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Logistics
T-Th 5:15-6:35, WEB 2230


Instructor: Erik Brunvand

Office: MEB 3142

Office hours: After class and by appointment


TAs: Ramya Selvan, Harikrishna Subramanyam

Office hours in the CADE lab

Times and days TBA

Logistics
Canvas page will be course home page


https://utah.instructure.com/courses/460181 


Contact: 

We’ll send messages / announcements through the Canvas 
interface

Use the Canvas interface to send messages back to the 
instructors and TAs



Textbook

Principles of CMOS VLSI 
Design  
 
Weste and Harris 
 
(4th edition)

CAD Manual

Describes in detail how to 
use the CAD tools


Tutorial in nature 

Based on v5 of the Cadence tools

Revisions for v6 available through 
the Canvas page



Class Goal
To learn about modern Digital CMOS IC design 

Class project –  
teams will build moderate sized chip


Each team will develop a cell library for their project

We’ll form teams in a few weeks


These chips can be  
fabricated through MOSIS


Chip fabrication service  
for small-volume projects

Educational program  
funded by MOSIS

Class CAD/EDA Tools
We’ll use tools from Cadence and Synopsys


These only run on Linux in the CADE lab, so you’ll need a 
CADE account

I also assume you know something about UNIX/Linux


Lots of web tutorials if you need them… 



Prerequisites
Digital design is required! (i.e. CS/ECE 3700)


Boolean algebra

Combinational circuit design and optimization


K-map minimization, SOP, POS, DeMorgan,  
bubble-pushing, etc.

Arithmetic circuits, 2’s complement numbers 


Sequential Circuit design and optimization

Latch/flip-flop design

Finite state machine design/implementation

Communicating FSMs


Using FSMs to control datapaths

Recommendation
Computer Architecture experience is helpful


Instruction set architecture (ISA)

Assembly language execution model

Instruction encoding

Simple pipelining


I assume you’ve used some sort of CAD tools 
for digital circuits


Schematic capture

Simulation



Assignment #1: Review
On the Canvas page is a review assignment


If you can do these problems, you probably have the right 
background

If you can’t, you may struggle!!!!!


Please take this seriously! Give this exam a try 
and make sure you remember what you need to 
know! 


You also need to turn it in next week by Tuesday August 29th  

Must do this independently, it will be graded

Lab #1: Schematics
Cadence Composer tutorial


Section 1.4, Appendix A in the  
textbook

Chapters 1-3 in the CAD manual

Simple circuit design with simulation


Learn basic Verilog for testbench


Available on the Canvas page


Due on Friday, September 8th, 5:00pm

on-line submission in CADE through “handin”


START NOW!!!!!



Grading
Labs (cell designs) & Homework (40%)

Design review (5%)

Mid-term exam (15%)

Final Project (40%)


See the syllabus (Canvas page) for more details 
about grading breakdown


6710 has additional paper review requirement for 5%, with 
labs moving to 35%

Cheating Policy
In a word: Don’t! 


School of Computing academic misconduct 
policy is in effect for this class


Read the department policy! (linked to the Canvas page)

If you haven’t done so, fill out the form

Short version: Don’t turn in other people’s work, or allow 
others to turn in your work as their own

Default sanction for any academic misconduct is  
FAILING GRADE IN THE COURSE



Transistor History
1958: First integrated circuit


Flip-flop using two transistors

Built by Jack Kilby at Texas Instruments


2008: Intel Core2 Duo – 291,000,000 transistors


53% compound annual growth rate over 50 years

No other technology has grown so fast so long


Driven by miniaturization of transistors

Smaller is cheaper, faster, lower in power!

