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Display Technology 
! Images stolen from various locations on 

the web...  

Cathode Ray Tube 
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Cathode Ray Tube 

Raster Scanning 
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Electron Gun 

Beam Steering Coils 
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Color 

Shadow Mask and Aperture Grille 
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Liquid Crystal Displays 

Liquid Crystal Displays 
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DLP Projector 

LCoS 
! Liquid Crystal on Silicon 

! Put a liquid crystal between a reflective layer 
on a silicon chip 
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Grating Light Valve (GLS) 
! lots (8000 currently) of micro 

ribbons that can bend slightly 
! Make them reflective 
! The bends make a diffraction 

grating that controls how much 
light goes where  

! Scan it with a laser for high light 
output 

! 4000 pixel wide frame at 60Hz 

Grating Light Valve (GLS) 



8 

Digistar 3 Dome Projector 

VGA  
! Stands for Video Graphics Array  
! A standard defined by IBM back in 1987 

! 640 x 480 pixels 
! Now superseded by much higher resolution 

standards...  
! Also means a specific analog connector 

! 15-pin D-subminiature VGA connector 
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The linked image cannot be displayed.  The file may have been moved, renamed, or deleted. Verify that the link points to the correct file and location.

VGA Connector  

                                                                                                                                                    

1: Red out  6: Red return (ground)  11: Monitor ID 0 in  

2: Green out  7: Green return (ground)  12: Monitor ID 1 in 
or data from display  

3: Blue out  8: Blue return (ground)  13: Horizontal Sync  

4: Unused  9: Unused  14: Vertical Sync  

5: Ground  10: Sync return (ground)  15: Monitor ID 3 in 
or data clock  

Raster Scanning 
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Raster Scanning 

“back porch” “back porch” “back porch” 

“front porch” 

VGA Horizontal Timing 
Horizonal Dots          640    
Vertical Scan Lines     480    
Horiz. Sync Polarity    NEG 
A (µs)                   31.77 Scanline time 
B (µs)                   3.77   Sync pulse length 
C (µs)                   1.89   Back porch 
D (µs)                   25.17 Active video time 
E (µs)                   0.94   Front porch 
           ______________________          ________ 
________|        VIDEO         |________| VIDEO (next line) 
    |-C-|----------D-----------|-E-| 
__   ______________________________   ___________ 
  |_|                              |_| 
  |B| 
  |---------------A----------------| 

60Hz vertical frequency 
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VGA Horizontal Timing 
Horizonal Dots          640    
Vertical Scan Lines     480    
Horiz. Sync Polarity    NEG 
A (µs)                   31.77 Scanline time 
B (µs)                   3.77   Sync pulse length 
C (µs)                   1.89   Back porch 
D (µs)                   25.17 Active video time 
E (µs)                   0.94   Front porch 
           ______________________          ________ 
________|        VIDEO         |________| VIDEO (next line) 
    |-C-|----------D-----------|-E-| 
__   ______________________________   ___________ 
  |_|                              |_| 
  |B| 
  |---------------A----------------| 

60Hz vertical frequency 

25.17/640 = 39.33ns/pixel = 25.4MHz pixel clock 

VGA Vertical Timing 
Horizonal Dots          640    
Vertical Scan Lines   480  
Vert. Sync Polarity    NEG       
Vertical Frequency   60Hz 
O (ms)                     16.68  Total frame time 
P (ms)                      0.06   Sync pulse length 
Q (ms)                  1.02  Back porch 
R (ms)                  15.25  Active video time 
S (ms)                  0.35   Front porch 
                 ______________________          ________ 
________|        VIDEO         |________|  VIDEO (next frame) 
    |-Q-|----------R-----------|-S-| 
__   ______________________________   ___________ 
  |_|                              |_| 
  |P| 
  |---------------O----------------| 
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VGA Timing Summary 

