Cadence Liberate
Library Characterization Tool Tutorial

Digital VLSI Chip Design CAD manual addendum

The Digital VLSI Chip Design book describes in detail the process of characterizing a cell library.
That is, take the extracted layout for a set of standard cells, and run analog simulations on those
cells to characterize the electrical /timing behavior in way that can be used by HDL synthesis. This
means understanding the propagation delays, the internal power, the input capacitance, and
many other aspects of the behavior of the cells. The result is a “liberty format” .lib file that
describes all this electrical and timing behavior.

This is described in Chapter 8 of the book. Section 8.1 describes the Liberty format used by HDL
synthesis, and place & route tools for timing and power information. Section 8.2 describes the use
of the Encounter Library Characterizer (ELC) tool. Unfortunately, that tool is no longer supported
by Cadence. The new library characterizer tool from Cadence is called Liberate. This tutorial
replaces section 8.2 for use with Liberate. Section 8.2.1 describes how to generate the input
netlist for the characterization. This process is the same for the new tool. Up to the creation of the
netlist using the ADE-L tool (page 233) you can follow this exact process from the book.

The differences start with the modifications to that netlist file to make it compatible with
Liberate. The main difference is that Liberate seems to strongly prefer vss as the name of the
ground node in the circuit. Also, Liberate allows the use the “global” parameter in the Spectre
input file to define certain nodes (typically the power and ground nodes) as global in scope. With
the vss and vdd nodes described as global, the individual “subckt” descriptions no longer need to
include the vdd and vss arguments. An example of a Liberate-modified netlist for two cells
(INVX1 and NAND2X1) replacing Figure 8.17 is:

simulator lang=spectre
global vss vdd

subckt INVX1 A Y

Ml (Y A vdd vdd) ami06P w=6u 1=600n as=9e-12 ad=9%9e-12 ps=15.0u \
pd=15.0u m=1 region=sat

MO (Y A vss vss) ami0O6N w=3u 1=600n as=4.5e-12 ad=4.5e-12 ps=9u \
pd=9%u m=1 region=sat

ends INVX1

subckt NAND2X1 A B Y

M2 (Y A vdd vdd) ami06P w=6u 1=600n as=9e-12 ad=9%9e-12 ps=15.0u \
pd=15.0u m=1 region=sat

M3 (Y B vdd vdd) ami06P w=6u 1=600n as=9e-12 ad=9%9e-12 ps=15.0u \
pd=15.0u m=1 region=sat

MO (Y B netl2 vss) amiO6N w=6u 1=600n as=9e-12 ad=9%e-12 \
ps=15.0u pd=15.0u m=1 region=sat

M1l (netl2 A vss vss) amiO6N w=6u 1=600n as=9e-12 ad=9%e-12 \
ps=15.0u pd=15.0u m=1 region=sat

ends NAND2X1

There is a script in the F17 bin directory called scs2liberate that should automatically make the
modifications to the netlist generated by ADE-L to make it compatible with Liberate. The use f
this script is:

scs2liberate <input-file> <output-file>

You should check the output of this tool carefully to make sure it looks right. It has been tested,
but not on a huge number of input files! To make things easier later in the process, you should
name the output file 1ibcells. scs.

Now everything is different from the book! The new tool does the same thing as ELC, but it is
a completely different tool with a different interface.

In your VLSI directory (or wherever you want run Liberate from), make a recursive copy of the
Liberate directory from

/uusoc/facility/cad common/local/class/6710/F17/cadence. This will copy a
number of directories and setup files. The following Linux commands do the trick (make sure you
include the “dot” at the end of the cp command).

cd ~/VLSI
cp -r /uusoc/facility/cad_common/local/class/6710/Fl17/cadence/Liberate .

In that new Liberate directory you will see the following:

1. Alibdirectory - that's where the generated <1library>. 1ib file will be generated.

2. Anetlistdirectory - put your libcells. scs file in this directory.

3. A templates directory - edit the UofU_Cell Defs. tcl file in this directory to
include cell descriptions for each of the cells you want to characterize. The
UofU_Templates. tcl file has definitions for the timing and power templates that will
be used for characterization. You probably don’t need to modify these unless you are using
a different technology than ON Semi C5N.

4. AUofU_Cells. tcl file - edit this file to make a list of the cells that you want to
characterize in this run. This could be a list of every cell described in
templates/UofU_Cell Defs.tcl, oritcould be a subset if you just want to try a few.

5. Auserdata directory - edit the userdata. 1ib file to reflect the areas and footprints of
each of the cells in your library.

