
Context-Bounded Model Checking of
Concurrent Software

Shaz Qadeer and Jakob Rehof

Microsoft Research
{qadeer, rehof}@microsoft.com

Abstract. The interaction among concurrently executing threads of a
program results in insidious programming errors that are difficult to
reproduce and fix. Unfortunately, the problem of verifying a concurrent
boolean program is undecidable [24]. In this paper, we prove that the
problem is decidable, even in the presence of unbounded parallelism, if
the analysis is restricted to executions in which the number of context
switches is bounded by an arbitrary constant. Restricting the analysis
to executions with a bounded number of context switches is unsound.
However, the analysis can still discover intricate bugs and is sound up
to the bound since within each context, a thread is fully explored for
unbounded stack depth. We present an analysis of a real concurrent
system by the zing model checker which demonstrates that the ability
to model check with arbitrary but fixed context bound in the presence
of unbounded parallelism is valuable in practice. Implementing context-
bounded model checking in zing is left for future work.

1 Introduction

The design of concurrent programs is difficult due to interaction between con-
currently executing threads, leading to programming errors that are difficult to
reproduce and fix. Therefore, analysis techniques that can automatically detect
errors in concurrent programs can be invaluable. In this paper, we present a
novel interprocedural static analysis based on model checking [8, 23] for finding
subtle safety errors in concurrent programs with unbounded parallelism.

Algorithms exist for checking assertions in a single-threaded boolean program
with procedures (and consequently an unbounded stack) [28, 25] and form the
basis of a number of efficient static analysis tools [4, 10] for sequential programs.
But the same problem is undecidable for multi-threaded programs [24]. As a
result, most previous analyses for concurrent programs have suffered from two
limitations. Some restrict the synchronization model, which makes the analysis
inapplicable to most common concurrent software applications. Other analyses
are imprecise either because they are flow-insensitive or because they use de-
cidable but coarse abstractions. This limitation makes it extremely difficult to
report errors accurately to programmers. As a result, these analyses have seen
limited use in checking tools for concurrent software. We present a more detailed
discussion of related work in Section 6.

N. Halbwachs and L. Zuck (Eds.): TACAS 2005, LNCS 3440, pp. 93–107, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

94 S. Qadeer and J. Rehof

In this paper, we take a different approach and focus on the following decision
problem:

Given a multithreaded boolean program P and a positive integer k, does
P go wrong by failing an assertion via an execution with at most k
contexts?

A context is an uninterrupted sequence of actions by a single thread. Thus, in an
execution with k contexts execution switches from one thread to another k − 1
times. We prove that this problem is decidable and present an algorithm that is
polynomial in the size of P and exponential in the parameter k.

Our technique, although unsound in general, is both sound and precise for
context-bounded executions of concurrent programs. We believe that it can catch
nontrivial safety errors caused by concurrency. First, even though our analysis
bounds the number of contexts in an execution, it fully explores a thread within
each context. Due to recursion within a thread, the number of stack configura-
tions explored within a context is potentially unbounded. Our analysis considers
each such reachable configuration as a potential point for a context switch and
schedules all other threads from it. Second, our experience analyzing low-level
systems code with the KISS checker [22] indicates that a variety of subtle bugs
caused by concurrency are manifested by executions with few contexts.

Our work is inspired by the KISS project but significantly extends its scope by
employing entirely different techniques. The KISS checker simulates executions of
a concurrent program P with the executions of a sequential program P ′ derived
from P . The various threads in P are scheduled using the single stack of P ′. The
use of a single stack fundamentally limits the number of context switches that
can be explored. KISS is unable to explore more than two context switches for a
concurrent program with two threads and cannot handle an unbounded number
of threads. This paper presents a general algorithm for exploring an arbitrary
number of context switches, even in the presence of unbounded parallelism, in a
way that is sound and precise up to the bound.

The main difficulty with context-bounded model checking is that in each
thread context, an unbounded number of stack configurations could be reach-
able due to recursion. Since a context switch may happen at any time, a precise
analysis must schedule other threads from each of these configurations. To guar-
antee termination, a systematic state exploration algorithm must use a finite
representation of an unbounded set of stack configurations. Our previous algo-
rithm based on transactions and procedure summaries [20] is not guaranteed to
terminate for context-bounded model checking because it keeps an explicit rep-
resentation of the stack of each thread. Summarization [20] may still be useful
as an optimization technique that is complementary to the techniques presented
in this paper.

We achieve a finite representation of an unbounded set of stack configura-
tions by appealing to the result that the reachable configurations (sometimes
called the pushdown store language) of a pushdown system is regular [3, 12, 27]
and consequently representable by a finite automaton. We use this fact to design
an algorithm for context-bounded model checking for a concurrent boolean pro-

Context-Bounded Model Checking of Concurrent Software 95

gram with a finite but arbitrary number of threads. We then consider the main
problem of this paper, context-bounded model checking of dynamic concurrent
boolean programs. A dynamic concurrent boolean program is allowed to use two
new operators. The fork operator creates a new thread and returns an integer
identifying the new thread. The join operator blocks until the thread identified
by an argument to the operation has terminated. We assume that fork , join,
and copy from one variable to another are the only operations on thread iden-
tifiers. We show that for any context bound k and for any dynamic concurrent
boolean program P , we can construct a concurrent boolean program Q with k+1
threads such that it suffices to check Q rather than P . Since concurrent software
invariably uses dynamic thread creation, this result significantly increases the
applicability of context-bounded model checking.

