
CS/ECE 5710/6710
Digital VLSI Design
Fall 2017

CS/ECE 5710/6710
Digital VLSI Design
Fall 2017

Logistics
T-Th 5:15-6:35, WEB 2230

Instructor: Erik Brunvand

Office: MEB 3142

Office hours: After class and by appointment

TAs: Ramya Selvan, Harikrishna Subramanyam

Office hours in the CADE lab

Times and days TBA

Logistics
Canvas page will be course home page

https://utah.instructure.com/courses/460181

Contact:

We’ll send messages / announcements through the Canvas
interface

Use the Canvas interface to send messages back to the
instructors and TAs

Textbook

Principles of CMOS VLSI
Design  
 
Weste and Harris 
 
(4th edition)

CAD Manual

Describes in detail how to
use the CAD tools

Tutorial in nature 

Based on v5 of the Cadence tools

Revisions for v6 available through
the Canvas page

Class Goal
To learn about modern Digital CMOS IC design

Class project –  
teams will build moderate sized chip

Each team will develop a cell library for their project

We’ll form teams in a few weeks

These chips can be  
fabricated through MOSIS

Chip fabrication service  
for small-volume projects

Educational program  
funded by MOSIS

Class CAD/EDA Tools
We’ll use tools from Cadence and Synopsys

These only run on Linux in the CADE lab, so you’ll need a
CADE account

I also assume you know something about UNIX/Linux

Lots of web tutorials if you need them…

Prerequisites
Digital design is required! (i.e. CS/ECE 3700)

Boolean algebra

Combinational circuit design and optimization

K-map minimization, SOP, POS, DeMorgan,  
bubble-pushing, etc.

Arithmetic circuits, 2’s complement numbers

Sequential Circuit design and optimization

Latch/flip-flop design

Finite state machine design/implementation

Communicating FSMs

Using FSMs to control datapaths

Recommendation
Computer Architecture experience is helpful

Instruction set architecture (ISA)

Assembly language execution model

Instruction encoding

Simple pipelining

I assume you’ve used some sort of CAD tools
for digital circuits

Schematic capture

Simulation

Assignment #1: Review
On the Canvas page is a review assignment

If you can do these problems, you probably have the right
background

If you can’t, you may struggle!!!!!

Please take this seriously! Give this exam a try
and make sure you remember what you need to
know!

You also need to turn it in next week by Tuesday August 29th

Must do this independently, it will be graded

Lab #1: Schematics
Cadence Composer tutorial

Section 1.4, Appendix A in the  
textbook

Chapters 1-3 in the CAD manual

Simple circuit design with simulation

Learn basic Verilog for testbench

Available on the Canvas page

Due on Friday, September 8th, 5:00pm

on-line submission in CADE through “handin”

START NOW!!!!!

Grading
Labs (cell designs) & Homework (40%)

Design review (5%)

Mid-term exam (15%)

Final Project (40%)

See the syllabus (Canvas page) for more details
about grading breakdown

6710 has additional paper review requirement for 5%, with
labs moving to 35%

Cheating Policy
In a word: Don’t!

School of Computing academic misconduct
policy is in effect for this class

Read the department policy! (linked to the Canvas page)

If you haven’t done so, fill out the form

Short version: Don’t turn in other people’s work, or allow
others to turn in your work as their own

Default sanction for any academic misconduct is  
FAILING GRADE IN THE COURSE

Transistor History
1958: First integrated circuit

Flip-flop using two transistors

Built by Jack Kilby at Texas Instruments

2008: Intel Core2 Duo – 291,000,000 transistors

53% compound annual growth rate over 50 years

No other technology has grown so fast so long

Driven by miniaturization of transistors

Smaller is cheaper, faster, lower in power!