60 Hz refresh and 25MHz pixel clock 

Relaxed VGA Timing 
! This all sounds pretty strict and exact...  
! It’s not really... The only things a VGA 

monitor really cares about are:  
! Hsync 
! Vsync 
! Actually, all it cares about is the falling edge 

of those pulses! 
! The beam will retrace whenever you tell it to 
! It’s up to you to make sure that the video 

signal is 0v when you are not painting  
(i.e. retracing) 
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Relaxed VGA Horizontal Timing 
Horizonal Dots          128    
Vertical Scan Lines     ?    
Horiz. Sync Polarity    NEG 
A (µs)                   30.0 Scanline time 
B (µs)                   2.0   Sync pulse length 
C (µs)                   10.7   Back porch 
D (µs)                   12.8 Active video time 
E (µs)                   4.50   Front porch 
           ______________________          ________ 
________|        VIDEO         |________| VIDEO (next line) 
    |-C-|----------D-----------|-E-| 
__   ______________________________   ___________ 
  |_|                              |_| 
  |B| 
  |---------------A----------------| 

60Hz vertical frequency 

12.8/128 = 100ns/pixel = 10 MHz pixel clock 

VGA Relaxed Vertical Timing 
Horizonal Dots          128    
Vertical Scan Lines   255  
Vert. Sync Polarity    NEG       
Vertical Frequency   60Hz 
O (ms)                     16.68  Total frame time 
P (ms)                      0.09   Sync pulse length (3x30µs) 
Q (ms)                  4.86  Back porch 
R (ms)                  7.65  Active video time 
S (ms)                  4.08   Front porch 
                 ______________________          ________ 
________|        VIDEO         |________|  VIDEO (next frame) 
    |-Q-|----------R-----------|-S-| 
__   ______________________________   ___________ 
  |_|                              |_| 
  |P| 
  |---------------O----------------| 
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VGA on Spartan3e Starter 

Series resistors limit output 
voltage to 0-0.7v 

VGA Voltage Levels 
! Voltages on R, G, and B determine the 

color 
! Analog range from 0v (off) to +0.7v (on) 
! But, our pads produce 0-5v outputs!  
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VGA Voltage Levels 
! Voltages on R, G, and B determine the 

color 
! Analog range from 0v (off) to +0.7v (on) 
! But, our pads produce 0-5v outputs! 
! For B&W output, just tie RGB together and 

let 0v=black and 5v=white 
! This overdrives the input amps, but won’t really 

hurt anything  
! For color you can drive R, G, B separately 

! Of course, this is only 8 colors (including black 
and white) 

! Requires storing three bits at each pixel location 

VGA on Spartan3e Starter 
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More colors 
! More colors means more bits stored per pixel 
! Also means D/A conversion to 0 to 0.7v range 

More Colors (Xess) 
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What to Display?  
! You need data to display on the screen... 

! Brute force: put it all in a giant ram that has 
the same resolution as your screen and just 
walk through the RAM as you paint the 
screen 

! More clever: Fill a row buffer with data for a 
scan line 

! Multi-level: Fill a (smaller) row buffer with 
pointers to glyphs that are stored in another 
RAM/ROM 

! Just keep track of where the beam is and 
where your data is...  

VGA Breakdown 
! vgaControl 

! Generate timing pulses at the right time 
! hSync, vSync, bright, hCount, vCount 

 
! bitGen 

! Based on bright, hCount, vCount, turn on the 
bits 
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3 Types of bitGen 
! Bitmapped 
! Character/Glyph – based 
! Hard-coded  

3 Types of bitGen 
! Bitmapped 

! Frame buffer holds a separate rgb color for 
every pixel 

! bitGen just grabs the pixel based on hCount 
and vCount and splats it to the screen 

! Chews up a LOT of memory 
! This memory would have to be off-chip…  
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3 Types of bitGen 
! Character/Glyph-based 

! Break screen into nxm pixel chunks (e.g. 8x8) 
! For each chunk, point to one of k nxm glyphs 
! Those glyphs are stored in a separate 

memory 
! For 8x8 case (for example) 

! glyph number is hCount and vCount minus the low 
three bits 

! glyph bits are the low-order 3 bits in each of 
hCount and vCount 

! Figure out which screen chunk you’re in, then 
reference the bits from the glyph memory 

3 Types of bitGen 
! Direct Graphics 

! Look at hCount and vCount to see where you 
are on the screen 

! Depending on where you are, force the output 
to a particular color 

! Tedious for complex things, nice for large, 
static things 

parameter BLACK = 3’b 000, WHITE = 3’b111, RED = 3’b100; 
// paint a white box on a red background 
always@(*) 
    if (~bright) rgb = BLACK; // force black if not bright 
    // check to see if you’re in the box 
   else if (((hCount >= 100) && (hCount <= 300)) && 
               ((vCount >= 150) && (vCount <= 350))) rgb = WHITE; 
   else rgb = RED; // background color 
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VGA Memory Requirements 
! 640x480 VGA (bitmapped) 