Proofs of the theorems in this paper can be found in our report [21].

2 Example

In this section, we present an example of a real concurrency error that requires
four context switches to manifest itself. The error was found by model checking a
large transaction management system written in C# with a bounded number of
threads, using the model checker zing [2] after compiling 10,000 lines of C# code
into zing. Since the error cannot manifest itself with fewer than four context
switches, it could not be discovered by the techniques of KISS [22] which are
inherently limited to two context switches.

The code shown in Figure 1 contains excerpts from two methods of a
hashtable class that is part of the transaction manager implementing the two-

void Remove(LtmInternalTransaction tx)
{

if(!tx.inTimerList)
{

// This transaction is not in the list.
return;

}
POINT 1:

lock(this) // lock bucket of hash table
{

if(tx.nextLink != null)
{

POINT 3:
tx.nextLink.prevLink = tx.prevLink;

}
if(tx.prevLink != null)
{

// ERROR: null pointer dereference
tx.prevLink.nextLink = tx.nextLink;

}
...

}

bool ProcessList()
{

LtmInternalTransaction tx;
long expirationTime = DateTime.UtcNow.Ticks;

do
{

tx = null;
lock(this) // lock bucket of hash table
{
... // remove transaction from timeout list
... // tx is made non-null here
}
if(tx != null)
{

tx.prevLink = null;
POINT 2:

tx.nextLink = null;
POINT 4:

...
}

} while(tx != null);
}

Fig. 1. Example

96 S. Qadeer and J. Rehof

phase commit protocol. The methods Remove and ProcessList are found within
a class that implements a bucket of the hashtable. When a client thread is reg-
istered with the transaction manager, a reference to the thread is stored in the
hashtable. The error arises when a thread Tc has comitted a transaction tx and
executes in the Remove method in order to remove the finished transaction from
the appropriate bucket of the hashtable. At the same time, a timer thread Tt is
executing in the ProcessList method to determine if any of the transactions
referenced in the bucket of the hashtable has timed out. Thread Tc gets inter-
rupted at POINT 1 in the Remove method, just after it has tested that tx has
not already been removed by the timer and just before it tries to acquire a lock
on the bucket in order to remove the transaction. Thread Tt acquires the lock
on the same bucket inside ProcessList, and it decides that transaction tx has
timed out. It goes on to remove tx by setting the bucket links in tx to null (the
bucket is a doubly-linked list). Just before setting tx.nextLink to null, another
context switch occurs, at POINT 2. Thread Tc resumes execution at POINT 1 and
learns that tx.nextLink is non-null. It gets interrupted by thread Tt at POINT
3 which resumes execution at POINT 2 and sets tx.nextLink to null. It gets
interrupted by thread Tc at POINT 4. Thread Tc resumes execution at POINT
3 and dereferences the null pointer tx.nextLink. The error can be fixed by
extending the scope of the lock statement in the ProcessList method down to
POINT 4.

We have been able to discover several other bugs in the system of the same
nature. However, we have not been able to check the system under scenarios
in which asynchronous calls and dynamically created timers may create new
threads, because zing may not terminate on programs with unbounded paral-
lelism. The results of this paper show that we can achieve a finite abstraction
by bounding the number of contexts to an arbitrary constant, even in the pres-
ence of dynamic thread creation. It is an important problem for future work to
integrate our algorithm in zing, thereby enabling us to find deep errors such as
the one shown above, even in the presence of unbounded parallelism.

3 Pushdown Systems

Domains

γ ∈ Γ Stack alphabet
w ∈ Γ ∗ Stack
g ∈ G Global state
∆ ⊆ (G × Γ) × (G × Γ ∗) Transition relation
c ∈ G × Γ ∗ Configuration

−→∆ ⊆ (G × Γ ∗) × (G × Γ ∗) Pds transition

Let G and Γ be arbitrary fixed finite sets. We refer to G as the set of global
states, and we refer to Γ as the stack alphabet. We let g range over elements of
G, and we let γ range over elements of Γ . A stack w is an element of Γ ∗, the

Context-Bounded Model Checking of Concurrent Software 97

set of finite strings over Γ , including the empty string ε. A configuration c is an
element of G×Γ ∗; we write configurations as c = 〈g, w〉 with g ∈ G and w ∈ Γ ∗.

A transition relation ∆ over G and Γ is a finite subset of (G×Γ)× (G×Γ ∗).
A pushdown system P = (G,Γ,∆, gin , win) is given by G, Γ , a transition relation
∆ over G and Γ , and an initial configuration 〈gin , win〉. The transition relation
∆ determines a transition system on configurations, denoted −→∆, as follows:
〈g, γw′〉 −→∆ 〈g′, ww′〉 for all w′ ∈ Γ ∗, if and only if (〈g, γ〉, 〈g′, w〉) ∈ ∆. We
write −→∗

∆ to denote the reflexive, transitive closure of −→∆. Notice that, by
the signature of ∆, there are no transitions −→∆ from a configuration whose
stack is empty. Hence, a pushdown system as defined here halts when the stack
becomes empty.

