Electronics for Computer Scientists

Ohm's Law to VLSI

Erik Brunvand

U) University of Utah

The Big Picture

Why do we want to know?

- It's important to know something about computing hardware
- If only to not sound like a dummy...
- How much power does your PC draw?
- Why does your laptop only last a hour on a battery, but your watch lasts 2 years?
- Why does a faster processor burn more power?
- 700 M Hz is pretty fast. What are the issues in making things go faster?
- How are logic gates built? How do they work?
- How are logic gates used to build computing systems?
- It also lets you understand and appreciate limitations and advances in hardware

[^0]

Electric Charge

- Atomic-level property
- Positive charge = Proton
- Negative charge = Electron
- Charges produce force against each other
- Like charges repel
- Different charges attract
- SI unit of charge is Coulomb (Q, q are quantity symbols)
- Charge on electron is -1.602×10^{-19} Coulombs
- 6.241×10^{18} electrons $=1$ Coulomb

$$
\text { U } \begin{gathered}
\text { University of Utah } \\
\text { Department of Computer Science }
\end{gathered}
$$

Voltage

Difference in electrical potential at two points in a circuit - A measure of how much work is involved in moving charge between those points

- W (joules) $=\mathrm{F}$ (newtons) $*$ s (meters)
- Energy is the capacity to do work.
- Potential energy is energy something has because of position
- Voltage difference is a potential difference
- Voltage is the energy that causes current to flow
- Current flows from higher potential to lower potential

Electric Current

Results from charge moving in a conductor
\square SI unit of current is Ampere, Amp, A (I , i are quantity symbols)

- 1 Amp is 1 Coulomb of charge passing a point in 1 second
- I (Amperes) $=\mathrm{Q}$ (Coulombs) / t (seconds)
- Current has a direction: it flows from positive to negative points (positive current)
- But, electrons are really the things that move in the conductor
- And, they move from negative to positive
- So, the electrons move in the opposite direction as current flow
- Blame Ben Franklin!

University of Utah	
Department of Computer Science	6

Voltage is Relative

Measured relative to two points in a system

- 1 Volt is the work required to move 1 Coulomb of charge from one point to another

$$
\text { - } \mathrm{V}_{\mathrm{a}-\mathrm{b}}(\text { volts) }=\mathrm{W} \text { (joules) / Q (Coul ombs) }
$$

- Raising the voltage of one Coulomb of charge by 1 volt takes 1 joule of energy...

- One point is arbitrarily called Ov or Ground

 (GND)- Which means that voltage can easily be negative with respect to that arbitrary point

Water Analogy

- Current flow = water flow
- Amount of current = how much water
- Voltage = potential energy of the water
- $0 \mathrm{v}=$ stagnant pool of water, no flow
- Small voltage = tiny waterfall, not much energy
- Large voltage = large waterfall, lots of energy
- Negative voltage = dig a hole under the pond
- M ore water anal ogy later....

Example

- How much current flows in a light bulb from a steady movement of 10^{22} el ectrons in 1 hour?

$$
\begin{aligned}
\frac{10^{22} \text { electrons }}{1 \mathrm{~h}} * \frac{1 \mathrm{~h}}{3600 \mathrm{~s}} * \frac{-1.602 \times 10^{-19} \mathrm{C}}{1 \text { electron }} & =-0.445 \mathrm{C} / \mathrm{s} \\
& =-0.445 \mathrm{~A}
\end{aligned}
$$

Power

The rate at which something produces or consumes energy
$\square P$ (watts) $=W$ (joules) /t (seconds)
P (watts) $=\frac{W \text { (joules) }}{Q(\text { coulombs })} * \frac{Q \text { (coulombs) }}{t \text { (seconds) }}$

$P($ watts $)=\mathrm{V}($ volts $) * I$ (Amperes)

$$
\begin{array}{lll}
\hline \text { University of Utah } \\
\text { Department of Computer Science } & 10 \\
\hline
\end{array}
$$

Example

- How much current does a 1200w toaster draw from a 120v power connection?

$$
\begin{aligned}
& \mathrm{P}=\mathrm{V} I \longrightarrow_{\mathrm{I}} \\
& \mathrm{I}=\mathrm{P} N=1200 \mathrm{w} / 120 \mathrm{v}=10 \mathrm{~A}
\end{aligned}
$$

How fast do electrons move?