! 307,200 pixels 
! 3 bits per pixel 
! Imagine using 24 bits per memory location  

(8 pixels) 
! 38.4 K-words with 24-bit words for 640x480 

! 115.2 K-bytes 
! FAR larger than you can put on your chip… 
! Not so bad with an off-chip RAM 

VGA Memory Requirements 
! 320x240 VGA (bitmapped) 

! 76,800 pixels 
! Each stored pixel is 2x2 screen pixels 
! 3 bits per pixel 
! 8 pixels per 24-bit word (for example) 
! 9.6k 24-bit words needed 

! 28.8 K-bytes 
! Much more realistic…but still significant 

memory if you want to put it on-chip 
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VGA Memory Requirements 
! 80 char by 60 line display (8x8 glyphs) 

! 4800 locations 
! Each location has one of 256 char/glyphs 
! 8-bits per location  

! 2 locations per 16-bit word? 
! 2400 words for the frame buffer 

! Each char/glyph is (say) 8x8 pixels 
! results in 640x480 display…  

! 8x8x256 bits for char/glyph table 
! 16kbits (1k words) for char/glyph table 
! Will this fit on your chip?  

VGA Memory Requirements 
! 80 char by 60 line display (8x8 glyphs) 

! 4800 locations 
! Each location has one of 64 char/glyphs 
! 6-bits per location  

! 4 locations per 24-bit word? 
! 1200 words for frame buffer? 

! Each char/glyph is (say) 8x8 pixels 
! results in 640x480 display…  

! 8x8x64 bits for char/glyph table 
! 4kbits for char/glyph table (32 words, 128 b/word) 
! Will this fit on your chip?  



22 

CharROM 

CharROM 
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CharROM 

hVideo module 

 

vVideo module 

 

Character 
Function 

 

vCnt[7:1]      

 

HA[6:0]       

 

vCnt[7:4]     

 

HA[6:3]       

 
8:1  
Mux 

 

HA[2:0]     

 

4:16    
Decod
er 

 

2
 

 16 

 

6
 

 
4
 

 
vCnt[3:1]     

 

A[4:3]    

 

A[2:0]     

 

nOE12 0     
    - 
nOE0     

 

T[7:0]     

 
8
 

 

Character Bus 

 
VidOut 

 

charRom 

 
3 input    
AND 

 
hBright    
vBright    

 

Fit the charROM into a VGA system  
 - hVideo walks along the row 
 - vVideo picks which row to walk along 

Two Lines of Text 
! Character Function…  

! … i.e. Frame Buffer 
! 16 characters/line x 8 pixels/

char = 128pixels 
! 6 bits to address a character 

! A[4:3] = row of CharRom 
! R[2:0] = column of CharRom 
! A[2:0] = row of character 
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RAM/ROM Generator  
! Designed by Allen Tanner 8 years ago as 

his class project...  
! makemem 

! Simple ROM arrays  
           (Don’t use the SRAM) 

makemem 
102 vladimir:~> java -cp /uusoc/facility/cad_common/local/Cadence/lib/mem/j makemem -h 
makemem v2.2  Nov 8, 2004 
  Allen Tanner University of Utah CS6710 
 
Enter the following: 
java makemem choice options 
   Where: choice selects the creation of either ROM or SRAM. 
    for ROM  enter:-r rname       : rname.rom  is the file name. 
                                  :  
    for SRAM enter:-s  r c        : Version 1 SRAM single port. 
    for SRAM enter:-s1 r c        : Version 2 SRAM single port. 
    for SRAM enter:-s2 r c        : Version 2 SRAM dual port. 
    for SRAM enter:-s3 r c        : Version 2 SRAM triple port. 
                                  : r is the number of rows (decimal). 
                                  : c is the number of columns (decimal). 
                                  :  
                  :-h -H          : help (no processing occurs when help is requested). 
                  :-f fname       : output file name. Used with .cif, .v & .il files. 
                  :-n sname rname : sname for array top cell name. 
                  :               : rname for ROM (only) dockable ROM array top cell name 
                  :-t n           : use tristate buffers on the outputs of ROM. 
                  :-q             : output hello.txt file to find the working file directory. 
103 vladimir:~>  
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makemem Limits 
! Number of rows is limited to 64 by 

address decoder design 
! Columns are not restricted 

! For ROM you can add a tristate bus at 
the output which is another level of 
decoding 
! width must be an even number 