A configuration c of a pushdown system is called reachable if and only if
cin −→∗

∆ c, where cin is the initial configuration of the pushdown system. In
general, there are inifinitely many reachable configurations of a pushdown sys-
tem, because the stack is unbounded.

The reachability problem for pushdown systems is decidable because the
set of reachable configurations (sometimes called the pushdown store language)
of a pushdown system is regular [3, 12]. A regular pushdown store automaton
A = (Q,Γ, δ, I, F) is a finite automaton with states Q, alphabet Γ , transition
relation δ ⊆ Q × Γ × Q, initial states I and final states F . The automaton may
contain ε-transitions. The sets Q and I satisfy G ⊆ Q and I ⊆ G. Such an
automaton defines a language of pushdown configurations by the rule [27]:

- A accepts a pushdown configuration 〈g, w〉, if and only if A accepts the word
w when started in the state g.

A subset S ⊆ G × Γ ∗ of pushdown configurations is called regular, if and only if
there exists a regular pushdown store automaton A such that S = L(A).

For a pushdown system P = (G,Γ,∆, gin , win) and a set of configurations
S ⊆ G × Γ ∗, let Post∗∆(S) be the set of configurations reachable from S, i.e.,
Post∗∆(S) = {c | ∃c′ ∈ S. c′ −→∗

∆ c}. The following theorem [27] shows that
the set of reachable configurations from a regular set of configurations is again
regular. For details on the construction leading to this result we refer the reader
to [27].

Theorem 1 ([27]). Let P = (G,Γ,∆, gin , win) be a pushdown system, and
let A be a regular pushdown store automaton. There exists a regular pushdown
store automaton A′ such that Post∗∆(L(A)) = L(A′). The automaton A′ can be
constructed from P and A in time polynomial in the size of P and A.

4 Concurrent Pushdown Systems

A concurrent pushdown system is a tuple P = (G,Γ,∆0, . . . ,∆N , gin , win) with
transition relations ∆0, . . . ,∆N over G and Γ , N ≥ 0, an initial state gin and
an initial stack win . A configuration of a concurrent pushdown system is a tuple
c = 〈g, w0, . . . , wN 〉 with g ∈ G and wi ∈ Γ ∗, that is, a global state g followed by

98 S. Qadeer and J. Rehof

a sequence of stacks wi, one for each constituent transition relation. The initial
configuration of P is 〈gin , win , . . . , win〉 where all N + 1 stacks are initialized to
win . The transition system of P , denoted −→P , rewrites configurations of P by
rewriting the global state together with any one of the stacks, according to the
transition relations of the constituent pushdown systems. Formally, we define
〈g, w0, . . . , wi, . . . wN 〉 −→i 〈g′, w0, . . . , w

′
i, . . . wN 〉 if and only if 〈g, wi〉 −→∆i

〈g′, w′
i〉. We define the transition relation −→P on configurations of P by the

union of the −→i, i.e., −→P =
⋃N

i=0 −→i.

4.1 Bounded Reachability

A configuration c is called reachable, if and only if cin −→∗
P c, where cin is the

initial configuration. The reachability problem for concurrent pushdown systems
is undecidable [24]. However, as we will show below, bounding the number of
context switches allowed in a transition leads to a decidable restriction of the
reachability problem.

For a positive natural number k, we define the k-bounded transition relation
k−→ on configurations c inductively, as follows:

c
1−→ c′ iff there exists i such that c −→∗

i c′

c
k+1−→ c′ iff there exist c′′ and i such that c

k−→ c′′ and c′′ −→∗
i c′

Thus, a k-bounded transition contains at most k−1 “context switches” in which
a new relation −→i can be chosen. Notice that the full transitive closure of each
transition relation −→i is applied within each context. We say that a config-
uration c is k-reachable if cin

k−→ c. The k-bounded reachability problem for a
concurrent pushdown system P is: Given configurations c0 and c1, is it the case
that c0

k−→ c1?
For fixed k, the lengths and state spaces of k-bounded transition sequences

may be unbounded, since each constituent transition relation −→∗
i may generate

infinitely many transitions containing infinitely many distinct configurations.
Therefore, decidability of k-bounded reachability requires an argument. In order
to formulate this argument, we will define a transition relation over aggregate
configurations of the form 〈〈g,R0, . . . , RN 〉〉, where Ri are regular subsets of Γ ∗.

For a global state g ∈ G and a regular subset R ⊆ Γ ∗, we let 〈〈g,R〉〉 denote
the set of configurations {〈g, w〉 | w ∈ R}. Notice that 〈〈g, ∅〉〉 = ∅. For G =
{g1, . . . , gm}, any regular set of configurations S ⊆ G × Γ ∗ can evidently be
written as a disjoint union: (∗) S =

⊎m
i=1〈〈gi, Ri〉〉 for some regular sets of stacks

Ri ⊆ Γ ∗, i = 1 . . . m (if there is no configuration with global state gj in S, then we
take Rj = ∅.) By Theorem 1, the set Post∗∆(S) for regular S can also be written
in the form (∗), since it is a regular set. We abuse set membership notation to
denote that 〈〈g′, R′〉〉 is a component of the set Post∗∆(S) as represented in the
form (∗), writing 〈〈g′, R′〉〉 ∈ Post∗∆(S) if and only if Post∗∆(S) =