What is the "drift velocity" of an electron?
Example: 14 gauge copper wire, 10A current

- Copper wire has 1.38×10^{24} free electrons/in ${ }^{3}$
- 14 gauge cross section is $3.23 / 10^{-3} \mathrm{in}^{2}$
- Electron velocity is (current)/(area * electron density)

Electrical impulse moves at $2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}$ (i.e. close to speed of light)

University of Utah
13

Resistance

The property that opposes or resists current flow

- Water analogy:
- friction of water in a small pipe
- Electronics:
- Electrons collide with conductor atoms and lose energy in the form of heat
- Current is proportional to applied voltage
- Unit is the Ohm , symbol is Ω
- Ohm's Law: I (amps) = V (volts) / R (Ohms)
- $\mathrm{I}=\mathrm{V} / \mathrm{R}$ or $\mathrm{V}=\mathrm{I} \mathrm{R}$

How fast do electrons move?

What is the "drift velocity" of an electron?

- Example: 14 gauge copper wire, 10A current
- Copper wire has 1.38×10^{24} free electrons $/ \mathrm{in}^{3}$
- 14 gauge cross section is $3.23 / 10^{-3} \mathrm{in}^{2}$
- Electron velocity is (current)/(area * electron density)

$$
\begin{aligned}
& \text { velocity }=\frac{10 \mathrm{C}}{1 \mathrm{~s}} * \frac{1}{3.23 \times 10^{-3} \mathrm{in}^{2}} * \frac{1 \mathrm{in}^{3}}{1.38 \times 10^{24} \text { electrons }} \\
& \quad=\frac{10 \mathrm{C}}{1 \mathrm{~s}} * \frac{1}{3.23 \times 10^{-3} \mathrm{in}^{2}} * \frac{1 \mathrm{in}^{3}}{1.38 \times 10^{24} \text { electrons }} * \frac{0.0254 \mathrm{~m}}{1 \mathrm{in}} * \frac{1 \text { electron }}{-1.602 \times 10^{-19} \mathrm{C}} \\
& =-3.56 \times 10-4 \mathrm{~m} / \mathrm{s} * 3600 \mathrm{~s} / \mathrm{h}=-1.28 \mathrm{~m} / \mathrm{h} \quad \text { (Very slow!!!) }
\end{aligned}
$$

$$
\text { U } \begin{gathered}
\text { University of Utah } \\
\text { Department of Computer Science }
\end{gathered}
$$

Resistance of Materials

Proportional to length
inversely proportional to cross-section area

- Big Pipe = less force (voltage) required to push water (current) through
- Little Pipe = more force (voltage) required to force the same amount of current through
- Resistance $=\rho(L / A)$ where ρ is "resistivity"in Ωm

Material	Resistivity	Material	Resistivity
Silver	1.64×10^{-8}	Nichrome	100×10^{-8}
Copper	1.72×10^{-8}	Silicon	2500
Aluminum	2.83×10^{-8}	Quartz	10^{17}

(note, this property is measurable over 25 orders of magnitude!)
University of Utah
Department of Computer Science
16

Example

- Given a 240 v heating element in a stove that has 24Ω resistance, what fuse to use?
- Fuse must be able to carry the current of the heating element
- $\mathrm{I}=\mathrm{V} / \mathrm{R}=240 \mathrm{v} / 24 \Omega=10 \mathrm{~A}$
- How much power does this heating element dissipate?
- Recall $P=V I$, and $V=I R$, so $P=I^{2} R$
- So $P=10^{2} * 24 \mathrm{~W}=2400 \mathrm{~W}$