Revolutionary effects on society

Transistor History
1958: First integrated circuit

Flip-flop using two transistors

Built by Jack Kilby at Texas Instruments

2012: NVIDIA GK110 (Kepler) ~7,000,000,000
transistors

Ridiculous Chips…
NVIDIA GK110

Kepler
GM200

Maxwell

GP100

Pascal

GV100

Volta

FP32 Cores 2880 3072 3584 5120
FP64 Cores 960 96 1792 2560

FP32 TFLOPS 5 6.82 10.6 15
FP64 TFLOPS 1.68 0.21 5.3 7.5

DRAM
Interface

384bit
GDDR5

384bit
GDDR5

4096bit
HBM2

4096bit

HBM2

L2 Cache 1536 KB 3072 KB 4096 KB 6144KB
TDP watts 235 250 300 300
Transistors 7.1b 8b 15.3b 21.1b

CMOS 28nm 28nm 16nm 12nm

NVIDIA GP100 Pascal

Back to Intel Core2 Duo…
Even 291 million is a LOT of transistors

Where are they used?

Mostly for memory!

Intel Core2 Duo: 4MB shared L2 cache,  
32K Icache 32K Dcache on each core

4*10242*8 + 2(64*1024*8) = 34,603,008 bits

Around 6 transistors per bit of memory

~35,000,000 bits * 6 = ~210,000,000 transistors

Intel Core2 Duo (2008)
65nm process, 75W, 144 mm2 die

Historical Comparison

Core2 Duo
65nm devices (released in 2008)
144mm2 die
291,000,000 transistors
over 4MB (32Mbit) of on-chip storage
2200MHz

6502 (Apple II, Nintendo NES etc.)
6000nm devices (6 micron) (released in 1975)
22mm2 die
3510 transistors (nmos only)
56 total bits of state
1MHz

Historical Comparison

Core2 Duo
65nm devices (released in 2008)
144mm2 die
291,000,000 transistors
over 4MB (32Mbit) of on-chip storage
2200MHz

6502 (Apple II, Nintendo NES etc.)
6000nm devices (6 micron) (released in 1975)
22mm2 die
3510 transistors (nmos only)
56 total bits of state
1MHz

Transistor Revolution
Vacuum tubes ruled in first half of 20th century:
large, expensive, power-hungry, unreliable

1947: first point contact 
transistor

William Shockley,  
John Bardeen, and  
Walter Brattain  
at Bell Labs

Read Crystal Fire

by Riordan, Hoddeson

First Integrated Circuit

1.3MHz oscillator  
on Germanium

The first working integrated circuit was created by Jack Kilby in 1958.

First Monolithic IC

Robert Noyce, Flip Flop, on Silicon 1961

Transistor Types
Bipolar transistors

npn or pnp silicon structure

Small current into very thin base layer controls large currents
between emitter and collector

Base currents limit integration density

Metal Oxide Semiconductor Field Effect
Transistors (MOSFET)

nMOS and pMOS FETs

Voltage applied to insulated gate controls current between
source and drain

Low power allows very high integration

Transistor Types

MOS Integrated Circuits
1970’s processes usually had only nMOS transistors

Inexpensive, but idle current consumes power

Intel 1101 256-bit SRAM Intel 4004 4-bit µProc

Hand-Design…

Moore’s Law
1965: Gordon Moore plotted transistors per chip

Fit straight line on semilog scale

Transistor counts have doubled every 26 months

Moore’s Law
1965: Gordon Moore plotted transistors per chip

Fit straight line on semilog scale

Transistor counts have doubled every 26 months

Integration Levels
SSI: 10 gates
MSI: 1000 gates
LSI: 10,000 gates
VLSI: > 10k gates

Other Exponentials
e.g. clock speed, performance, etc…

Big Picture

Physics Electronics
VLSI

Logic3Gates

FSM RTL
FSM

Computer

MOV3R13R2
ADD3R13R33R5
ST3R33(5)R6

ISA

if3(c==1)
x3=3foo(y);

else
x3=3bar(a,b);

Progamming
Languages

OS
Compilers
Algorithms
Applications
Etc...

Big Picture

Physics Electronics
VLSI

Logic3Gates

FSM RTL
FSM

Computer

MOV3R13R2
ADD3R13R33R5
ST3R33(5)R6

ISA

if3(c==1)
x3=3foo(y);

else
x3=3bar(a,b);

Progamming
Languages

OS
Compilers
Algorithms
Applications
Etc...