Revolutionary effects on society

Transistor History
1958: First integrated circuit


Flip-flop using two transistors

Built by Jack Kilby at Texas Instruments


2012: NVIDIA GK110 (Kepler) ~7,000,000,000 
transistors



Ridiculous Chips… 
NVIDIA GK110


Kepler
GM200

Maxwell

GP100

Pascal

GV100

Volta

FP32 Cores 2880 3072 3584 5120
FP64 Cores 960 96 1792 2560

FP32 TFLOPS 5 6.82 10.6 15
FP64 TFLOPS 1.68 0.21 5.3 7.5

DRAM 
Interface

384bit 
GDDR5

384bit 
GDDR5

4096bit 
HBM2

4096bit

HBM2

L2 Cache 1536 KB 3072 KB 4096 KB 6144KB
TDP watts 235 250 300 300
Transistors 7.1b 8b 15.3b 21.1b

CMOS 28nm 28nm 16nm 12nm

NVIDIA GP100 Pascal



Back to Intel Core2 Duo… 
Even 291 million is a LOT of transistors 


Where are they used? 

Mostly for memory! 

Intel Core2 Duo: 4MB shared L2 cache,  
32K Icache 32K Dcache on each core

4*10242*8 + 2(64*1024*8) = 34,603,008 bits

Around 6 transistors per bit of memory

~35,000,000 bits  * 6 = ~210,000,000 transistors

Intel Core2 Duo (2008)
65nm process, 75W, 144 mm2 die



Historical Comparison

Core2 Duo 
65nm devices (released in 2008) 
144mm2 die 
291,000,000 transistors 
over 4MB (32Mbit) of on-chip storage 
2200MHz 

6502 (Apple II, Nintendo NES etc.)  
6000nm devices (6 micron) (released in 1975) 
22mm2 die 
3510 transistors (nmos only) 
56 total bits of state 
1MHz 
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3510 transistors (nmos only) 
56 total bits of state 
1MHz 



Transistor Revolution
Vacuum tubes ruled in first half of 20th century: 
large, expensive, power-hungry, unreliable


1947: first point contact 
transistor


William Shockley,  
John Bardeen, and  
Walter Brattain  
at Bell Labs

Read Crystal Fire


by Riordan, Hoddeson

First Integrated Circuit

1.3MHz oscillator  
on Germanium  

The first working integrated circuit was created by Jack Kilby in 1958. 



First Monolithic IC

Robert Noyce, Flip Flop, on Silicon 1961

Transistor Types
Bipolar transistors


npn or pnp silicon structure

Small current into very thin base layer controls large currents 
between emitter and collector

Base currents limit integration density


Metal Oxide Semiconductor Field Effect 
Transistors (MOSFET)


nMOS and pMOS FETs

Voltage applied to insulated gate controls current between 
source and drain

Low power allows very high integration



Transistor Types

MOS Integrated Circuits
1970’s processes usually had only nMOS transistors


Inexpensive, but idle current consumes power

Intel 1101 256-bit SRAM Intel 4004 4-bit µProc 



Hand-Design… 

Moore’s Law
1965: Gordon Moore plotted transistors per  chip


Fit straight line on semilog scale

Transistor counts have doubled every 26 months



Moore’s Law
1965: Gordon Moore plotted transistors per  chip


Fit straight line on semilog scale

Transistor counts have doubled every 26 months

Integration Levels 
SSI: 10 gates 
MSI: 1000 gates 
LSI: 10,000 gates 
VLSI: > 10k gates 

Other Exponentials
e.g. clock speed, performance, etc… 



Big Picture

Physics Electronics
VLSI

Logic3Gates

FSM RTL
FSM

Computer

MOV3R13R2
ADD3R13R33R5
ST3R33(5)R6

ISA

if3(c==1)
x3=3foo(y);

else
x3=3bar(a,b);

Progamming
Languages

OS
Compilers
Algorithms
Applications
Etc...
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CS/ECE 3700



Cell Library Based Design

Verilog

Description

HDL 
Compiler

Circuit 
Description

Place and 
Route

Chip Layout

Cell Library

module moore (clk, clr, 
insig, outsig);  
    input clk, clr, insig; 
    output outsig;


// define state encodings 
as parameters 
    parameter [1:0] s0 = 
2'b00,  
    s1 = 2'b01,s2 = 2'b10, 
s3 = 2'b11;