Series and Parallel Connections of Resistors

- Resistors in series = more total resistance
- $R_{\text {tot }}=R_{1}+R_{2}+\ldots+R_{n} \overbrace{1}^{R_{1}}$
- Resistors in parallel = less total resistance
- Think about conductance as the inverse of resistance
- G (conductance) $=1 / R$ (resistance)

- $\mathrm{G}_{\text {tot }}=\mathrm{G}_{1}+\mathrm{G}_{2}+\ldots+\mathrm{G}_{\mathrm{n}}$
- $\quad=1 / \mathbb{R}_{1} * 1 / R_{2}+\ldots+1 / R_{n}$
- So, $R_{\text {tot }}=1 / G_{\text {tot }}=1 /\left(1 / R_{1}+1 / R_{2}+\ldots+1 / R_{n}\right)$
- Example, in case of 2 parallel resistors
- $\mathrm{R}_{\text {tot }}=\left(\mathrm{R}_{1} * \mathrm{R}_{2}\right) /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)$

Example

- What is the resistance of an AI wire 1000 m long with diameter 1.626 mm ?
- Cross sectional area $=\Pi r^{2}, r=d / 2=0.813 \times 10^{-3} \mathrm{~m}$
- R (ohms) $=\rho(\mathrm{L} / \mathrm{A})$
$=\frac{\left(2.83 \times 10^{-8} \Omega \mathrm{~m}\right)(1000 \mathrm{~m})}{\Pi\left(0.813 \times 10^{-3} \mathrm{~m}\right)^{2}}=13.6 \Omega$

LJ $\begin{gathered}\text { University of Utah } \\ \text { Department of Computer Science }\end{gathered} 18$

Series and Parallel DC Circuits

- Series connected:
- All components see the same current
- Parallel connected:
- All components see the same voltage drop

L Loop: A simple closed path in the circuit

- Brings us to Kirchhoff's Laws...

Kirchhoff's Voltage Law (KVL)

- Sum of voltages around a loop is 0

$$
V_{S}=V_{1}+V_{2}+V_{3}=I R_{1}+I R_{2}+I R_{3}=I R_{\text {tot }}
$$

U Department of Computer Science

Voltage Division General Form

- Find voltage across any series-connected resistor

Voltage Division

- Find V2, the voltage drop across R2

$$
\begin{gathered}
\mathrm{N}_{\mathrm{S}}+\mathrm{R}_{1}^{\mathrm{R}_{2}} \mathrm{~V}_{2}=\mathrm{I} \mathrm{R}_{2} \\
\mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3}=1 \mathrm{R}_{1}+\mathrm{I} \mathrm{R}_{2}+\mathrm{I} \mathrm{R}_{3}=\mathrm{I} \mathrm{R}_{\text {tot }} \\
\mathrm{I}=\mathrm{V}_{\mathrm{S}} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}\right) \\
\text { So } \mathrm{V}_{2}=\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}} \mathrm{~V}_{\mathrm{S}}
\end{gathered}
$$

University of Utah
 epartment of Computer Science

Example of Voltage Division

- Find voltage at point A with respect to GND

$$
\begin{array}{cc}
\mathrm{V}_{1}=(900 / 1000) 5 \mathrm{v}=4.5 \mathrm{v} & \mathrm{~V}_{1}=(100 / 1000) 5 \mathrm{v}=0.5 \mathrm{v} \\
\mathrm{~V}_{2}=(100 / 1000) 5 \mathrm{v}=0.5 \mathrm{v} & \mathrm{~V}_{2}=(900 / 1000) 5 \mathrm{v}=4.5 \mathrm{v} \\
\text { So, } \mathrm{V}_{\mathrm{A}-\mathrm{GND}}=0.5 \mathrm{v} & \text { So, } \mathrm{V}_{\mathrm{A}-\mathrm{GND}}=4.5 \mathrm{v}
\end{array}
$$