! SRAM has single, dual, and triple port 
options 
! But, fabricated versions are very uneven…  

ROM vs. Verilog 
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ROM vs. Verilog 

ROM vs. Verilog 
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ROM vs. Verilog 

ROM vs. Verilog 
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ROM vs. Verilog 

ROM vs. Verilog 
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ROM size comparison 

SRAM 
! Makemem also generates SRAM 

! Three different variants: single, dual, triple 
port 

! Each port is independent R/W 
! But, no automatic arbitration, so make sure 

you’re not using the same address on 
multiple ports 

BUT! It’
s not working well 

Use memCellsF
09 instead!!! 
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SRAM vs FF-registers 
module regfile #(parameter WIDTH = 8, REGBITS = 3) 
                (input                clk, regwrite, 
                 input  [REGBITS-1:0] ra1, ra2, wa, 
                 input  [WIDTH-1:0]   wd, 
                 output [WIDTH-1:0]   rd1, rd2); 
   reg  [WIDTH-1:0] RAM [(1<<REGBITS)-1:0]; 
   // read two ports (combinational) 
   // write third port on rising edge of clock 
   always @(posedge clk) 
      if (regwrite) RAM[wa] <= wd; 
 
   assign rd1 =  RAM[ra1]; 
   assign rd2 =  RAM[ra2]; 
endmodule 
 

SRAM vs FF-registers 
module SRAM #(parameter WIDTH = 8, REGBITS = 3) 
                (input                clk, WE, 
                 input  [REGBITS-1:0] addr, 
                 input  [WIDTH-1:0]   wd, 
                 output [WIDTH-1:0]   data); 
   reg  [WIDTH-1:0] RAM [(1<<REGBITS)-1:0]; 
    
// on clk, write if WE is high 
   always @(posedge clk) 
      if (WE) RAM[addr] <= wd; 
 
   // Read asynchronously from addr 
   assign data =  RAM[addr]; 
  
endmodule 
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Single-Port SRAM/FF 

8x8 

16x16 

32x32 

SRAM Circuits 
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SRAM Cell, Transistors 

Tricky to  
get this right! 

Multi-Port Register 

Re1 

Re0 

! Register file cell with single-ended read – 
makes a great register file 
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Register File 

! Slightly larger cell, but with single-ended 
read – makes a great register file 

SRAM Cell 
Yet another cell – differential write, single-ended read 
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Array-Structured Memory 

Input-Output
(M bits)

R
ow

 D
ec

od
er

AK

AK+1

AL-1

2L-K

Column Decoder

Bit Line

Word Line

A0

AK-1

Storage Cell

Sense Amplifiers / Drivers

M.2K

Problem: ASPECT RATIO or HEIGHT >> WIDTH

Amplify swing to
rail-to-rail amplitude

Selects appropriate
word

Row Decoders 

! Select exactly one of the memory rows 
! Simple versions are just gates 
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Pre-decode Row Decoder 
! Multiple 

levels of 
decoding 
can be 
more 
efficient 
layout 

Pre-decode Row Decoder 

! Other circuit tricks for building row 
decoders…  
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Single-Port SRAM 

Two-Port SRAM/FF 
module SRAM2 #(parameter WIDTH = 8, REGBITS = 3) 
                (input                clk, WE, 
                 input  [REGBITS-1:0] addr, raddr, 
                 input  [WIDTH-1:0]   wd, 
                 output [WIDTH-1:0]   data, rdata); 
   reg  [WIDTH-1:0] RAM [(1<<REGBITS)-1:0]; 
    
// on clk, write if WE is high 
   always @(posedge clk) 
      if (WE) RAM[addr] <= wd; 
 
   // Read asynchronously from addr & raddr 
   assign data =  RAM[addr]; 
   assign rdata = RAM[raddr];  
endmodule 
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Two-Port SRAM/FF 

Two-Port SRAM 
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Conclusions 
! Try out memCellsF09 for SRAM  

! Details on the class web page 
! But, as you can see, you can’t fit much on a 

chip 
 

! ROMs are very useful for tables of data 
! I’d use Verilog case-statements…  
 

! If you’re using VGA 
! Check out the mini-project from 2005 
! Again, on the class website 