⊎m
i=1〈〈gi, Ri〉〉

with 〈〈g′, R′〉〉 = 〈〈gj , Rj〉〉 for some j ∈ {1, . . . , m}.
Given a concurrent pushdown system P = (G,Γ,∆0, . . . ,∆N , gin , win),

we define relations =⇒i on aggregate configurations, for i = 0 . . . N , by

Context-Bounded Model Checking of Concurrent Software 99

Input: Concurrent pushdown system (G, Γ, ∆0, . . . , ∆N , gin , win) and bound k

0. let Ain = (Q, Γ, δ, {gin}, F) such that L(Ain) = {〈gin , win〉};

1. WL := {(〈g, Ain , . . . , Ain〉, 0)}; // There are N copies of Ain

2. Reach := {〈g, Ain , . . . , Ain〉};

3. while (WL not empty)
4. let (〈g, A0, . . . , AN 〉, i) = remove(WL) in
5. if (i < k)
6. forall (j = 0 . . . N)
7. let A′

j = Post∗
∆j

(Aj) in
8. forall (g′ ∈ G(A′

j)) {
9. let x = 〈g′,rename(A0, g

′), . . . ,anonymize(A′
j , g

′), . . . ,
rename(AN , g′)〉 in

10. add(WL, (x, i + 1));
11. Reach := Reach ∪ {x};

}
Output : Reach

Fig. 2. Algorithm

〈〈g,R0, . . . , Ri, . . . , RN 〉〉 =⇒i 〈〈g′, R0, . . . , R
′
i, . . . , RN 〉〉 if and only if 〈〈g′, R′

i〉〉 ∈
Post∗∆i

(〈〈g,Ri〉〉). Finally, define the transition relation =⇒ on aggregate config-
urations by the union of the =⇒i, i.e., =⇒ = (

⋃N
i=0 =⇒i). For aggregate con-

figurations a1 and a2, we write a1
k=⇒ a2, if and only if there exists a transition

sequence using =⇒ starting at a1 and ending at a2 with at most k transitions.
Notice that each relation =⇒i contains the full transitive closure computed by
the Post∗∆i

operator.
The following theorem reduces k-bounded reachability in a concurrent push-

down system to repeated applications of the sequential Post∗ operator.

Theorem 2. Let P = (G,Γ,∆0, . . . ,∆N , gin , win) be a concurrent pushdown
system. Then, for any k, we have 〈g, w0, . . . , wN 〉 k−→ 〈g′, w′

0, . . . , w
′
N 〉 if and

only if 〈〈g, {w0}, . . . , {wN}〉〉 k=⇒ 〈〈g′, R′
0, . . . , R

′
N 〉〉 for some R′

0, . . . , R
′
N such

that w′
i ∈ R′

i for all i ∈ {0, . . . , N}.

4.2 Algorithm

Theorem 1 and Theorem 2 together give rise to an algorithm for solving the
context-bounded reachability problem for concurrent pushdown systems. The
algorithm is shown in Figure 2.

The algorithm processes a worklist WL containing a set of items of the
form (〈g,A0, . . . , AN 〉, i), where g ∈ G is a global state, the Aj are push-
down store automata, and i is an index in the range {0, . . . , k − 1}. The op-
eration remove(WL) removes an item from the worklist and returns the item;

100 S. Qadeer and J. Rehof

add(WL, item) adds the item to the worklist. The initial pushdown store au-
tomaton Ain = (Q,Γ, δ, {gin}, F) has initial state gin and accepts exactly the
initial configuration 〈gin , win〉. In the line numbered 7 of the algorithm in Fig-
ure 2, the pushdown store automaton A′

j = Post∗∆j
(Aj) is understood to be

constructed according to Theorem 1 so that L(A′
j) = Post∗∆j

(L(Aj)). In line
8, G(A′

j) = {g′ | ∃w.〈g′, w〉 ∈ L(A′
j)}. All pushdown store automata Aj con-

structed by the algorithm have at most one start state g ∈ G. When applied
to such an automaton rename(A, g′) returns the result of renaming the start
state if any of A to g′. The operation anonymize(A, g′) is obtained from A by
renaming all states of A except g′ to fresh states that are not in G.

The algorithm in Figure 2 works by repeatedly applying the Post∗ operator to
regular pushdown store automata that represent components in aggregate con-
figurations. The operations rename and anonymize are necessary for applying
Theorem 1 repeatedly, since the construction of pushdown store automata [27]
uses elements of G as states in these automata. In order to avoid confusion be-
tween such states across iterated applications of Theorem 1, renaming on states
from G is necessary, and hence successive pushdown store automata constructed
by the algorithm in Figure 2 may grow for increasing values of the bound k. This
factunderlies the undecidability of the unbounded reachability problem.

Theorem 3. Let P = (G,Γ,∆0, . . . ,∆N , gin , win) be a concurrent pushdown
system. For any k, the algorithm in Figure 2 terminates on input P and k,
and 〈〈gin , {win}, . . . , {win}〉〉 k=⇒ 〈〈g′, R′

0, . . . , R
′
N 〉〉 if and only if the algorithm

outputs Reach with 〈g′, A′
0, . . . , A

′
N 〉 ∈ Reach such that L(A′

i) = 〈〈g′, R′
i〉〉 for all

i ∈ {0, . . . , N}.

