

Electric Charge

- □ Atomic-level property
 - Positive charge = Proton
 - Negative charge = Electron
- □ Charges produce force against each other
 - Like charges repel

University of Utah

Department of Computer Science

- Different charges attract
- □ SI unit of charge is Coulomb (Q, q are quantity symbols)
 - Charge on electron is -1.602x10⁻¹⁹ Coulombs
 - 6.241×10^{18} electrons = 1 Coulomb

Electric Current

Results from charge moving in a conductor

- □ SI unit of current is Ampere, Amp, A (I, i are quantity symbols)
 - 1 Amp is 1 Coulomb of charge passing a point in 1 second
 - I (Amperes) = Q (Coulombs) / t (seconds)
- **u** Current has a direction: it flows from positive to negative points (positive current)
 - But, electrons are really the things that move in the conductor
 - And, they move from negative to positive
 - So, the electrons move in the opposite direction as current flow
 - Blame Ben Franklin!

University of Utah Department of Computer Science

Voltage

5

Difference in electrical potential at two points in a circuit

- □ A measure of how much work is involved in moving charge between those points
 - W (joules) = F (newtons) * s (meters)
- □ Energy is the capacity to do work.
 - Potential energy is energy something has because of position
 - Voltage difference is a potential difference
- □ Voltage is the energy that causes current to flow
 - Current flows from higher potential to lower potential

7

Voltage is Relative

6

Measured relative to two points in a system

- □ 1 Volt is the work required to move 1 Coulomb of charge from one point to another
 - V_{a-b} (volts) = W (joules) / Q (Coulombs)
- **□** Raising the voltage of one Coulomb of charge by 1 volt takes 1 joule of energy...
- **One point is arbitrarily called 0v or Ground** (GND)

• Which means that voltage can easily be negative with respect to that arbitrary point

$$\frac{10^{22} \text{ electrons}}{1 \text{ h}} * \frac{1 \text{ h}}{3600 \text{ s}} * \frac{-1.602 \times 10^{-19} \text{ C}}{1 \text{ electron}} = -0.445 \text{ C/s}$$
$$= -0.445 \text{ A}$$

11

University of Utah

How fast do electrons move?

What is the "drift velocity" of an electron?

- **□** Example: 14 gauge copper wire, 10A current
 - Copper wire has 1.38×10^{24} free electrons/in³
 - 14 gauge cross section is $3.23/10^{-3}$ in²
 - Electron velocity is (current)/(area * electron density)

University of Utah Department of Computer Science

13

Resistance

The property that opposes or resists current flow

- □ Water analogy:
 - friction of water in a small pipe

Electronics:

 $\bullet\,$ Electrons collide with conductor atoms and lose energy in the form of heat

- **u** Current is proportional to applied voltage
 - Unit is the Ohm, symbol is $\boldsymbol{\Omega}$
 - Ohm's Law: I (amps) = V (volts) / R (Ohms)
 - I = V/R or V = I R

How fast do electrons move?

What is the "drift velocity" of an electron?

- **Example: 14 gauge copper wire, 10A current**
 - Copper wire has 1.38x10²⁴ free electrons/in³
 - 14 gauge cross section is $3.23/10^{-3}$ in²
 - Electron velocity is (current)/(area * electron density)

velocity =
$$\frac{10C}{1s} * \frac{1}{3.23 \times 10^{-3} \text{in}^2} * \frac{1 \text{in}^3}{1.38 \times 10^{24} \text{ electrons}}$$

= $\frac{10C}{1s} * \frac{1}{3.23 \times 10^{-3} \text{in}^2} * \frac{1 \text{in}^3}{1.38 \times 10^{24} \text{ electrons}} * \frac{0.0254\text{m}}{1 \text{in}} * \frac{1 \text{ electron}}{-1.602 \times 10^{-19} \text{C}}$

= -3.56x10-4 m/s * 3600s/h = -1.28m/h (Very slow!!!)

