
1

Display Technology
! Images stolen from various locations on

the web...

Cathode Ray Tube

2

Cathode Ray Tube

Raster Scanning

3

Electron Gun

Beam Steering Coils

4

Color

Shadow Mask and Aperture Grille

5

Liquid Crystal Displays

Liquid Crystal Displays

6

DLP Projector

LCoS
! Liquid Crystal on Silicon

! Put a liquid crystal between a reflective layer
on a silicon chip

7

Grating Light Valve (GLS)
! lots (8000 currently) of micro

ribbons that can bend slightly
! Make them reflective
! The bends make a diffraction

grating that controls how much
light goes where

! Scan it with a laser for high light
output

! 4000 pixel wide frame at 60Hz

Grating Light Valve (GLS)

8

Digistar 3 Dome Projector

VGA
! Stands for Video Graphics Array
! A standard defined by IBM back in 1987

! 640 x 480 pixels
! Now superseded by much higher resolution

standards...
! Also means a specific analog connector

! 15-pin D-subminiature VGA connector

9

The linked image cannot be displayed. The file may have been moved, renamed, or deleted. Verify that the link points to the correct file and location.

VGA Connector

1: Red out 6: Red return (ground) 11: Monitor ID 0 in

2: Green out 7: Green return (ground) 12: Monitor ID 1 in
or data from display

3: Blue out 8: Blue return (ground) 13: Horizontal Sync

4: Unused 9: Unused 14: Vertical Sync

5: Ground 10: Sync return (ground) 15: Monitor ID 3 in
or data clock

Raster Scanning

10

Raster Scanning

“back porch” “back porch” “back porch”

“front porch”

VGA Horizontal Timing
Horizonal Dots 640
Vertical Scan Lines 480
Horiz. Sync Polarity NEG
A (µs) 31.77 Scanline time
B (µs) 3.77 Sync pulse length
C (µs) 1.89 Back porch
D (µs) 25.17 Active video time
E (µs) 0.94 Front porch
 ______________________ ________
________| VIDEO |________| VIDEO (next line)
 |-C-|----------D-----------|-E-|
__ ______________________________ ___________
 |_| |_|
 |B|
 |---------------A----------------|

60Hz vertical frequency

11

VGA Horizontal Timing
Horizonal Dots 640
Vertical Scan Lines 480
Horiz. Sync Polarity NEG
A (µs) 31.77 Scanline time
B (µs) 3.77 Sync pulse length
C (µs) 1.89 Back porch
D (µs) 25.17 Active video time
E (µs) 0.94 Front porch
 ______________________ ________
________| VIDEO |________| VIDEO (next line)
 |-C-|----------D-----------|-E-|
__ ______________________________ ___________
 |_| |_|
 |B|
 |---------------A----------------|

60Hz vertical frequency

25.17/640 = 39.33ns/pixel = 25.4MHz pixel clock

VGA Vertical Timing
Horizonal Dots 640
Vertical Scan Lines 480
Vert. Sync Polarity NEG
Vertical Frequency 60Hz
O (ms) 16.68 Total frame time
P (ms) 0.06 Sync pulse length
Q (ms) 1.02 Back porch
R (ms) 15.25 Active video time
S (ms) 0.35 Front porch
 ______________________ ________
________| VIDEO |________| VIDEO (next frame)
 |-Q-|----------R-----------|-S-|
__ ______________________________ ___________
 |_| |_|
 |P|
 |---------------O----------------|

12

VGA Timing Summary

60 Hz refresh and 25MHz pixel clock

Relaxed VGA Timing
! This all sounds pretty strict and exact...
! It’s not really... The only things a VGA

monitor really cares about are:
! Hsync
! Vsync
! Actually, all it cares about is the falling edge

of those pulses!
! The beam will retrace whenever you tell it to
! It’s up to you to make sure that the video

signal is 0v when you are not painting
(i.e. retracing)