Kirchhoff's Current Law

- Sum of currents at any node in a circuit is 0

U) University of Utah

25

Example: Current Limiting

- First compute how much current the horn would have seen in the 6v car
- $P=V$ I sol $=P / V=20 w / 6 v=3.33 A$
- So, the series resistor should see the same current
- $\mathrm{R}=6 \mathrm{v} / 3.33 \mathrm{~A}=1.8 \Omega$

Original System
Department of Computer Science
27

Example: Current limiting

- Suppose you had a 20 w horn from an old 6 v car - Want to put it in a new car with 12 v system
- How do you make it work?
- $\mathrm{P}=\mathrm{V}$ I so if you increase the voltage without limiting current, the power goes up and the horn burns out
- So, you need to limit the total current so that the horn sees the same current it was designed for
- How? I = V / R, so if V goes up, R must also go up to keep current constant
- So, what size resistor should you put in series with the horn to make this work?

Capacitors

Components that store electrical charge

- Two conductors separated by an insulator
- Accumulates charge on the plates
\square SI unit is Farad
- C (farads) = Q (Coulombs) / V (volts)
- Capacitance of 1 farad means that putting +1 and -1 coulomb of charge on the plates results in a voltage difference of 1 volt
- Or, a voltage of 1 volt forces 1 coulomb of charge on a capacitor
- Farad is much too large to be useful!
- $\mu \mathrm{F}$ and pF are more common

[^1]
Series and Parallel Capacitors

- Parallel connection: stores more charge
- $\mathrm{C}_{\text {tot }}=\mathrm{C}_{1}+\mathrm{C}_{2}+\ldots+\mathrm{C}_{\mathrm{n}}$

- Series connection: each plate steals charge from neighbor, so total capacitance is less
- $C_{\text {tot }}=1 /\left(1 / C_{1}+1 / C_{2}+\ldots+1 / C_{n}\right)$

U $\begin{gathered}\text { University of Utah } \\ \text { Department of Computer Science }\end{gathered}$

Time to Charge a Capacitor

Initially very fast, then slows down exponentially

- Precise relationship depends on both R and C
$\square \mathrm{R}$ (ohms) * C (farads) = what unit?
- Answer: t (seconds)!
- $\mathrm{R}=\mathrm{V} / \mathrm{I}$
- $\mathrm{I}=\mathrm{Q} / \mathrm{t}$
- $\mathrm{C}=\mathrm{Q} / \mathrm{V}$
- $\mathrm{So}, \mathrm{RC}=(\mathrm{V}) /(\mathrm{Q} / \mathrm{t}) * \mathrm{Q} / \mathrm{V}=(\mathrm{V})(\mathrm{t} / \mathrm{Q})(\mathrm{Q} / \mathrm{V})=\mathrm{t}$

Charging a Capacitor

Each electron that comes in one lead "pushes" one electron from the other plate through the other lead

- Changing the voltage across a capacitor requires changing the charge stored on each plate, which requires current
- In a resistor, fixed current causes a fixed voltage drop: I =Q / t
- In a capacitor, a fixed current causes a steadily increasing voltage drop as charge accumulates on the plates: $\mathrm{i}=\mathrm{dq} / \mathrm{dt}$
- We can't change voltage instantly across a capacitor because that would require infinite current!
$q=c v$
But c is constant, so
$i=\frac{d q}{d t}=\frac{d}{d t}(c v)$

$$
\mathrm{i}=\mathrm{c} \frac{\mathrm{dv}}{\mathrm{dt}} \quad \frac{\mathrm{dv}}{\mathrm{dt}}=\frac{\mathrm{i}}{\mathrm{c}}
$$