University of Utah Department of Computer Science

14

Resistance of Materials

Proportional to length inversely proportional to cross-section area

- Big Pipe = less force (voltage) required to push water (current) through
- □ Little Pipe = more force (voltage) required to force the same amount of current through
 - Resistance = ρ (L / A) where ρ is "resistivity"in Ω m

Material	Resistivity	Material	Resistivity
Silver	1.64x10 ⁻⁸	Nichrome	100x10 ⁻⁸
Copper	1.72x10 ⁻⁸	Silicon	2500
Aluminum	2.83x10 ⁻⁸	Quartz	10 ¹⁷

(note, this property is measurable over 25 orders of magnitude!)

Example

- \Box Given a 240v heating element in a stove that has 24 Ω resistance, what fuse to use?
 - Fuse must be able to carry the current of the heating element
 - $I = V / R = 240v / 24\Omega = 10A$
- How much power does this heating element dissipate?
 - Recall P = V I, and V = I R, so $P = I^2 R$
 - So $P = 10^2 * 24W = 2400 W$

Example

- □ What is the resistance of an Al wire 1000m long with diameter 1.626mm?
 - Cross sectional area = Πr^2 , r=d/2 = 0.813x10⁻³m
 - R (ohms) = ρ (L / A)

University of Utah

Department of Computer Science

□ Series connected:

 $= \frac{(2.83 \times 10^{-8} \Omega m) (1000 m)}{\Pi (0.813 \times 10^{-3} m)^2} = 13.6 \Omega$

University of Utah Department of Computer Science

17

Series and Parallel Connections of Resistors

 \Box Resistors in series = more total resistance

$$\mathbf{R}_{tot} = \mathbf{R}_1 + \mathbf{R}_2 + \dots + \mathbf{R}_n \qquad \underline{\qquad}^{\mathbf{R}_1}_{\mathbf{N}_1} \underbrace{\qquad}^{\mathbf{R}_2}_{\mathbf{N}_2} \underbrace{\qquad}^{\mathbf{R}_3}_{\mathbf{N}_2}$$

- □ Resistors in parallel = less total resistance
- □ Think about conductance as the inverse of resistance
 - G (conductance) = 1 / R (resistance)
 - $G_{tot} = G_1 + G_2 + ... + G_n$
 - = $1/R_1 * 1/R_2 + ... + 1/R_n$
 - So, $R_{tot} = 1 / G_{tot} = 1 / (1/R_1 + 1/R_2 + ... + 1/R_n)$
- **Example**, in case of 2 parallel resistors
 - $R_{tot} = (R_1 * R_2) / (R_1 + R_2)$

Parallel connected: All components see the same voltage drop

□ Loop: A simple closed path in the circuit

18

Series and Parallel DC Circuits

□ Brings us to Kirchhoff's Laws...

• All components see the same current

Kirchhoff's Voltage Law (KVL)

□ Sum of voltages around a loop is 0

$$\mathbf{V}_{\mathbf{S}} = \mathbf{V}_1 + \mathbf{V}_2 + \mathbf{V}_3 = \mathbf{I} \mathbf{R}_1 + \mathbf{I} \mathbf{R}_2 + \mathbf{I} \mathbf{R}_3 = \mathbf{I} \mathbf{R}_{\text{tot}}$$

University of Utah Department of Computer Science 21

Voltage Division General Form

□ Find voltage across any series-connected resistor

□ Find V2, the voltage drop across R2

Voltage Division

Ψı Department of Computer Science

Example of Voltage Division

□ Find voltage at point A with respect to GND

University of Utah Department of Computer Science

Kirchhoff's Current Law

□ Sum of currents at any node in a circuit is 0

Example: Current limiting

□ Suppose you had a 20w horn from an old 6v car

□ Want to put it in a new car with 12v system

□ How do you make it work?