Theorem 2 together with Theorem 3 imply that the algorithm in Figure 2 solves
the context-bounded model checking problem, since Theorem 2 shows that ag-
gregate configurations correctly represent reachability in the relation k−→.

For a concurrent pushdown system P = (G,Γ,∆0, . . . ,∆N , gin , win) we mea-
sure the size of P by |P | = max(|G|, |∆0|, |∆1|, . . . , |∆N |, |Γ |). For a push-
down store automaton A = (Q,Γ, δ, I, F) we measure the size of A by |A| =
max(|Q|, |δ|, |Γ |).

Theorem 4. For a concurrent pushdown system P =(G,Γ,∆0, . . . ,∆N , gin , win)
and a bound k, the algorithm in Figure 2 decides the k-bounded reachability
problem in time O(k3(N |G|)k|P |5).

5 Dynamic Concurrent Pushdown Systems

In this section, we define a dynamic concurrent pushdown system with operations
for forking and joining on a thread. To allow for dynamic fork-join parallelism,
we allow program variables in which thread identifiers can be stored. Thread

Context-Bounded Model Checking of Concurrent Software 101

identifiers are members of the set Tid = {0, 1, 2, . . .}. The identifier of a forked
thread may be stored by the parent thread in such a variable. Later, the parent
thread may perform a join on the thread identifier contained in that variable.

Formally, a dynamic concurrent pushdown system is a tuple

(GBV ,GTV ,LBV ,LTV ,∆,∆F ,∆J , gin , γin).

The various components of this tuple are described below.

– GBV is the set of global variables containing boolean values and GTV is the
set of global variables containing thread identifiers. Let G be the (infinite)
set of all valuations to the global variables.

– LBV is the set of local variables containing boolean values and LTV is the
set of local variables containing thread identifiers. Let Γ be the (infinite) set
of all valuations to the local variables.

– ∆ ⊆ (G × Γ) × (G × Γ ∗) is the transition relation describing a single step of
any thread.

– ∆F ⊆ Tid × (G × Γ) × (G × Γ ∗) is the fork transition relation. If
(t, 〈g, γ〉, 〈g′, w〉) ∈ ∆F , then in the global store g a thread with γ at the
top of its stack may fork a thread with identifier t modifying the global store
to g′ and replacing γ at the top of the stack with w.

– ∆J ⊆ LTV × (G × Γ) × (G × Γ ∗) is the join transition relation. If
(x, 〈g, γ〉, 〈g′, w〉) ∈ ∆J , then in the global store g a thread with γ at the top
of its stack blocks until the thread with identifier γ(x) finishes execution. On
getting unblocked, this thread modifies the global store to g′ and replaces γ
at the top of the stack with w.

– gin is a fixed valuation to the set of global variables such that gin(x) = 0 for
all x ∈ GTV .

– γin is a fixed valuation to the set of local variables such that γin(x) = 0 for
all x ∈ LTV .

Domains

ss ∈ Stacks = Tid → (Γ ∪ {$})∗

c ∈ C = G × Tid × Stacks Configuration
� ⊆ C × C

Every dynamic concurrent pushdown system is equipped with a special sym-
bol $ �∈ Γ to mark the bottom of the stack of each thread. A configuration of
the system is a triple 〈g, n, ss〉, where g is the global state, n is the identifier
of the last thread to be forked, and ss(t) is the stack for thread t ∈ Tid . The
execution of the dynamic concurrent pushdown system starts in the configura-
tion 〈gin , 0, ss0〉, where ss0(t) = γin$ for all t ∈ Tid . The rules shown below
define the transitions that may be performed by thread t from a configuration
〈g, n, ss〉.

102 S. Qadeer and J. Rehof

Operational Semantics
(seq)

t ≤ n ss(t) = γw′ (〈g, γ〉, 〈g′, w〉) ∈ ∆

〈g, n, ss〉 �t 〈g′, n, ss[t := ww′]〉

(seqend)

t ≤ n ss(t) = $
〈g, n, ss〉 �t 〈g, n, ss[t := ε]〉

(fork)
t ≤ n ss(t) = γw′ (n + 1, 〈g, γ〉, 〈g′, w〉) ∈ ∆F

〈g, n, ss〉 �t 〈g′, n + 1, ss[t := ww′]〉

(join)
t ≤ n ss(t) = γw′ x ∈ LTV (x, 〈g, γ〉, 〈g′, w〉) ∈ ∆J ss(γ(x)) = ε

〈g, n, ss〉 �t 〈g′, n, ss[t := ww′]〉

All rules are guarded by the condition t ≤ n indicating that thread t must
have already been forked. Thus, only thread 0 can make a move from the initial
configuration 〈gin , 0, ss0〉. The rule (seq) allows thread t to perform a transition
according to the transition relation ∆. The rule (seqend) is enabled if the top
(and the only) symbol on the stack of thread t is $. The transition pops the
$ symbol from the stack of thread t without changing the global state so that
thread t does not perform any more transitions. The rule (fork) creates a new
thread with idenfier n + 1. The rule (join) is enabled if thread γ(x), where γ is
the symbol at the top of the stack of thread t, has terminated. The termination
of a thread is indicated by an empty stack.