University of Utah
Department of Computer Science
30

RC Time Constant

- Charging and discharging are exponential processes
- Changing the voltage across a capacitor requires current
- If the current flows through a resistor, it requires voltage across that resistor
- If voltage decreases as the capacitor discharges, the current, and the rate of disharging decrease exponentially with time
- Consider discharging a fully charged capacitor

U University of Utah

Discharging a Capacitor

- According to Kirchhoff:
- $\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\text {cap }}$, and $\mathrm{I}_{\mathrm{R}}=\mathrm{I}_{\text {cap }}$
\square Also:
- $I_{R}=V_{R} / R$, and $d V_{\text {cap }} / d t=I_{\text {cap }} / C$
- Substituting, we get:
- $\mathrm{dV}_{\text {cap }} / \mathrm{dt}=I_{\text {cap }} / \mathrm{C}=-I_{\mathrm{R}} / \mathrm{C}=-\mathrm{V}_{\text {cap }} / \mathrm{RC}$
- Solving this differential equation:
- $\mathrm{V}_{\text {cap }}(\mathrm{t})=\mathrm{V}_{\text {cap }}(0) * \mathrm{e}^{-\mathrm{t} / R C}=\mathrm{Vcc}_{c c} * \mathrm{e}^{\mathrm{t} / R C}$

University of Utah
Department of Computer Science

Example: RC Timer

Switch connects $300 \mathrm{v}, 16 \mathrm{M} \Omega$ resistor, uncharged $10 \mu \mathrm{~F}$ capacitor

- How long is switch closed if charge on capacitor is 10 v ?
- Charging equation: $\mathrm{V}_{(\mathrm{t})}=\mathrm{Vcc}\left(1-\mathrm{e}^{-\mathrm{t} / \mathrm{RC}}\right)$
- $\mathrm{RC}=16,000,000 \Omega * 10 \times 10^{-6} \mathrm{~F}=160 \mathrm{~s}, \mathrm{~V}_{(\mathrm{t})}=10 \mathrm{v}, \mathrm{Vcc}=300 \mathrm{v}$
- So, $10 \mathrm{v}=300 \mathrm{v}\left(1-\mathrm{e}^{-\mathrm{t} / 160 \mathrm{~s}}\right)$
- $300-10=300 * \mathrm{e}^{-\mathrm{t} / 160}$
- $290 / 300=e^{-\mathrm{t} / 160}$
- $\ln (290 / 300)=\ln \left(\mathrm{e}^{-\mathrm{t} / 160}\right)$
- $\operatorname{In}(290 / 300)=-t / 160$
- $t=-160 \ln (290 / 300)$
- $\mathrm{t}=5.42 \mathrm{~s}$

RC Time Constants

- General form:
- $\mathrm{V}_{(\mathrm{t})}=\mathrm{V}_{(00)}+\left[\mathrm{V}_{(0)}-\mathrm{V}_{(00)}\right] \mathrm{e}^{-\mathrm{t} / \mathrm{RC}}$
- Discharge from Vcc:
- $\mathrm{V}_{(\mathrm{t})}=\mathrm{Vcce}^{-\mathrm{t} / \mathrm{RC}}$
- Charge from GND:
- $V_{(t)}=\operatorname{Vcc}\left(1-e^{-t / R C}\right)$
- Short cut:
- 99% of final charge or discharge in 5RC!

> University of Utah
> Department of Computer Science

34

Energy Stored in a Capacitor

- Work must be done to separate charge
- This energy is stored in the system and can be recovered by allowing the charge to come together again
- I.e. a charged capacitor has potential energy equal to the work required to charge it
- Suppose at time t a charge of $q(t)$ has been transferred from one plate to the other
- The potential difference $\mathrm{V}(\mathrm{t})$ at this point is $\mathrm{Q}(\mathrm{t}) / \mathrm{C}$
- If an extra increment of charge dq is transferred, the extra work is $\mathrm{dw}=\mathrm{V}$ dq $=(\mathrm{q} / \mathrm{c}) \mathrm{dq}$
- So, the total work to move all the charge is $w=\int d w=\int_{0}^{q}(q / c) d q=1 / 2 q^{2} / c$
- Since $q=c v, w=(1 / 2) \mathrm{cv}^{2}$

Whew! Electronics Summary...