CS/ECE 3700

Cell Library Based Design

Verilog

Description

HDL
Compiler

Circuit
Description

Place and
Route

Chip Layout

Cell Library

module moore (clk, clr,
insig, outsig);  
 input clk, clr, insig; 
 output outsig;

// define state encodings
as parameters 
 parameter [1:0] s0 =
2'b00,  
 s1 = 2'b01,s2 = 2'b10,
s3 = 2'b11;

// define reg vars for
state register 
// and next_state logic  
 reg [1:0] state,
next_state;

//define state register
(with 
//synchronous active-
high clear) 
 always @(posedge clk) 
 begin 
 if (clr) state = s0;  
 else state =
next_state;  
 end

// define combinational
logic for 
// next_state 
always @(insig or state) 
begin 
 case (state) 
 s0: if (insig)
next_state = s1;  
 else
next_state = s0; 
 s1: if (insig)
next_state = s2; 
 else
next_state = s1;  
 s2: if (insig)
next_state = s3; 
 else
next_state = s2; 
 s3: if (insig)
next_state = s1;  
 else
next_state = s0;  
 endcase 
end

// assign outsig as
continuous assign 
 assign outsig =  
 ((state == s1) ||
(state == s3));  
 
endmodule

 input clk, clr, insig; 
 output outsig; 
 
wire n4, n5, n6, n7, n8;  
wire [1:1] state; 
wire [1:0] next_state;

DFF_QB
state_reg_0_(.D(next_state[0]), .G(clk), .CLR(clr), .Q(outsig), .QB(n4)
); 
DFF state_reg_1_ (.D(next_state[1]), .G(clk), .CLR(clr), .Q(state[1]));  
MUX2_INV U7 (.A(n6), .B(n7), .S(n5), .Y(next_state[1]));  
INVX1 U8 (.A(state[1]), .Y(n5)); 
NAND2 U9 (.A(outsig), .B(insig), .Y(n7));  
INVX1 U10 (.A(n4), .Y(n6)); 
XOR2 U11 (.A(insig), .B(n8), .Y(next_state[0])); 
NOR2 U12 (.A(state[1]), .B(n4), .Y(n8));

Cell Library Based Design

Verilog

Description

HDL
Compiler

Circuit
Description

Place and
Route

Chip Layout

Cell Library

 
wire n4, n5, n6, n7, n8;  
wire [1:1] state; 
wire [1:0] next_state;

DFF_QB
state_reg_0_(.D(next_state[0]), .G(clk), .CLR(clr), .Q(outsig), .QB(n4)
); 
DFF state_reg_1_ (.D(next_state[1]), .G(clk), .CLR(clr), .Q(state[1]));  
MUX2_INV U7 (.A(n6), .B(n7), .S(n5), .Y(next_state[1]));  
INVX1 U8 (.A(state[1]), .Y(n5)); 
NAND2 U9 (.A(outsig), .B(insig), .Y(n7));  
INVX1 U10 (.A(n4), .Y(n6)); 
XOR2 U11 (.A(insig), .B(n8), .Y(next_state[0])); 
NOR2 U12 (.A(state[1]), .B(n4), .Y(n8));

BEHAVIOR CIRCUIT STRUCTURE

module moore (clk, clr,
insig, outsig);  
 input clk, clr, insig; 
 output outsig;

// define state encodings
as parameters 
 parameter [1:0] s0 =
2'b00,  
 s1 = 2'b01,s2 = 2'b10,
s3 = 2'b11;

// define reg vars for
state register 
// and next_state logic  
 reg [1:0] state,
next_state;

//define state register
(with 
//synchronous active-
high clear) 
 always @(posedge clk) 
 begin 
 if (clr) state = s0;  
 else state =
next_state;  
 end

// define combinational
logic for 
// next_state 
always @(insig or state) 
begin 
 case (state) 
 s0: if (insig)
next_state = s1;  
 else
next_state = s0; 
 s1: if (insig)
next_state = s2; 
 else
next_state = s1;  
 s2: if (insig)
next_state = s3; 
 else
next_state = s2; 
 s3: if (insig)
next_state = s1;  
 else
next_state = s0;  
 endcase 
end