6. A tcl directory - Edit the UofU_Char. tcl file in this directory to change the name of
the library that the tool generates. If you don’t modify this, the tool will generate a file
named Lib6710_XX.1lib by default. The settings. tcl file in this directory has
configuration commands for the Spectre simulator. You won’t need to modify this file at
all.

7. Amodels directory that has the Spectre model files for the amiO6N and amiO6P
transistors used by in your netlist.

8. A run. sh shell script that calls the cad-lib Liberate script with the appropriate input files,
and makes a copy of the log information in a Liberate. log file.

Let’s take a closer look at each of these steps.

Characterization Netlist: Start with your 1ibcells. scs file that describes the transistor-
level netlist for the cells you'd like to characterize (the equivalent of Figure 8.17 in the book). Put
this file into the Liberate/netlist directory.

Cell Descriptions: Edit templates/UofU_Cell Defs. tcl to add definitions for each cell
that you will be characterizing. You can continue to add cells to this file as you add cells to your
library. This is the central place where the cell interfaces are described. The actual cells being
characterized on any particular run of the tool are only those listed in the UofU_Cells. tcl file.
As an example, here are the descriptions for INVX1 and NAND2X1. This is essentially the same as
the interfaces extracted by ELC and shown in Figure 8.19 in the book, but you’ll have to type them
in by hand.

if {[ALAPI_active_ cell "INVX1"]} ({
define cell \
-input { A } \
-output { Y } \
-pinlist { A Y } \
-delay delay template 5x5 X1 \
-power power_ template 5x5 X1 \
INVX1

}

if {[ALAPI_active_ cell "NAND2X1"]} {
define cell \
-input { A B } \
-output { Y } \
-pinlist { AB Y } \
-delay delay template 5x5 X1 \
-power power_ template 5x5 X1 \
NAND2X1

}

The “if” statement says to ignore the cell description if it’s not currently active in the tool. This is
for efficiency of execution. After the “if” each cell is described by a define_cell command
where the inputs, the outputs, the argument list (in the order used in the netlist), the delay and
power templates to use, and the name of the cell are described. The delay and power templates
are defined in the UofU_Templates. tcl file. You can look in that file to see what they are and
how they’re defined. Basically there are versions of the delay_template and power_template that
are used for X1, X2, X4, and X8 (and larger) cells. The difference is that the cells with larger drive
strengths are characterized over a larger range of capacitive loads.

Sequential cells are further characterized for constraints such as setup and hold times. The
template for constraints is called constraint template 5x5. An example of a flip flop
definition is:

if {[ALAPI_active_cell "DCBX1"]} {
define cell \
-clock { CLK } \
-async { CLR } \
-input { D } \
-output { Q OB } \
-pinlist { CLK CLR D Q QB } \
-delay delay template 5x5 X1 \
-power power_ template 5x5 X1 \
-constraint constraint template 5x5 \
DCBX1
}

You need to add a description for each new cell that you add to your library.

Now you need to add the cells that you want to be characterized on this run of the tool to the
UofU_Cells. tcl file. This is just a list of cell names. The list could be all the cells described in

the templates/UofU_Cell Defs. tclfile, or justa subset of them (if you want to try out a
new cell without characterizing the whole library again, for example). The format of this file is:

#
List the cells that you want to include on
this characterization run.
The cell definitions should be in the
templates/UofU _Cell Defs.tcl file.
set cells {
INVX1
NAND2X1

}

User data: This file (userdata/userdata. 1ib) has information about the area and footprint
of your cells. This is similar information to the footprints.def file described in the book on
page 242, but in a different format. The area is straightforward - it’s the area of the cell. I
measure the area from the center of the lower left contact in the GND line to the center of the
upper right contact in the VDD line. The footprint is used to group cells into similar functionality.

As described in the book, cells with the same footprint can actually have different areas. For
example, all your INVXn cells should have the same footprint (INV), but they’ll each have different
areas. The footprint information lets the place & route tool choose suitable replacements as
required for achieving speed and power goals. An example of the userdata.lib file is:

library (LIB6710_XX) {
cell (INVX1l) {
area : 129.6;
cell footprint : "INV";
}
cell (NAND2X1l) {
area : 194.4;
cell footprint : "NAND2";

Characterization commands: The commands that drive the tool are in the two files in the tcl
directory: settings. tcl with deep dark secret settings for the tool (I got this file from
Cadence and haven't dissected exactly what every line means), and UofU_char. tcl which
drives the actual characterization run with your files. The only thing you probably have to change
in this file is the name of the library you want to end up with. Even this isn’t essential - you can
always edit the default Lib6710_XX. 1ib file to be a different name. But, it only takes a second
to modify the LIBNAME field in this file. You can also see the sequence of commands that will
drive the actual characterization.