// define reg vars for 
state register 
// and next_state logic  
    reg [1:0] state, 
next_state;


//define state register 
(with 
//synchronous active-
high clear) 
    always @(posedge clk) 
    begin 
            if (clr) state = s0;  
            else state = 
next_state;  
    end


// define combinational 
logic for 
// next_state 
always @(insig or state) 
begin 
      case (state) 
           s0: if (insig) 
next_state = s1;  
                 else 
next_state = s0; 
           s1: if (insig) 
next_state = s2; 
                 else 
next_state = s1;  
           s2: if (insig) 
next_state = s3; 
                 else 
next_state = s2; 
           s3: if (insig) 
next_state = s1;  
                 else 
next_state = s0;  
        endcase 
end


// assign outsig as 
continuous assign 
    assign outsig =  
                ((state == s1) || 
(state == s3));  
 
endmodule


    input clk, clr, insig; 
    output outsig; 
 
wire   n4, n5, n6, n7, n8;  
wire   [1:1] state; 
wire   [1:0] next_state;


DFF_QB 
state_reg_0_( .D(next_state[0]), .G(clk), .CLR(clr), .Q(outsig), .QB(n4) 
); 
DFF state_reg_1_ ( .D(next_state[1]), .G(clk), .CLR(clr), .Q(state[1]) );  
MUX2_INV U7 ( .A(n6), .B(n7), .S(n5), .Y(next_state[1]) );  
INVX1 U8 ( .A(state[1]), .Y(n5) ); 
NAND2 U9 ( .A(outsig), .B(insig), .Y(n7) );  
INVX1 U10 ( .A(n4), .Y(n6) ); 
XOR2 U11 ( .A(insig), .B(n8), .Y(next_state[0]) ); 
NOR2 U12 ( .A(state[1]), .B(n4), .Y(n8) );


Cell Library Based Design

Verilog

Description

HDL 
Compiler

Circuit 
Description

Place and 
Route

Chip Layout

Cell Library

 
wire   n4, n5, n6, n7, n8;  
wire   [1:1] state; 
wire   [1:0] next_state;


DFF_QB 
state_reg_0_( .D(next_state[0]), .G(clk), .CLR(clr), .Q(outsig), .QB(n4) 
); 
DFF state_reg_1_ ( .D(next_state[1]), .G(clk), .CLR(clr), .Q(state[1]) );  
MUX2_INV U7 ( .A(n6), .B(n7), .S(n5), .Y(next_state[1]) );  
INVX1 U8 ( .A(state[1]), .Y(n5) ); 
NAND2 U9 ( .A(outsig), .B(insig), .Y(n7) );  
INVX1 U10 ( .A(n4), .Y(n6) ); 
XOR2 U11 ( .A(insig), .B(n8), .Y(next_state[0]) ); 
NOR2 U12 ( .A(state[1]), .B(n4), .Y(n8) );


BEHAVIOR CIRCUIT STRUCTURE

module moore (clk, clr, 
insig, outsig);  
    input clk, clr, insig; 
    output outsig;


// define state encodings 
as parameters 
    parameter [1:0] s0 = 
2'b00,  
    s1 = 2'b01,s2 = 2'b10, 
s3 = 2'b11;


// define reg vars for 
state register 
// and next_state logic  
    reg [1:0] state, 
next_state;


//define state register 
(with 
//synchronous active-
high clear) 
    always @(posedge clk) 
    begin 
            if (clr) state = s0;  
            else state = 
next_state;  
    end


// define combinational 
logic for 
// next_state 
always @(insig or state) 
begin 
      case (state) 
           s0: if (insig) 
next_state = s1;  
                 else 
next_state = s0; 
           s1: if (insig) 
next_state = s2; 
                 else 
next_state = s1;  
           s2: if (insig) 
next_state = s3; 
                 else 
next_state = s2; 
           s3: if (insig) 
next_state = s1;  
                 else 
next_state = s0;  
        endcase 
end