// assign outsig as
continuous assign 
 assign outsig =  
 ((state == s1) ||
(state == s3));  
 
endmodule

Cell Design Tools

Cadence
Composer
Schematic

Cadence
Virtuoso
Layout

Your
Library

NC_Verilog
NC_Verilog

Behavioral
Verilog

LVS

Spectre

DRC

Liberate
Library

Characterizer

Abstract

Cell Design Tools

Cadence
Composer
Schematic

Cadence
Virtuoso
Layout

Your
Library

NC_Verilog
NC_Verilog

Behavioral
Verilog

LVS

Spectre

DRC

Liberate
Library

Characterizer

Abstract

LAB 1

Cell Design Tools

Cadence
Composer
Schematic

Cadence
Virtuoso
Layout

Your
Library

NC_Verilog
NC_Verilog

Behavioral
Verilog

LVS

Spectre

DRC

Liberate
Library

Characterizer

Abstract

LAB 2

Quick Tour…
The whole semester in a nutshell…

Gates are made from Transistors

Draw Transistor Layout

Cadence Composer Schematic

Cadence Composer Symbol

Cadence Virtuoso Layout

Cell Library Based Design

Verilog

Description

HDL
Compiler

Circuit
Description

Place and
Route

Chip Layout

Cell Library

 
wire n4, n5, n6, n7, n8;  
wire [1:1] state; 
wire [1:0] next_state;

DFF_QB
state_reg_0_(.D(next_state[0]), .G(clk), .CLR(clr), .Q(outsig), .QB(n4)
); 
DFF state_reg_1_ (.D(next_state[1]), .G(clk), .CLR(clr), .Q(state[1]));  
MUX2_INV U7 (.A(n6), .B(n7), .S(n5), .Y(next_state[1]));  
INVX1 U8 (.A(state[1]), .Y(n5)); 
NAND2 U9 (.A(outsig), .B(insig), .Y(n7));  
INVX1 U10 (.A(n4), .Y(n6)); 
XOR2 U11 (.A(insig), .B(n8), .Y(next_state[0])); 
NOR2 U12 (.A(state[1]), .B(n4), .Y(n8));

BEHAVIOR CIRCUIT STRUCTURE

module moore (clk, clr,
insig, outsig);  
 input clk, clr, insig; 
 output outsig;

// define state encodings
as parameters 
 parameter [1:0] s0 =
2'b00,  
 s1 = 2'b01,s2 = 2'b10,
s3 = 2'b11;

// define reg vars for
state register 
// and next_state logic  
 reg [1:0] state,
next_state;

//define state register
(with 
//synchronous active-
high clear) 
 always @(posedge clk) 
 begin 
 if (clr) state = s0;  
 else state =
next_state;  
 end

// define combinational
logic for 
// next_state 
always @(insig or state) 
begin 
 case (state) 
 s0: if (insig)
next_state = s1;  
 else
next_state = s0; 
 s1: if (insig)
next_state = s2; 
 else
next_state = s1;  
 s2: if (insig)
next_state = s3; 
 else
next_state = s2; 
 s3: if (insig)
next_state = s1;  
 else
next_state = s0;  
 endcase 
end

// assign outsig as
continuous assign 
 assign outsig =  
 ((state == s1) ||
(state == s3));  
 
endmodule

Chip Design with your Cells

Synopsys
Synthesis

Cadence
Innovus P&R

Cadence
Composer
Schematic

Cadence
Virtuoso
Layout

Chip Router
CCAR

Your
Library

NC_Verilog

NC_Verilog

Behavioral
Verilog

Structural
Verilog

Circuit
Layout

LVS

Spectre

DRC Layout-XL

HDL Description
module moore (clk, clr, insig, outsig); 
 input clk, clr, insig;  
 output outsig;

// define state encodings as parameters 
 parameter [1:0] s0 = 2'b00,  
 s1 = 2'b01,s2 = 2'b10, s3 = 2'b11;

// define reg vars for state register 
// and next_state logic  
 reg [1:0] state, next_state;

//define state register (with 
//synchronous active-high clear) 
 always @(posedge clk) 
 begin 
 if (clr) state = s0;  
 else state = next_state; 
 end