The only other thing you might want to change in this file is to select a different set of model files
for the transistors. By default you'll get the “typical” parameters for the ON Semi C5N process
(called ami06N and ami06P because ON Semi used to be named AMI Semiconductor). This is
almost always what you want.

But, you could also try simulations with best-case and worst-case conditions. You could change
the PROCESS variable to “ff” for “fast-fast” to get the best-case performance, and “ss” for “slow-
slow” to get the worst-case behavior as described by ON Semi. You could also go to mosis.com
and get the extracted models for a recent run on the process and use that model if you like. That
might be a more up to date version of the model parameters. An example of a mosis.com
extracted model is also in the models/spectre directory (T89Y. scs).

Running Characterization: Now that you've modified all the relevant files you can actually run
the Liberate tool. You could run it directly from the cad-lib script, but there’s a run. sh script in
your new Liberate directory that runs the tool, with the Uo£U_Char. tcl as the input file,
and forking the console output to a Liberate. 1log file so you can look at the log and make sure
you didn’t have any serious errors or warnings in the process. You can run this shell script, but
you’ll probably have to say explicitly where it is using the dot notation (which says to look for it
in your current directory):

./run.sh

If everything was specified correctly, this will resultina Lib6710_XX. 1ib (or whatever named
you changed it to) in the lib directory of your Liberate run directory. This .lib file can be used
directly by the place & route tools, but needs to be converted to binary format for the Synopsys
HDL compiler Design Compiler.

As with the older ELC tool, this characterization will spawn a bunch of Spectre simulations for
various conditions, and automatically check the timing and power of the cell. These data are
collected into the proper Liberty format and eventually output into the .lib file. Because a large
number of Spectre simulations are used for the characterization, this can take a while for a large
library with a lot of complex cells.

Converting the .lib file: To convert the .lib into a binary .db file for Design Compiler, you’ll use a
tool called Library Compiler from Synopsys. Call this with the syn-1c script. The process is to
read the .lib file, then output that library as a binary version in a .db file. This is as described in
the CAD book in Section 8.4, but use the syn-1c library compiler script directly rather than
going through the design compiler interface. This is the recommended flow in the latest Synopsys
tools. Here’s a transcript of the simple 2-cell version:

[elbRlab2-20 1ib]$ syn-lc

Using setup-synopsys from S17

Assuming your OS is amdé64

You are now set up to run the synopsys tools.

Working directory is /home/elb/VLSI/Liberate/lib

Library Compiler (TM)
DesignWare (R)
Version M-2016.12-SP3 for linux64 - Apr 13, 2017
Copyright (c) 1988 - 2017 Synopsys, Inc.
This software and the associated documentation are proprietary to Synopsys, Inc.
This software may only be used in accordance with the terms and conditions
of a written license agreement with Synopsys, Inc. All other use, reproduction,
or distribution of this software is strictly prohibited.

Initializing...
lc_shell> read lib Lib6710_XX.lib
Reading '/home/elb/VLSI/Liberate/lib/Lib6710_ XX.lib'
Warning: Line 1, The 'default inout pin_cap' attribute is not specified. Using 1.00. (LBDB-172)
Warning: Line 1, The 'default input pin_cap' attribute is not specified. Using 1.00. (LBDB-172)
Warning: Line 1, The 'default leakage_ power_ density' attribute is not specified. Using 0.00. (LBDB-172)
Warning: Line 105, Cell 'INVX1l', The cell_ leakage power attribute of the 'INVX1l' cell is redundant
and not used in the leakage power modeling. (LBDB-644)
Warning: Line 215, Cell 'INVX1l', pin 'A', The pin 'A' does not have a internal power group. (LBDB-607)
Warning: Line 229, Cell 'NAND2X1', The cell_ leakage_power attribute of the 'NAND2X1l' cell is redundant
and not used in the leakage power modeling. (LBDB-644) Technology library
'Lib6710_XX' read successfully
1
lc_shell> write_lib Lib6710_XX -o Lib6710_XX.db Wrote the
'Lib6710_XX' library to '/home/elb/VLSI/Liberate/lib/Lib6710_XX.db' successfully
1
lc_shell> exit Memory usage for this session 19 Mbytes.
CPU usage for this session 0 seconds (0.00 hours).

Thank you...
[elb@lab2-20 1ib]$

You'll see that there are a number of warnings - typically related to the cell leakage power
calculation. You can safely ignore these warnings because the leakage power in our process is
negligible anyway. The Liberate tool also seems to not generate every possible attribute that the
library compiler understands. You can safely ignore this too.

You can now use your converted library with Synopsys HDL synthesis as described in the CAD
book as described in Chapter 9.