• P = V I so if you increase the voltage without limiting current, the power goes up and the horn burns out

 $\bullet\,$ So, you need to limit the total current so that the horn sees the same current it was designed for

+ How? I = V / R, so if V goes up, R must also go up to keep current constant

• So, what size resistor should you put in series with the horn to make this work?

University of Utah Department of Computer Science 25

Example: Current Limiting

- □ First compute how much current the horn would have seen in the 6v car
 - P = V I so I = P / V = 20w / 6v = 3.33A
- □ So, the series resistor should see the same current
 - $R = 6v / 3.33A = 1.8\Omega$

Capacitors

Components that store electrical charge

26

D Two conductors separated by an insulator

• Accumulates charge on the plates

SI unit is Farad

University of Utah

Department of Computer Science

• C (farads) = Q (Coulombs) / V (volts)

• Capacitance of 1 farad means that putting +1 and -1 coulomb of charge on the plates results in a voltage difference of 1 volt

- Or, a voltage of 1 volt forces 1 coulomb of charge on a capacitor
- □ Farad is *much* too large to be useful!
 - μF and pF are more common

Series and Parallel Capacitors

- □ Parallel connection: stores more charge
 - $C_{tot} = C_1 + C_2 + ... + C_n$

- □ Series connection: each plate steals charge from neighbor, so total capacitance is less
 - $C_{tot} = 1 / (1 / C_1 + 1 / C_2 + ... + 1/C_n)$

University of Utah Department of Computer Science 29

Time to Charge a Capacitor

Initially very fast, then slows down exponentially

- **□** Precise relationship depends on both R and C
- \Box R (ohms) * C (farads) = what unit?
 - Answer: t (seconds)!
 - $\mathbf{R} = \mathbf{V} / \mathbf{I}$
 - I = Q / t
 - C = Q / V
 - So, R C = (V) / (Q / t) * Q / V = (V)(t / Q)(Q / V) = t

31

Charging a Capacitor

Each electron that comes in one lead "pushes" one electron from the other plate through the other lead

- □ Changing the voltage across a capacitor requires changing the charge stored on each plate, which requires current – –
 - In a resistor, fixed current causes a fixed voltage drop: I = Q / t

• In a capacitor, a fixed current causes a steadily increasing voltage drop as charge accumulates on the plates: i = dq / dt

• We can't change voltage instantly across a capacitor because that would require infinite current!

University of Utah Department of Computer Science

30

RC Time Constant

- Charging and discharging are exponential processes
 - Changing the voltage across a capacitor requires current

• If the current flows through a resistor, it requires voltage across that resistor

• If voltage decreases as the capacitor discharges, the current, and the rate of disharging decrease exponentially with time

Consider discharging a fully charged capacitor

Discharging a Capacitor

- □ According to Kirchhoff:
 - $V_R = V_{cap}$, and $I_R = -I_{cap}$
- □ Also:
 - $I_R = V_R / R$, and $dV_{cap} / dt = I_{cap} / C$
- □ Substituting, we get:
 - $dV_{cap} / dt = I_{cap} / C = -I_R / C = -V_{cap} / RC$
- **Giving this differential equation:**

•
$$V_{cap}(t) = V_{cap}(0) * e^{-t/RC} = Vcc * e^{-t/RC}$$

University of Utah Department of Computer Science

33

Example: RC Timer

Switch connects 300v, 16M Ω resistor, uncharged 10 μ F capacitor

- □ How long is switch closed if charge on capacitor is 10v?
 - Charging equation: $V_{(t)} = Vcc (1 e^{-t/RC})$
 - RC = 16,000,000 Ω * 10 x 10⁻⁶ F = 160s, V_(t) = 10v, Vcc = 300v
 - So, $10v = 300v (1 e^{-t/160s})$
 - $300 10 = 300 * e^{-t/160}$
 - $290/300 = e^{-t/160}$
 - $\ln(290/300) = \ln(e^{-t/160})$
 - $\ln(290/300) = -t/160$
 - $t = -160 \ln(290/300)$
 - t = 5.42s

RC Time Constants

- **General form:**
 - $V_{(t)} = V_{(oo)} + [V_{(0)} V_{(oo)}] e^{-t/RC}$
- **Discharge from Vcc:**
 - $V_{(t)} = Vcc e^{-t/RC}$
- **Charge from GND:**
 - $V_{(t)} = Vcc (1 e^{-t/RC})$
- **Short cut:**
 - 99% of final charge or discharge in 5RC!

