set init_gnd_net {gnd!}
set init_pwr_net {vdd!}

top.tcl

Ø 24

top.tcl

top.tcl

You may not have to change things below this line - but check!

You may want to do floorplanning by hand in which case you
have some modification to do!

Set some of the power and stripe parameters - you can change
these if you like - in particular check the stripe space (sspace)
and stripe offset (soffset)! These values should be divisible by 0.3
so that they’ll fall on the lambda grid
set pwidth 9.9 ;# power rail width
set pspace 1.8 ;# power rail space
set swidth 4.8 ;# power stripe width
set sspace 210 ;# power stripe spacing
set soffset 207 ;# power stripe offset to first stripe

Ø 25

top.tcl

Set the flag for EDIto automatically figure out buf, inv, etc.
set dbgGPSAutoCellFunction 1

Import design and floorplan
If the config file is not named $basename.globals, edit this line.
source $BASENAME.globals
init_design

.globals file

w Same .globals file that we saw before with
the walk-through

w Start with basename.globals and mmmc.tcl
from the
/uusoc/facility/cad_common/local/class/
6710/F17/cadence/Innovus directory

w This describes the .lib, .lef, etc. information

Ø 26

top.tcl
source the files that operate on the circuit
source fplan.tcl ;# create the floorplan (might be done by hand...)
source pplan.tcl ;# create the power rings and stripes
source place.tcl ;# Place the cells and optimize (pre-CTS)
source cts.tcl ;# Create the clock tree, and optimize (post-CTS)
source route.tcl ;# Route the design using nanoRoute
source verify.tcl ;# Verify the design and produce output files
exit

fplan.tcl
puts "-------------Floorplanning---------------"

Make a floorplan - this works fine for projects that are all
standard cells and include no blocks that need hand placement...
setDrawView fplan
setFPlanRowSpacingAndType $rowgap 2
floorPlan -site core -r $aspect $usepct \
 $coregap $coregap $coregap $coregap
fit

Save design so far
saveDesign ${BASENAME}_fplan.enc
saveFPlan ${BASENAME}.fp
puts "--------------Floorplanning done----------

Ø 27

pplan.tcl
puts "-------------Power Planning----------------"
puts "-------Making power rings------------------"

Make power and ground rings - $pwidth microns wide
with $pspace spacing between them and centered in the channel
addRing -spacing_bottom $pspace \
 -width_left $pwidth \
 -width_bottom $pwidth \
 -width_top $pwidth \
 -spacing_top $pspace \
 -layer_bottom metal1 \
 -center 1 \
 -stacked_via_top_layer metal3 \
 ...

pplan.tcl
puts "------making power stripes-----------------”
Make Power Stripes. This step is optional. If you keep it
in remember to check the stripe spacing
(set-to-set-distance = $sspace) and stripe offset
(xleft-offset = $soffset))
addStripe -block_ring_top_layer_limit metal3 \
 -max_same_layer_jog_length 3.0 \
 -snap_wire_center_to_grid Grid \
 -padcore_ring_bottom_layer_limit metal1 \
 …
Use the special-router to route the vdd! and gnd! nets
sroute -allowJogging 1

Save the design so far
saveDesign ${BASENAME}_pplan.enc
puts "-------------Power Planning done---------"

Ø 28

top.tcl
Read the script...

 place
 pre-CTS optimization
 clock tree synthesis
 post-CTS optimization
 routing
 post-ROUTE optimization
 add filler
 write out results

Report Files

w <topname>_Conn_regular.rpt
w <topname>_Conn_special.rpt
w <topname>_Geom.rpt

w Want 0 violations in all
n  If you have 1 or 2 in the geometry you might be

able to fix them easily in Virtuoso...

Ø 29

Read back to Virtuoso

w Make a new library to hold the placed and
routed version

w Commands to read Verilog and DEF are in
the CIW, not Library Manager…
n  Once you have both schematic and layout, you

can DRC-Extract-LVS to make sure it’s all OK!

Import Verilog
In CIW

File -> Import -> Verilog

Make SURE you import
The Verilog from Innovus!

Ø 30

Schematic view

Symbol view

Ø 31

Read DEF

File -> Import -> DEF

Resulting layout view

Problem: all
cells are
abstract views!

Ø 32

Change abstract to layout cellviews
Edit -> Search

DRC, Extract

Change abstract to layout cellviews

Ø 33

LVS Result

Yay!!!

Summary

w Behavioral -> Structural -> Layout
w Can be automated by scripting, but make

sure you know what you’re doing
n  Synopsys documentation for design_compiler
n  innovus.cmd (and documentation) for Innovus

w End up with placed and routed core layout
n  or BLOCK for later use...