5.1 Assumptions

In realistic concurrent programs with fork-join parallelism, the usage of thread
identifiers (and consequently variables containing thread identifiers) is restricted.
A thread identifier is created by a fork operation and stored in a variable. Then,
it may be copied from one variable to another. Finally, a join operation may look
at a thread identifier contained in such a variable. In a nutshell, no control flow
other than that implicit in a join operation depends on thread identifiers. We
exploit the restricted use of thread identifiers in concurrent systems to devise an
algorithm for solving the k-bounded reachability problem.

To formalize the assumptions about the restricted use of thread identifiers,
we need the notion of a renaming function. A renaming function is a partial
function from Tid to Tid . When a renaming function f is applied to a global
store g, it returns another store in which the value of each variable of type Tid is
transformed by an application of f . If f is undefined on the value of some global
variable in g, it is also undefined on g. Similarly, a renaming function can be
applied to a local store as well. A renaming function is extended to a sequence
of local stores by pointwise application to each element of the sequence.

Context-Bounded Model Checking of Concurrent Software 103

〈g, γ〉 ∆ ��

f

��

〈g′, w〉

f

��
〈f(g), f(γ)〉 ∆ �� 〈fg′, fw〉

Fig. 3. Pictorial view of assumption about ∆

Figure 3 presents a pictorial view of assumption about ∆. This view shows
four arrows, two horizontal labeled with the transition relation ∆ and two ver-
tical labeled with the renaming function f . The assumption on ∆ expresses two
requirement on tuples (g, γ) for which the left vertical arrow holds: (1) If the top
horizontal arrow holds in addition, then the remaining two arrows hold. (2) If
the bottom horizontal arrow holds in addition, then the remaining two arrows
hold. Assumptions about ∆F and ∆J are similar in spirit to ∆. For lack of space,
we leave the formal statements of these assumptions in our technical report [21].

5.2 Reduction to Concurrent Pushdown Systems

In this section, we show how to reduce the problem of k-bounded reachability on
a dynamic concurrent pushdown system to a concurrent pushdown system with
k + 1 threads. Given a dynamic concurrent pushdown system P and a positive
integer k, our method produces a concurrent pushdown system Pk containing
k +1 threads with identifiers in {0, 1, . . . , k} such that it suffices to verify the k-
bounded executions of Pk. The latter problem can be solved using the algorithm
in Figure 2.

The key insight behind our approach is that in a k-bounded execution, at
most k different threads may perform a transition. We would like to simulate
transitions of these k threads with transitions of threads in Pk with identifiers in
{0, . . . , k−1}. The last thread in Pk with identifier k never performs a transition;
it exists only to simulate the presence of the remaining threads in P .

Let Tidk = {0, 1, . . . , k} be the set of the thread identifiers bounded by k.
Let AbsGk and AbsΓ k be the set of all valuations to global and local variables
respectively, where the variables containing thread identifiers only take values
from Tidk. Note that both AbsGk and AbsΓ k are finite sets.

Given a dynamic concurrent pushdown system

P = (GBV ,GTV ,LBV ,LTV ,∆,∆F ,∆J , gin , γin)

and a positive integer k, we define a concurrent pushdown system

Pk = (AbsGk × Tidk × P(Tidk),AbsΓ k ∪ {$},∆0, . . . ,∆k, (gin , 0, ∅), γin$).

The concurrent pushdown system Pk has k + 1 threads. A global state of Pk is
3-tuple (g, n, α), where g is a valuation to the global variables, n is the largest
thread identifier whose corresponding thread is allowed to make a transition, and

104 S. Qadeer and J. Rehof

α is the set of thread identifiers whose corresponding threads have terminated.
The initial global state is (gin , 0, ∅), which indicates that initially only thread 0
can perform a transition and no thread has finished execution. The rules below
define the transitions in the transition relation ∆t of thread t.

Definition of ∆t

(absseq)

t ≤ n (〈g, γ〉, 〈g′, w〉) ∈ ∆

(〈(g, n, α), γ〉 , 〈(g′, n, α), w〉) ∈ ∆t

(absseqend)

t ≤ n

(〈(g, n, α), $〉 , 〈(g, n, α ∪ {t}), ε〉) ∈ ∆t

(absfork)

t ≤ n n + 1 < k (n + 1, 〈g, γ〉, 〈g′, w〉) ∈ ∆F

(〈(g, n, α), γ〉 , 〈(g′, n + 1, α), w〉) ∈ ∆t

(absforknondet)

t ≤ n (k, 〈g, γ〉, 〈g′, w〉) ∈ ∆F

(〈(g, n, α), γ〉 , 〈(g′, n, α), w〉) ∈ ∆t

(absjoin)
t ≤ n x ∈ LTV (x, 〈g, γ〉, 〈g′, w〉) ∈ ∆J γ(x) ∈ α

(〈(g, n, α), γ〉 , 〈(g′, n, α), w〉) ∈ ∆t

Note that all rules above are guarded by the condition t ≤ n to indicate that
no transition in thread t is enabled in 〈(g, n, α), γ〉 if t > n. The rule (absseq)
adds transitions in ∆ to ∆t. The rule (absseqend) adds thread t to the set of
terminated threads. The rules (absfork) and (absforknondet) handle thread
creation in P and are the most crucial part of our transformation. The rule
(absfork) handles the case when the new thread being forked participates in a
k-bounded execution. This rule increments the counter n allowing thread n+1 to
begin simulating the newly forked thread. The rule (absforknondet) handles
the case when the new thread being forked does not pariticipate in a k-bounded
execution. This rule leaves the counter n unchanged thus conserving the precious
resource of thread identifiers in Pk. Both these rules add the transitions of the
forking thread in ∆F to ∆. The rule (absjoin) handles the join operator by using
the fact that the identifiers of all previously terminated threads are present in
α. Again, this rule adds the transitions of the joining thread in ∆J to ∆.