13

Relaxed VGA Horizontal Timing
Horizonal Dots 128
Vertical Scan Lines ?
Horiz. Sync Polarity NEG
A (µs) 30.0 Scanline time
B (µs) 2.0 Sync pulse length
C (µs) 10.7 Back porch
D (µs) 12.8 Active video time
E (µs) 4.50 Front porch
 ______________________ ________
________| VIDEO |________| VIDEO (next line)
 |-C-|----------D-----------|-E-|
__ ______________________________ ___________
 |_| |_|
 |B|
 |---------------A----------------|

60Hz vertical frequency

12.8/128 = 100ns/pixel = 10 MHz pixel clock

VGA Relaxed Vertical Timing
Horizonal Dots 128
Vertical Scan Lines 255
Vert. Sync Polarity NEG
Vertical Frequency 60Hz
O (ms) 16.68 Total frame time
P (ms) 0.09 Sync pulse length (3x30µs)
Q (ms) 4.86 Back porch
R (ms) 7.65 Active video time
S (ms) 4.08 Front porch
 ______________________ ________
________| VIDEO |________| VIDEO (next frame)
 |-Q-|----------R-----------|-S-|
__ ______________________________ ___________
 |_| |_|
 |P|
 |---------------O----------------|

14

VGA on Spartan3e Starter

Series resistors limit output
voltage to 0-0.7v

VGA Voltage Levels
! Voltages on R, G, and B determine the

color
! Analog range from 0v (off) to +0.7v (on)
! But, our pads produce 0-5v outputs!

15

VGA Voltage Levels
! Voltages on R, G, and B determine the

color
! Analog range from 0v (off) to +0.7v (on)
! But, our pads produce 0-5v outputs!
! For B&W output, just tie RGB together and

let 0v=black and 5v=white
! This overdrives the input amps, but won’t really

hurt anything
! For color you can drive R, G, B separately

! Of course, this is only 8 colors (including black
and white)

! Requires storing three bits at each pixel location

VGA on Spartan3e Starter

16

More colors
! More colors means more bits stored per pixel
! Also means D/A conversion to 0 to 0.7v range

More Colors (Xess)

17

What to Display?
! You need data to display on the screen...

! Brute force: put it all in a giant ram that has
the same resolution as your screen and just
walk through the RAM as you paint the
screen

! More clever: Fill a row buffer with data for a
scan line

! Multi-level: Fill a (smaller) row buffer with
pointers to glyphs that are stored in another
RAM/ROM

! Just keep track of where the beam is and
where your data is...

VGA Breakdown
! vgaControl

! Generate timing pulses at the right time
! hSync, vSync, bright, hCount, vCount

! bitGen

! Based on bright, hCount, vCount, turn on the
bits

18

3 Types of bitGen
! Bitmapped
! Character/Glyph – based
! Hard-coded

3 Types of bitGen
! Bitmapped

! Frame buffer holds a separate rgb color for
every pixel

! bitGen just grabs the pixel based on hCount
and vCount and splats it to the screen

! Chews up a LOT of memory
! This memory would have to be off-chip…

19

3 Types of bitGen
! Character/Glyph-based

! Break screen into nxm pixel chunks (e.g. 8x8)
! For each chunk, point to one of k nxm glyphs
! Those glyphs are stored in a separate

memory
! For 8x8 case (for example)

! glyph number is hCount and vCount minus the low
three bits

! glyph bits are the low-order 3 bits in each of
hCount and vCount

! Figure out which screen chunk you’re in, then
reference the bits from the glyph memory

3 Types of bitGen
! Direct Graphics

! Look at hCount and vCount to see where you
are on the screen

! Depending on where you are, force the output
to a particular color

! Tedious for complex things, nice for large,
static things

parameter BLACK = 3’b 000, WHITE = 3’b111, RED = 3’b100;
// paint a white box on a red background
always@(*)
 if (~bright) rgb = BLACK; // force black if not bright
 // check to see if you’re in the box
 else if (((hCount >= 100) && (hCount <= 300)) &&
 ((vCount >= 150) && (vCount <= 350))) rgb = WHITE;
 else rgb = RED; // background color

