memCellsF09 Description

Erik Brunvand, Fall 2009

The memCellsF09 library contains fabrication-tested SRAM cells and associated
circuitry that can be used to assemble single-port and dual-port SRAMs in the AMI
C5N (SCMOS) process. To access the library, add
/uusoc/facility /cad_common/local /Cadence/lib/memCellsF09 to your library path.
Make sure to click the “show categories” button in your library manager. There are a
lot of cells in the memCellsF09 library and they are all grouped into categories.
Without seeing these categories it will be hard to find the cells you're looking for. A
view of the library manager showing the memCellsF09 library with the categories
enabled is shown in Figure 1.

File Edit View Design Manager

~ Show Categories
Library
emCellsF09

CAD1

Example

Libh6710_06
NCSU_Analog_Parts
NCSU_Digital Parts
UofU_analog_Parts
UofU_Digital
UofU_Digital wl_1
UofU Digital vl 2
UofU_Digital w2
UofU_Pads
UofU_Sheets
UofU_TechLib_amil6&
avTech

basic
cdsDefTechLib
memCellsF09

cf

Messages

Show Files
Category

Examples

| Everything

| Uncategorized

i| Examples

| PseudomMosaddress
| sraM columns_10t
3| sRaM_Columns_8t
| staticaddress

3| supportcells

| Testing

Cell
ISRaM32x16_8t

SRAMAxS_ 8t
SRAM4x8_8t pn
SRAMExE_10t
SRAMBx8_10t_pn
SRAMEx16_10t
SRAMEx16_10t_pn
SRAM16x8_10t
SRAM16x8_10t_pn
SRAM16x16_10t
SRAM16x16_10t_pn
SRAM3Z2x16_8t
SRAM32x16_8t_pn
SRAM32x16_10t
SRAM32x16_10t _pn

Help

View
Jechematic

analog_extracted
extracted

layout

schematic

symbol

Figure 1: memCellsF09 library (with Categories enabled)

The categories are as follows:

* Everything: This is a category you can use to see every cell in the library.

* Uncategorized: This has cells that are not part of any other category

* Examples: This has example cells that I've assembled to show you how the
circuits are used to make a complete SRAM. You may use these directly if you

like (and if they’re the right size).

* PseudoNMOSAddress: This has address decoders that use a pseudo-NMOS
style circuit to make the address decoders. These circuits make a slightly
faster address decoder than the static version, but burn a little more power.

* SRAM_Columns_8t: 8-transistor single-ported SRAM columns that include the
reading and writing circuitry at the bottom of the column

* SRAM_Columns_10t: 10-transistor dual-ported SRAM columns that include
reading and writing circuitry at the bottom of the column

* StaticAddress: Address decoders built from static nand/nor circuits. These
are slightly slower than the Pseuo-NMOS circuits, but burn less power.

* SupportCells: This category hides all the small cells that the columns and
address decoders use.

* Testing: Examples of config views of some of the Example SRAMS to show
how they can be simulated with mixed-mode (spectreVerilog) simulation.

Single-Ported SRAM

The basic single-port SRAM cell is an 8-transistor cell with differential bit/bitbar
wires for writing, and a pull-down transistor connected to a separate single-ended
read wire. The schematic is seen in Figure 2.

Dual-Ported SRAM

The memCellsF09 library also has a 10-transistor SRAM bit that has two ports: one
for both reading and writing (depending on the state of WE), and one separate read-
only port. The cell has the same cross-coupled storage as the 8-transistor cell, but

adds one more pulldown stack for the separate read interface, and a second Word
line for that second read interface. The schematic is shown in Figure 3.

The 10-t dual-port cell is used with two address decoders. One decoder (on the left
side of the RAM array in the layout) is both a read and write port. It always reads
from that address (to the Dout0O output), and also writes if the WE signal is asserted
(high). The second address decoder is located on the right side of the memory array
in the layout, and is a read-only port (to the Dout1 port). Reads are asynchronous:
as soon as the address changes, the new data is read (after some read delay, of
course). Writing is also asynchronous in the sense that there is no clock signal.
Writes are, however, synchronized to the WE signal. The write data and address
should be set up first. Then the WE signal should be asserted. Shortly after the WE is
asserted, the data is written to the memory array.

SRAM Columns

The SRAM cells are assembled into columns that include the SRAM bits and the
read/write circuits for the column. The number of bits in the column is the number
of words in the memory. The column shares bit and bitbar lines for writing into the
SRAM, and the Dout wire for reading the SRAM (Dout0 and Dout1 for the dual-
ported SRAM). Each row of the column has a Word line that is activated both for
reading and writing. At the bottom of the column are large drivers for writing, and a
pullup and inverter for reading the value on the Dout line. The write drivers are only
turned on when the WE signal is activated. If the WE is not activated, the drivers are

not turned on and the mild pullups on bit and bitbar are not strong enough to flip
the bit. The value stored in the SRAM bit is used to either pull down the Dout wire or
not.