University of Utah Department of Computer Science

34

Energy Stored in a Capacitor

□ Work must be done to separate charge

• This energy is stored in the system and can be recovered by allowing the charge to come together again

- I.e. a charged capacitor has potential energy equal to the work required to charge it
- Suppose at time t a charge of q(t) has been transferred from one plate to the other
 - The potential difference V(t) at this point is $Q(t) \ / \ C$
 - If an extra increment of charge dq is transferred, the extra work is dw = V dq = (q/c)dq
- □ So, the total work to move all the charge is $w = \int dw = \int_{0}^{q} (q/c)dq = 1/2 q^2 / c$ □ Since q = cv, w = (1/2) cv²

Whew! Electronics Summary...

- □ Voltage is a measure of electrical potential energy
- □ Current is moving charge caused by voltage
- □ Resistance reduces current flow
 - Ohm's Law: V = I R
- □ Power is work over time
 - $P = V I = I^2 R$
- Capacitors store charge
 - It takes time to charge/discharge a capacitor
 - Time to charge/discharge is related exponentially to RC
 - It takes energy to charge a capacitor
 - Energy stored in a capacitor is $(1/2) C V^2$

University of Utah Department of Computer Science 37

Electrical Model of a CMOS Transistor

R_{on}

 $C_{\rm G}$ = Capacitance of the gate

is a low-resistance between Source and Drain, otherwise it's a very high-resistance

University of Utah Department of Computer Science

38

Two Types of CMOS Transistors

□ N-type transistor

- High voltage on Gate connects Source to Drain
- Passes 0 well, passes 1 poorly

Gate

Drain

P-type transistor

- Low voltage on Gate connects Source to Drain
- Passes 1 well, passes 0 poorly

CMOS Inverter

- **Consider this connection of transistors**
 - If input is at a high voltage, output is low
 - If input is at a low voltage, output is high
- □ By changing the resistances, it becomes one of two different voltage dividers
 - It's a voltage inverter!

University of Utah Uı Department of Computer Science

CMOS NAND Gate

41

Timing Issues in CMOS

- **□** Recall that it takes time to charge capacitors
- □ Recall that the gate of a transistor looks like a capacitor
- □ Wires have resistance and capacitance also!

42

University of Utah Uı Department of Computer Science

University of Utah Department of Computer Science

CMOS Power Consumption

- Power is consumed in CMOS by charging and discharging capacitors
 - Note that there no static power dissipation in CMOS
 - There's never a DC path to ground
- **Good news:**
 - You're not consuming power unless you're switching
- **Bad news:**
 - Switching activity is caused by clock, which is going faster and faster
- □ If the first-order power effect is capacitor charging/discharging, and the clock causes this:

 $P = (1/2) C V^2 f$

University of Utah Department of Computer Science 45

Conclusions

D That's about all I have the stamina for

• I'll be a little surprised if we even make it through all the slides to the end!

- A little knowledge of basic electronics can explain a lot about computer hardware
- □ A little more knowledge about VLSI could explain even more!
 - But that's a subject for another lecture!

Is That All There is to VLSI?

- □ We've got NAND, NOR, and INV gates
 - With those we should be able to build anything
- We've also got some idea of why things can't go infinitely fast
 - We've got to keep charging and discharging those darn capacitors!
- □ We've got some idea of where and why power is consumed
 - We've got to keep charging and discharging those darn capacitors!
- And a hint why power supply voltages are getting lower
 - $P = (1/2)CV^2 f$, Which one would you optimize first?

University of Utah Department of Computer Science

46