- Voltage is a measure of electrical potential energy
- Current is moving charge caused by voltage
- Resistance reduces current flow
- Ohm's Law: V = I R
- Power is work over time
- $\mathrm{P}=\mathrm{VI}=\mathrm{I}^{2} \mathrm{R}$
- Capacitors store charge
- It takes time to charge/discharge a capacitor
- Time to charge/discharge is related exponentially to RC
- It takes energy to charge a capacitor
- Energy stored in a capacitor is (1/2) C V ${ }^{2}$

Electrical Model of a CMOS Transistor

Switch Level Model

Switch is closed if Gate voltage is high

Switch is open if Gate voltage is low
$\mathrm{R}_{\text {on }}=$ Some resistance in FET itself
$\mathrm{C}_{\mathrm{G}}=$ Capacitance of the gate

How Does All This Relate To VLSI?

- Recall the voltage division example:
- Consider what we could do if we had a device that we could switch from high resistance to low resistance
- We could use it to force A high or low depending on the relative resistance of the elements
- This is a transistor

- Specifically a CMOS FET
- Complementary M etal-Oxide Semiconductor Field Effect Transistor
- If voltage on Gate is high, then there
is a low-resistance between Source and Drain, otherwise it's a very high-resistance

University of Utah
Department of Computer Science
38

Two Types of CMOS Transistors

- N-type transistor
- High voltage on Gate connects Source to Drain
- Passes 0 well, passes 1 poorly

- P-type transistor
- Low voltage on Gate connects Source to Drain
- Passes 1 well, passes 0 poorly

CMOS Inverter

- Consider this connection of transistors
- If input is at a high voltage, output is low
- If input is at a low voltage, output is high
- By changing the resistances, it becomes one of two different voltage dividers
- It's a voltage inverter!

(J) Department of Computer Science

CMOS NAND Gate

Z

University of Utah
43

3

Timing Issues in CMOS

- Recall that it takes time to charge capacitors
- Recall that the gate of a transistor looks like a capacitor
- Wires have resistance and capacitance also!

U $\begin{aligned} & \text { University of Utah } \\ & \text { Department of Computer Science }\end{aligned}$

CMOS NOR Gate

Department of Computer Science

CMOS Power Consumption

- Power is consumed in CMOS by charging and discharging capacitors
- Note that there no static power dissipation in CMOS
- There's never a DC path to ground
- Good news:
- You're not consuming power unless you're switching
- Bad news:
- Switching activity is caused by clock, which is going faster and faster
- If the first-order power effect is capacitor charging/discharging, and the clock causes this:

$$
P=(1 / 2) C V^{2} f
$$

U) University of Utah

45

Conclusions

- That's about all I have the stamina for
- I'Il be a little surprised if we even make it through all the slides to the end!
- A little knowledge of basic electronics can explain a lot about computer hardware
- A little more knowledge about VLSI could explain even more!
- But that's a subject for another lecture!

Is That All There is to VLSI?

- We've got NAND, NOR, and INV gates
- With those we should be able to build anything

We've also got some idea of why things can't go infinitely fast

- We've got to keep charging and discharging those darn capacitors!
- We've got some idea of where and why power is consumed
- We've got to keep charging and discharging those darn capacitors!
- And a hint why power supply voltages are getting lower
- $P=(1 / 2) C V^{2} f$, Which one would you optimize first?

[^2]
[^0]: U) University of Utah

 Department of Computer Science
 2

[^1]: University of Utah
 Department of Computer Science

[^2]: UJ University of Utah 46