Columns in the memCellsF09 library are assembled in pairs where each row of the
column has two bits in the row (with a shared Word line). These 2-bit columns may
be tiled in an array to make SRAMs of any reasonable word width. Note that this
means that SRAMs that use these columns must have an even number of bits in a
word.

The pre-assembled SRAM columns come in heights (number of rows, or number of
words in the memory) of 4, 8, 16, 32, and 64. These are the only row sizes supported
by the address decoder cells.

Address Decoders

Each portin an SRAM needs an address decoder. This converts binary addresses to
unary outputs that drive the word lines in the SRAM. Address decoders come in two
types: static (built from nand/nor circuits) and pseudo-NMOS (built from a single
pmos with the gate tied low acting as a pullup resistor and a pulldown for each bit of
the address decoder). The static address decoders are a little slower than the
Pseudo-NMOS (mostly because of undersized word-line drivers), but burn less
power than the Pseudo-NMOS decoders.

Address decoders (in each style) come in 4, 8, 16, 32, and 64 row sizes (2, 3, 4, 5, and
6 address bits). These address decoders limit the number of rows each SRAM can
have.

The address decoders starting with “s_" are static, and with “pn_" are Pseudo_NMOS.
The versions with no extra annotations (e.g., s_addr16 or pn_addr8) are designed
for the single-port SRAMS. The versions with “10t_1” are designed for the left side of
a dual-port SRAM, and with “10t_r” are for the right side of a dual-port SRAM. Note
that for the Pseudo-NMOS circuits, the “plain” decoder works for the left hand side
of both single- and dual-port SRAMs.

Assembling SRAMs

Using the cells in the memCellsF09 library you can assemble complete single- and
dual-ported SRAMs. The number of words can be 4, 8, 16, 32, or 64, and the number
of bits in the word can be any even number (up to the width of the chip you're using
the SRAM in). The complete SRAM consists of an address decoder (or two address
decoders for the dual-port SRAM) and an array of SRAM columns. The RAMs are
assembled as follows:

* Choose an address decoder style. The static address decoders are a little
slower, but consume less energy. If you have word widths of 32 or less, you
can choose either style. For longer word widths, the larger row drivers in the
Pseudo-NMOS address decoders might work better. But, there are no hard

and fast rules. As always, analog simulation is best way to see if the circuit is
working the way you’d like it to.

* Choose single- or dual-port SRAM. The pre-assembled single-port columns
are located in the SRAM_Columns_8t category, and the dual-port colums are
in the SRAM_Columns_10t category. The columns are two-bits wide, and
either 4, 8, 16, 32, or 64 bits tall. You can make an array of these columns to
make your word any even number (columns each have two bits). When you
instantiate the columns, choose the number of columns in the array to match
the number of bits in your word. For example, if you want a 32bit word,
make an array with 16 columns.

* Assemble the layout for a single-port SRAM with an address decoder on the
left, and the SRAM column array on the right. For the dual-port SRAM you
need an address decoder on both the right and the left with the SRAM column
array in the middle.

o For the static address decoders, use the _l version on the left, and the
_rversion on the right. For the right hand decoder, instantiate the
decoder flipped around the vertical axis so that the outputs are on the
left of decoder cell.

o Ifyou're using the Pseudo-NMOS decoders, the left decoder is the
same for both SRAM types, and the _r version is used on the right
(again flipped on the vertical axis). You can look at the cells in the
Example category to see how the cells should be overlapped.

* Add shape-pins on the address inputs, the data inputs, and the data outputs.
For the static address decoder cells, the address inputs are in the middle of
the cells. For the Pseudo-NMOS decoders, the address inputs are at the
bottom of each decoder cell.

* Make a schematic that includes cells for the address decoder(s) and the
SRAM columns. Again, you can use the Example SRAMs for examples of how
to assemble the schematic.

* DRC the layout, then extract and LVS against the schematic.

* You should be able to simulate the schematic with Verilog (Verilog-XL or
NC_Verilog), and you can also simulate with Spectre or spectreVerilog for
more timing details. There are examples of mixed analog/digital config cells
in the Testing category.

The best way to use these cells is to look at the examples in the Examples category.
You can copy these cells and then modify them to be whatever word-width and
number of words that you like. Once you copy the cell, you can use the “q”
properties to modify, for example, the number of columns in the memory array, or
the type of address decoder. Remember to change the layout and the schematic, and
to re-run DRC, Extract, an LVS. I find that if you’re making a new cell by modifying
an old one, it’s best to delete the symbol and then generate a new symbol once you

get things modified the way you want them.

Some examples of assembled SRAMs are seen in the following Figures.

col 6t 32«2