// assign outsig as 
continuous assign 
    assign outsig =  
                ((state == s1) || 
(state == s3));  
 
endmodule




Cell Design Tools

Cadence 
Composer 
Schematic 

Cadence 
Virtuoso 
Layout 

Your 
Library 

NC_Verilog 
NC_Verilog 

Behavioral 
Verilog 

LVS 

Spectre 

DRC 

Liberate 
Library  

Characterizer 

Abstract 
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Cell Design Tools

Cadence 
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LAB 2

Quick Tour… 
The whole semester in a nutshell… 



Gates are made from Transistors

Draw Transistor Layout



Cadence Composer Schematic

Cadence Composer Symbol



Cadence Virtuoso Layout

Cell Library Based Design

Verilog

Description

HDL 
Compiler

Circuit 
Description

Place and 
Route

Chip Layout

Cell Library

 
wire   n4, n5, n6, n7, n8;  
wire   [1:1] state; 
wire   [1:0] next_state;


DFF_QB 
state_reg_0_( .D(next_state[0]), .G(clk), .CLR(clr), .Q(outsig), .QB(n4) 
); 
DFF state_reg_1_ ( .D(next_state[1]), .G(clk), .CLR(clr), .Q(state[1]) );  
MUX2_INV U7 ( .A(n6), .B(n7), .S(n5), .Y(next_state[1]) );  
INVX1 U8 ( .A(state[1]), .Y(n5) ); 
NAND2 U9 ( .A(outsig), .B(insig), .Y(n7) );  
INVX1 U10 ( .A(n4), .Y(n6) ); 
XOR2 U11 ( .A(insig), .B(n8), .Y(next_state[0]) ); 
NOR2 U12 ( .A(state[1]), .B(n4), .Y(n8) );


BEHAVIOR CIRCUIT STRUCTURE

module moore (clk, clr, 
insig, outsig);  
    input clk, clr, insig; 
    output outsig;


// define state encodings 
as parameters 
    parameter [1:0] s0 = 
2'b00,  
    s1 = 2'b01,s2 = 2'b10, 
s3 = 2'b11;


// define reg vars for 
state register 
// and next_state logic  
    reg [1:0] state, 
next_state;


//define state register 
(with 
//synchronous active-
high clear) 
    always @(posedge clk) 
    begin 
            if (clr) state = s0;  
            else state = 
next_state;  
    end


// define combinational 
logic for 
// next_state 
always @(insig or state) 
begin 
      case (state) 
           s0: if (insig) 
next_state = s1;  
                 else 
next_state = s0; 
           s1: if (insig) 
next_state = s2; 
                 else 
next_state = s1;  
           s2: if (insig) 
next_state = s3; 
                 else 
next_state = s2; 
           s3: if (insig) 
next_state = s1;  
                 else 
next_state = s0;  
        endcase 
end


// assign outsig as 
continuous assign 
    assign outsig =  
                ((state == s1) || 
(state == s3));  
 
endmodule




Chip Design with your Cells

Synopsys  
Synthesis 

Cadence 
Innovus P&R 

Cadence 
Composer 
Schematic 

Cadence 
Virtuoso 
Layout 

Chip Router 
CCAR 

Your 
Library 

NC_Verilog 

NC_Verilog 

Behavioral 
Verilog 

Structural  
Verilog 

Circuit 
Layout 

LVS 

Spectre 

DRC Layout-XL 

HDL Description
module moore (clk, clr, insig, outsig); 
    input clk, clr, insig;  
    output outsig;


// define state encodings as parameters 
    parameter [1:0] s0 = 2'b00,  
    s1 = 2'b01,s2 = 2'b10, s3 = 2'b11;


// define reg vars for state register 
// and next_state logic  
    reg [1:0] state, next_state;


//define state register (with 
//synchronous active-high clear) 
    always @(posedge clk) 
    begin 
            if (clr) state = s0;  
            else state = next_state; 
    end


// define combinational logic for 
// next_state 
always @(insig or state) 
begin 
      case (state) 
           s0: if (insig) next_state = s1;  
                 else next_state = s0; 
           s1: if (insig) next_state = s2; 
                 else next_state = s1;  
           s2: if (insig) next_state = s3; 
                 else next_state = s2; 
           s3: if (insig) next_state = s1;  
                 else next_state = s0;  
        endcase 
end