20

VGA Memory Requirements
! 640x480 VGA (bitmapped)

! 307,200 pixels
! 3 bits per pixel
! Imagine using 24 bits per memory location

(8 pixels)
! 38.4 K-words with 24-bit words for 640x480

! 115.2 K-bytes
! FAR larger than you can put on your chip…
! Not so bad with an off-chip RAM

VGA Memory Requirements
! 320x240 VGA (bitmapped)

! 76,800 pixels
! Each stored pixel is 2x2 screen pixels
! 3 bits per pixel
! 8 pixels per 24-bit word (for example)
! 9.6k 24-bit words needed

! 28.8 K-bytes
! Much more realistic…but still significant

memory if you want to put it on-chip

21

VGA Memory Requirements
! 80 char by 60 line display (8x8 glyphs)

! 4800 locations
! Each location has one of 256 char/glyphs
! 8-bits per location

! 2 locations per 16-bit word?
! 2400 words for the frame buffer

! Each char/glyph is (say) 8x8 pixels
! results in 640x480 display…

! 8x8x256 bits for char/glyph table
! 16kbits (1k words) for char/glyph table
! Will this fit on your chip?

VGA Memory Requirements
! 80 char by 60 line display (8x8 glyphs)

! 4800 locations
! Each location has one of 64 char/glyphs
! 6-bits per location

! 4 locations per 24-bit word?
! 1200 words for frame buffer?

! Each char/glyph is (say) 8x8 pixels
! results in 640x480 display…

! 8x8x64 bits for char/glyph table
! 4kbits for char/glyph table (32 words, 128 b/word)
! Will this fit on your chip?

22

CharROM

CharROM

23

CharROM

hVideo module

vVideo module

Character
Function

vCnt[7:1]

HA[6:0]

vCnt[7:4]

HA[6:3]

8:1
Mux

HA[2:0]

4:16
Decod
er

2

 16

6

4

vCnt[3:1]

A[4:3]

A[2:0]

nOE12 0
 -
nOE0

T[7:0]

8

Character Bus

VidOut

charRom

3 input
AND

hBright
vBright

Fit the charROM into a VGA system
 - hVideo walks along the row
 - vVideo picks which row to walk along

Two Lines of Text
! Character Function…

! … i.e. Frame Buffer
! 16 characters/line x 8 pixels/

char = 128pixels
! 6 bits to address a character

! A[4:3] = row of CharRom
! R[2:0] = column of CharRom
! A[2:0] = row of character

24

RAM/ROM Generator
! Designed by Allen Tanner 8 years ago as

his class project...
! makemem

! Simple ROM arrays
 (Don’t use the SRAM)

makemem
102 vladimir:~> java -cp /uusoc/facility/cad_common/local/Cadence/lib/mem/j makemem -h
makemem v2.2 Nov 8, 2004
 Allen Tanner University of Utah CS6710

Enter the following:
java makemem choice options
 Where: choice selects the creation of either ROM or SRAM.
 for ROM enter:-r rname : rname.rom is the file name.
 :
 for SRAM enter:-s r c : Version 1 SRAM single port.
 for SRAM enter:-s1 r c : Version 2 SRAM single port.
 for SRAM enter:-s2 r c : Version 2 SRAM dual port.
 for SRAM enter:-s3 r c : Version 2 SRAM triple port.
 : r is the number of rows (decimal).
 : c is the number of columns (decimal).
 :
 :-h -H : help (no processing occurs when help is requested).
 :-f fname : output file name. Used with .cif, .v & .il files.
 :-n sname rname : sname for array top cell name.
 : : rname for ROM (only) dockable ROM array top cell name
 :-t n : use tristate buffers on the outputs of ROM.
 :-q : output hello.txt file to find the working file directory.
103 vladimir:~>