We can now state the correctness theorems for our transformation. To sim-
plify the notation required to state these theorems, we write a configuration
〈(g′, n′, α), w0, w1, . . . , wk〉 of Pk as 〈(g′, n′, α), ss ′〉, where ss ′ is a map from
Tidk to (AbsΓ k ∪ $)∗.

First, our transformation is sound which means that by verifying Pk, we do
not miss erroneous k-bounded executions of P .

Theorem 5 (Soundness). Let P be a dynamic concurrent pushdown system
and k be a positive integer. Let 〈g, n, ss〉 be a k-reachable configuration of P .
Then there is a total renaming function f : Tid → Tidk and a k-reachable
configuration 〈(g′, n′, α), ss ′〉 of the concurrent pushdown system Pk such that
g′ = f(g) and ss ′(f(j)) = f(ss(j)) for all j ∈ Tid.

Context-Bounded Model Checking of Concurrent Software 105

Second, our transformation is precise which means that every erroneous k-
bounded execution of Pk corresponds to an erroneous execution of P .

Theorem 6 (Completeness). Let P be a dynamic concurrent pushdown sys-
tem and k be a positive integer. Let 〈(g′, n′, α), ss ′〉 be a k-reachable configuration
of the concurrent pushdown system Pk. Then there is a total renaming func-
tion f : Tid → Tidk and a k-reachable configuration 〈g, n, ss〉 of P such that
g′ = f(g) and ss ′(f(j)) = f(ss(j)) for all j ∈ Tid.

Thus, with Theorems 5 and 6, we have successfully reduced the problem of k-
bounded reachability on a dynamic concurrent pushdown system to a concurrent
pushdown system with k + 1 threads.

6 Related Work

We are not aware of any previous work that develops a theory of context-bounded
analysis of concurrent software that is sound and complete up to the bound. Our
techniques exploit results from model checking of sequential pushdown systems,
in particular, Schwoon’s generalization [27] of regular representation of sequential
pushdown store languages [3, 12]. We have discussed the relation to our previous
work on procedure summaries [20] and the KISS checker [22] in Section 1.

The notion of bounded-depth model checking, popular in hardware verifi-
cation, can also be used for software verification [7]. These techniques bound
the execution depth resulting in analysis of finite executions. In contrast, due
to unbounded exploration within a thread context, our work allows analysis of
unbounded execution sequences.

A number of model checkers have been developed for concurrent soft-
ware [17, 14, 29, 9, 26, 18, 30]. All of these checkers keep explicit representation of
the thread stacks, which might result in non-termination. Our analysis maintains
a symbolic representation of the thread stacks and is guaranteed to terminate.

A variety of automated compositional techniques for verifying concurrent
software have been developed [6, 16, 13, 15]. These techniques verify each process
separately in an automatically constructed abstraction of the environment. The
constructed abstraction is typically stackless and imprecise. As a result, these
techniques are sound but not complete.

The idea of abstracting an unbounded number of processes into a single
process has been used in verification of cache-coherence protocols [19] and com-
positional verification of software [15].

For restricted models of synchronization, assertion checking is decidable even
with both concurrency and procedure calls. Esparza and Podelski present an
algorithm for this restricted class of programs [11]. Alur and Grosu have studied
the interaction between concurrency and procedure calls in the context of refine-
ment between Statechart programs [1]. At each step of the refinement process,
their system allows either the use of nesting (the equivalent of procedures) or
parallelism, but not both. Also, recursively nested modes are not allowed. In
contrast, we place no restrictions on how parallelism interacts with procedure
calls, and allow recursive procedures.

106 S. Qadeer and J. Rehof

Bouajjani, Esparza, and Touili present an analysis that constructs abstrac-
tions of context-free languages [5]. The abstractions are chosen so that the empti-
ness of the intersection of the abstractions is decidable. Their analysis is sound
but incomplete due to overapproximation in the abstractions.

7 Conclusion

In this paper we give for the first time a theory of context-bounded model check-
ing for concurrent software that is sound up to the bound in the sense that it
explores each context to full depth. Our algorithm finds any error that can pos-
sibly manifest itself in an error trace with a number of context switches within
the bound, even in the presence of unbounded parallelism. It is an important
research problem for future work to integrate our algorithm into explicit state
model checking frameworks such as zing [2].

References

1. R. Alur and R. Grosu. Modular refinement of hierarchic reactive machines. In
POPL 00: Principles of Programming Languages, pages 390–402. ACM, 2000.

2. T. Andrews, S. Qadeer, S. K. Rajamani, J. Rehof, and Y. Xie. Zing: Exploiting
program structure for model checking concurrent software. In CONCUR 2004: Fif-
teenth International Conference on Concurrency Theory, London, U.K., September
2004, LNCS. Springer-Verlag, 2004. Invited paper.