// define combinational logic for 
// next_state 
always @(insig or state) 
begin 
 case (state) 
 s0: if (insig) next_state = s1;  
 else next_state = s0; 
 s1: if (insig) next_state = s2; 
 else next_state = s1;  
 s2: if (insig) next_state = s3; 
 else next_state = s2; 
 s3: if (insig) next_state = s1;  
 else next_state = s0;  
 endcase 
end

// assign outsig as continuous assign 
 assign outsig =  
 ((state == s1) || (state == s3));  
 
endmodule

HDL Synthesis
Convert the Behavioral HDL into a set of logic
gates

This process is called “synthesis”

Synthesis will target the cells (gates) in your library

We’ll use Design Compiler from Synopsys

Output from synthesis is a Structural HDL
description

Structural HDL
module moore (clk, clr, insig, outsig); 
 input clk, clr, insig; 
 output outsig;  
 
wire n4, n5, n6, n7, n8;  
wire [1:1] state; 
wire [1:0] next_state;

DFF_QB state_reg_0_(.D(next_state[0]), .G(clk), .CLR(clr), .Q(outsig), .QB(n4)); 
DFF state_reg_1_ (.D(next_state[1]), .G(clk), .CLR(clr), .Q(state[1])); 
MUX2_INV U7 (.A(n6), .B(n7), .S(n5), .Y(next_state[1]));  
INVX1 U8 (.A(state[1]), .Y(n5)); 
NAND2 U9 (.A(outsig), .B(insig), .Y(n7)); 
INVX1 U10 (.A(n4), .Y(n6)); 
XOR2 U11 (.A(insig), .B(n8), .Y(next_state[0])); 
NOR2 U12 (.A(state[1]), .B(n4), .Y(n8));

endmodule

Assemble Gates into Circuit

Process is called Place and Route

We’ll use the Innovus tool from Cadence

Standard Cell Procedure

Place Cells and Fillers

Connect Rows to Power

autoRouted View

autoRouted Layout View

Corners

Routing

Slightly Larger Example

Assemble into Chip

Student Example

16-bit Processor, approx 27,000 transistors

Same Chip (no M2, M3)

1.5mm x 3.0mm, 72 I/O pads

Zoom In

Zoom In

A Hair (100 microns)

Another Student Project

3.0mm x 3.0mm
84 I/O Pads

Standard Cell Portion

Register File

Adder/Shifter

Another Example

16-bit CORDIC Processor

Yet Another Example

Basketball Scoreboard Display

Yet Another Example

Basketball Scoreboard Display

Example with VGA Output

Bomb game
With VGA
output

Bomb Game

Bomb Game

Another VGA Example
Game of Life processor

Michael Ballantyne  
Meng Jia

VGA controller

“Life” automata

Memory interface

Another VGA Example
Game of Life processor

First Taste of Digital VLSI
This class is “soup to nuts”

Entire process from start to finish

Design and characterize a cell library

Use that cell library to build a chip

But, there’s lots more to learn!

More modern issues

Industry best practice

6770 Advanced VLSI takes over  
where 5710/6710 leaves off!

Our Technology
We’ll use the ON Semi 0.5u (500nm)  
3-level-metal CMOS process (very very old stuff!!!)

We have technology files that define the process

MOSIS Scalable CMOS Rev. 8 (SCMOS)

Tech files from NCSU CDK

NCSU toolkit is designed for custom VLSI layout

Design Rule Check (DRC) rules

Layout vs. Schematic (LVS) rules

IC Technology Curve

Timetable
The project will be a race to the finish!

There is no slack in this schedule!!!

Timetable
The project will be a race to the finish!

There is no slack in this schedule!!!

VLSI design always takes longer than you think

Even if you take that rule into account!

Timetable
The project will be a race to the finish!

There is no slack in this schedule!!!

VLSI design always takes longer than you think

Even if you take that rule into account!

After you have 90% finished,  
	there’s only 90% left…

All team members will have to contribute!

Team peer evaluations twice a semester	

Summary
Learn about VLSI design

Develop tool & layout skills independently

Form a team – develop a cell library

Decide on a project architecture

Then use your team’s library to make a chip

Verilog / synthesis / place & route / chip-fab