25

makemem Limits
! Number of rows is limited to 64 by

address decoder design
! Columns are not restricted

! For ROM you can add a tristate bus at
the output which is another level of
decoding
! width must be an even number

! SRAM has single, dual, and triple port
options
! But, fabricated versions are very uneven…

ROM vs. Verilog

26

ROM vs. Verilog

ROM vs. Verilog

27

ROM vs. Verilog

ROM vs. Verilog

28

ROM vs. Verilog

ROM vs. Verilog

29

ROM size comparison

SRAM
! Makemem also generates SRAM

! Three different variants: single, dual, triple
port

! Each port is independent R/W
! But, no automatic arbitration, so make sure

you’re not using the same address on
multiple ports

BUT! It’
s not working well

Use memCellsF
09 instead!!!

30

SRAM vs FF-registers
module regfile #(parameter WIDTH = 8, REGBITS = 3)
 (input clk, regwrite,
 input [REGBITS-1:0] ra1, ra2, wa,
 input [WIDTH-1:0] wd,
 output [WIDTH-1:0] rd1, rd2);
 reg [WIDTH-1:0] RAM [(1<<REGBITS)-1:0];
 // read two ports (combinational)
 // write third port on rising edge of clock
 always @(posedge clk)
 if (regwrite) RAM[wa] <= wd;

 assign rd1 = RAM[ra1];
 assign rd2 = RAM[ra2];
endmodule

SRAM vs FF-registers
module SRAM #(parameter WIDTH = 8, REGBITS = 3)
 (input clk, WE,
 input [REGBITS-1:0] addr,
 input [WIDTH-1:0] wd,
 output [WIDTH-1:0] data);
 reg [WIDTH-1:0] RAM [(1<<REGBITS)-1:0];

// on clk, write if WE is high
 always @(posedge clk)
 if (WE) RAM[addr] <= wd;

 // Read asynchronously from addr
 assign data = RAM[addr];

endmodule

31

Single-Port SRAM/FF

8x8

16x16

32x32

SRAM Circuits

32

SRAM Cell, Transistors

Tricky to
get this right!

Multi-Port Register

Re1

Re0

! Register file cell with single-ended read –
makes a great register file

33

Register File

! Slightly larger cell, but with single-ended
read – makes a great register file

SRAM Cell
Yet another cell – differential write, single-ended read

34

Array-Structured Memory

Input-Output
(M bits)

R
ow

 D
ec

od
er

AK

AK+1

AL-1

2L-K

Column Decoder

Bit Line

Word Line

A0

AK-1

Storage Cell

Sense Amplifiers / Drivers

M.2K

Problem: ASPECT RATIO or HEIGHT >> WIDTH

Amplify swing to
rail-to-rail amplitude

Selects appropriate
word

Row Decoders

! Select exactly one of the memory rows
! Simple versions are just gates

35

Pre-decode Row Decoder
! Multiple

levels of
decoding
can be
more
efficient
layout

Pre-decode Row Decoder

! Other circuit tricks for building row
decoders…

36

Single-Port SRAM

Two-Port SRAM/FF
module SRAM2 #(parameter WIDTH = 8, REGBITS = 3)
 (input clk, WE,
 input [REGBITS-1:0] addr, raddr,
 input [WIDTH-1:0] wd,
 output [WIDTH-1:0] data, rdata);
 reg [WIDTH-1:0] RAM [(1<<REGBITS)-1:0];

// on clk, write if WE is high
 always @(posedge clk)
 if (WE) RAM[addr] <= wd;

 // Read asynchronously from addr & raddr
 assign data = RAM[addr];
 assign rdata = RAM[raddr];
endmodule

37

Two-Port SRAM/FF

Two-Port SRAM

38

Conclusions
! Try out memCellsF09 for SRAM

! Details on the class web page
! But, as you can see, you can’t fit much on a

chip

! ROMs are very useful for tables of data
! I’d use Verilog case-statements…

! If you’re using VGA
! Check out the mini-project from 2005
! Again, on the class website