3. J-M. Autebert, J. Berstel, and L. Boasson. Context-free languages and pushdown
automata. In Handbook of Formal Languages, vol. 1 (Eds.: G. Rozenberg and A.
Salomaa), pages 111 – 174. Springer-Verlag, 1997.

4. T. Ball and S. K. Rajamani. The SLAM project: Debugging system software via
static analysis. In POPL 02: Principles of Programming Languages, pages 1–3.
ACM, January 2002.

5. A. Bouajjani, J. Esparza, and T. Touili. A generic approach to the static analysis
of concurrent programs with procedures. In POPL 03: Principles of Programming
Languages, pages 62–73. ACM, 2003.

6. S. Chaki, E. M. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification of
software components in C. IEEE Transactions on Software Engineering, 30(6):388–
402, 2004.

7. E. M. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model checking using
satisfiability solving. Formal Methods in System Design, 19(1):7–34, 2001.

8. E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for branch-
ing time temporal logic. In Logic of Programs, LNCS 131, pages 52–71. Springer-
Verlag, 1981.

9. J. Corbett, M. Dwyer, John Hatcliff, Corina Pasareanu, Robby, S. Laubach, and
H. Zheng. Bandera : Extracting finite-state models from Java source code. In
ICSE 00: Software Engineering, 2000.

10. M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitive program verification in
polynomial time. In PLDI 02: Programming Language Design and Implementation,
pages 57–69. ACM, 2002.

Context-Bounded Model Checking of Concurrent Software 107

11. J. Esparza and A. Podelski. Efficient algorithms for pre* and post* on interpro-
cedural parallel flow graphs. In POPL 00: Principles of Programming Languages,
pages 1–11. ACM, 2000.

12. A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach to model
checking pushdown systems. Electronic Notes in Theoretical Computer Science, 9,
1997.

13. D. Giannakopoulou, C. S. Pasareanu, and H. Barringer. Assumption generation
for software component verification. In ASE 02: Automated Software Engineering,
pages 3–12, 2002.

14. P. Godefroid. Model checking for programming languages using verisoft. In POPL
97: Principles of Programming Languages, pages 174–186, 1997.

15. T. A. Henzinger, R. Jhala, and R. Majumdar. Race checking by context inference.
In PLDI 04: Programming Language Design and Implementation, pages 1–13, 2004.

16. T. A. Henzinger, R. Jhala, R. Majumdar, and S. Qadeer. Thread-modular ab-
straction refinement. In CAV 03: Computer-Aided Verification, pages 262–274,
2003.

17. G. Holzmann. The model checker SPIN. IEEE Transactions on Software Engi-
neering, 23(5):279–295, May 1997.

18. M. Musuvathi, D. Park, A. Chou, D. Engler, and D. L. Dill. CMC: A pragmatic
approach to model checking real code. In OSDI 02: Operating Systems Design and
Implementation, 2002.

19. F. Pong and M. Dubois. Verification techniques for cache coherence protocols.
ACM Computing Surveys, 29(1):82–126, 1997.

20. S. Qadeer, S. K. Rajamani, and J. Rehof. Summarizing procedures in concurrent
programs. In POPL 04: ACM Principles of Programming Languages, pages 245–
255. ACM, 2004.

21. S. Qadeer and J. Rehof. Context-bounded model checking of concurrent software.
Technical Report MSR-TR-2004-70, Microsoft Research, 2004.

22. S. Qadeer and D. Wu. KISS: Keep it simple and seqeuential. In PLDI 04: Pro-
gramming Language Design and Implementation, pages 14–24. ACM, 2004.

23. J. Queille and J. Sifakis. Specification and verification of concurrent systems in
CESAR. In M. Dezani-Ciancaglini and U. Montanari, editors, Fifth International
Symposium on Programming, Lecture Notes in Computer Science 137, pages 337–
351. Springer-Verlag, 1981.

24. G. Ramalingam. Context sensitive synchronization sensitive analysis is undecid-
able. ACM Trans. on Programming Languages and Systems, 22:416–430, 2000.

25. T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via
graph reachability. In POPL 95: Principles of Programming Languages, pages
49–61. ACM, 1995.

26. Robby, M. Dwyer, and J. Hatcliff. Bogor: An extensible and highly-modular model
checking framework. In FSE 03: Foundations of Software Engineering, pages 267–
276. ACM, 2003.

27. S. Schwoon. Model-Checking Pushdown Systems. PhD thesis, Lehrstuhl für Infor-
matik VII der Technischen Universität München, 2000.

28. M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis.
In Program Flow Analysis: Theory and Applications, pages 189–233. Prentice-Hall,
1981.

29. W. Visser, K. Havelund, G. Brat, and S. Park. Model checking programs. In ASE
00: Automated Software Engineering, pages 3–12, 2000.

30. E. Yahav. Verifying safety properties of concurrent Java programs using 3-valued
logic. In POPL 01: Principles of Programming Languages, pages 27–40, 2001.

	Introduction
	Example
	Pushdown Systems
	Concurrent Pushdown Systems
	Bounded Reachability
	Algorithm

	Dynamic Concurrent Pushdown Systems
	Assumptions
	Reduction to Concurrent Pushdown Systems

	Related Work
	Conclusion