// assign outsig as continuous assign 
    assign outsig =  
                ((state == s1) || (state == s3));  
 
endmodule




HDL Synthesis
Convert the Behavioral HDL into a set of logic 
gates


This process is called “synthesis”

Synthesis will target the cells (gates) in your library

We’ll use Design Compiler from Synopsys


Output from synthesis is a Structural HDL 
description

Structural HDL
module moore ( clk, clr, insig, outsig ); 
    input clk, clr, insig; 
    output outsig;  
 
wire   n4, n5, n6, n7, n8;  
wire   [1:1] state; 
wire   [1:0] next_state;


DFF_QB state_reg_0_( .D(next_state[0]), .G(clk), .CLR(clr), .Q(outsig), .QB(n4) ); 
DFF state_reg_1_ ( .D(next_state[1]), .G(clk), .CLR(clr), .Q(state[1]) ); 
MUX2_INV U7 ( .A(n6), .B(n7), .S(n5), .Y(next_state[1]) );  
INVX1 U8 ( .A(state[1]), .Y(n5) ); 
NAND2 U9 ( .A(outsig), .B(insig), .Y(n7) ); 
INVX1 U10 ( .A(n4), .Y(n6) ); 
XOR2 U11 ( .A(insig), .B(n8), .Y(next_state[0]) ); 
NOR2 U12 ( .A(state[1]), .B(n4), .Y(n8) );


endmodule




Assemble Gates into Circuit

Process is called Place and Route

We’ll use the Innovus tool from Cadence

Standard Cell Procedure



Place Cells and Fillers

Connect Rows to Power



autoRouted View

autoRouted Layout View



Corners

Routing



Slightly Larger Example

Assemble into Chip



Student Example

16-bit Processor, approx 27,000 transistors 

Same Chip (no M2, M3)

1.5mm x 3.0mm, 72 I/O pads 



Zoom In

Zoom In

A Hair (100 microns) 



Another Student Project

3.0mm x 3.0mm 
84 I/O Pads 

Standard Cell Portion



Register File

Adder/Shifter



Another Example

16-bit CORDIC Processor 

Yet Another Example

Basketball Scoreboard Display



Yet Another Example

Basketball Scoreboard Display

Example with VGA Output

Bomb game 
With VGA  
output 



Bomb Game

Bomb Game



Another VGA Example
Game of Life processor


Michael Ballantyne  
Meng Jia 


VGA controller

“Life” automata

Memory interface

Another VGA Example
Game of Life processor



First Taste of Digital VLSI
This class is “soup to nuts”


Entire process from start to finish

Design and characterize a cell library 

Use that cell library to build a chip


But, there’s lots more to learn! 

More modern issues

Industry best practice


6770 Advanced VLSI takes over  
where 5710/6710 leaves off! 

Our Technology 
We’ll use the ON Semi 0.5u (500nm)  
3-level-metal CMOS process (very very old stuff!!!)


We have technology files that define the process

MOSIS Scalable CMOS Rev. 8 (SCMOS)


Tech files from NCSU CDK

NCSU toolkit is designed for custom VLSI layout

Design Rule Check (DRC) rules

Layout vs. Schematic (LVS) rules



IC Technology Curve

Timetable
The project will be a race to the finish!


There is no slack in this schedule!!!
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VLSI design always takes longer than you think 

Even if you take that rule into account! 

Timetable
The project will be a race to the finish!


There is no slack in this schedule!!!


VLSI design always takes longer than you think 

Even if you take that rule into account! 


After you have 90% finished,  
	there’s only 90% left… 


All team members will have to contribute!

Team peer evaluations twice a semester	



Summary
Learn about VLSI design


Develop tool & layout skills independently

Form a team – develop a cell library

Decide on a project architecture

Then use your team’s library to make a chip


Verilog / synthesis / place & route / chip-fab


